linux_dsm_epyc7002/security/smack/smack.h

436 lines
12 KiB
C
Raw Normal View History

Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Copyright (C) 2007 Casey Schaufler <casey@schaufler-ca.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* Author:
* Casey Schaufler <casey@schaufler-ca.com>
*
*/
#ifndef _SECURITY_SMACK_H
#define _SECURITY_SMACK_H
#include <linux/capability.h>
#include <linux/spinlock.h>
#include <linux/lsm_hooks.h>
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
#include <linux/in.h>
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#include <net/netlabel.h>
#include <linux/list.h>
#include <linux/rculist.h>
#include <linux/lsm_audit.h>
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
* Smack labels were limited to 23 characters for a long time.
*/
#define SMK_LABELLEN 24
#define SMK_LONGLABEL 256
/*
* This is the repository for labels seen so that it is
* not necessary to keep allocating tiny chuncks of memory
* and so that they can be shared.
*
* Labels are never modified in place. Anytime a label
* is imported (e.g. xattrset on a file) the list is checked
* for it and it is added if it doesn't exist. The address
* is passed out in either case. Entries are added, but
* never deleted.
*
* Since labels are hanging around anyway it doesn't
* hurt to maintain a secid for those awkward situations
* where kernel components that ought to use LSM independent
* interfaces don't. The secid should go away when all of
* these components have been repaired.
*
* The cipso value associated with the label gets stored here, too.
*
* Keep the access rules for this subject label here so that
* the entire set of rules does not need to be examined every
* time.
*/
struct smack_known {
struct list_head list;
security: smack: add a hash table to quicken smk_find_entry() Accepted for the smack-next tree after changing the number of slots from 128 to 16. This patch adds a hash table to quicken searching of a smack label by its name. Basically, the patch improves performance of SMACK initialization. Parsing of rules involves translation from a string to a smack_known (aka label) entity which is done in smk_find_entry(). The current implementation of the function iterates over a global list of smack_known resulting in O(N) complexity for smk_find_entry(). The total complexity of SMACK initialization becomes O(rules * labels). Therefore it scales quadratically with a complexity of a system. Applying the patch reduced the complexity of smk_find_entry() to O(1) as long as number of label is in hundreds. If the number of labels is increased please update SMACK_HASH_SLOTS constant defined in security/smack/smack.h. Introducing the configuration of this constant with Kconfig or cmdline might be a good idea. The size of the hash table was adjusted experimentally. The rule set used by TIZEN contains circa 17K rules for 500 labels. The table above contains results of SMACK initialization using 'time smackctl apply' bash command. The 'Ref' is a kernel without this patch applied. The consecutive values refers to value of SMACK_HASH_SLOTS. Every measurement was repeated three times to reduce noise. | Ref | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 -------------------------------------------------------------------------------------------- Run1 | 1.156 | 1.096 | 0.883 | 0.764 | 0.692 | 0.667 | 0.649 | 0.633 | 0.634 | 0.629 | 0.620 Run2 | 1.156 | 1.111 | 0.885 | 0.764 | 0.694 | 0.661 | 0.649 | 0.651 | 0.634 | 0.638 | 0.623 Run3 | 1.160 | 1.107 | 0.886 | 0.764 | 0.694 | 0.671 | 0.661 | 0.638 | 0.631 | 0.624 | 0.638 AVG | 1.157 | 1.105 | 0.885 | 0.764 | 0.693 | 0.666 | 0.653 | 0.641 | 0.633 | 0.630 | 0.627 Surprisingly, a single hlist is slightly faster than a double-linked list. The speed-up saturates near 64 slots. Therefore I chose value 128 to provide some margin if more labels were used. It looks that IO becomes a new bottleneck. Signed-off-by: Tomasz Stanislawski <t.stanislaws@samsung.com>
2013-06-11 19:55:13 +07:00
struct hlist_node smk_hashed;
char *smk_known;
u32 smk_secid;
struct netlbl_lsm_secattr smk_netlabel; /* on wire labels */
struct list_head smk_rules; /* access rules */
struct mutex smk_rules_lock; /* lock for rules */
};
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
/*
* Maximum number of bytes for the levels in a CIPSO IP option.
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
* Why 23? CIPSO is constrained to 30, so a 32 byte buffer is
* bigger than can be used, and 24 is the next lower multiple
* of 8, and there are too many issues if there isn't space set
* aside for the terminating null byte.
*/
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
#define SMK_CIPSOLEN 24
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
struct superblock_smack {
struct smack_known *smk_root;
struct smack_known *smk_floor;
struct smack_known *smk_hat;
struct smack_known *smk_default;
int smk_initialized;
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
};
struct socket_smack {
struct smack_known *smk_out; /* outbound label */
struct smack_known *smk_in; /* inbound label */
struct smack_known *smk_packet; /* TCP peer label */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
};
/*
* Inode smack data
*/
struct inode_smack {
struct smack_known *smk_inode; /* label of the fso */
struct smack_known *smk_task; /* label of the task */
struct smack_known *smk_mmap; /* label of the mmap domain */
struct mutex smk_lock; /* initialization lock */
int smk_flags; /* smack inode flags */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
};
struct task_smack {
struct smack_known *smk_task; /* label for access control */
struct smack_known *smk_forked; /* label when forked */
Subject: [PATCH] Smack: mmap controls for library containment In the embedded world there are often situations where libraries are updated from a variety of sources, for a variety of reasons, and with any number of security characteristics. These differences might include privilege required for a given library provided interface to function properly, as occurs from time to time in graphics libraries. There are also cases where it is important to limit use of libraries based on the provider of the library and the security aware application may make choices based on that criteria. These issues are addressed by providing an additional Smack label that may optionally be assigned to an object, the SMACK64MMAP attribute. An mmap operation is allowed if there is no such attribute. If there is a SMACK64MMAP attribute the mmap is permitted only if a subject with that label has all of the access permitted a subject with the current task label. Security aware applications may from time to time wish to reduce their "privilege" to avoid accidental use of privilege. One case where this arises is the environment in which multiple sources provide libraries to perform the same functions. An application may know that it should eschew services made available from a particular vendor, or of a particular version. In support of this a secondary list of Smack rules has been added that is local to the task. This list is consulted only in the case where the global list has approved access. It can only further restrict access. Unlike the global last, if no entry is found on the local list access is granted. An application can add entries to its own list by writing to /smack/load-self. The changes appear large as they involve refactoring the list handling to accomodate there being more than one rule list. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2011-01-17 23:05:27 +07:00
struct list_head smk_rules; /* per task access rules */
struct mutex smk_rules_lock; /* lock for the rules */
};
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#define SMK_INODE_INSTANT 0x01 /* inode is instantiated */
#define SMK_INODE_TRANSMUTE 0x02 /* directory is transmuting */
#define SMK_INODE_CHANGED 0x04 /* smack was transmuted */
Smack: Allow an unconfined label in bringup mode I have vehemently opposed adding a "permissive" mode to Smack for the simple reasons that it would be subject to massive abuse and that developers refuse to turn it off come product release. I still believe that this is true, and still refuse to add a general "permissive mode". So don't ask again. Bumjin Im suggested an approach that addresses most of the concerns, and I have implemented it here. I still believe that we'd be better off without this sort of thing, but it looks like this minimizes the abuse potential. Firstly, you have to configure Smack Bringup Mode. That allows for "release" software to be ammune from abuse. Second, only one label gets to be "permissive" at a time. You can use it for debugging, but that's about it. A label written to smackfs/unconfined is treated specially. If either the subject or object label of an access check matches the "unconfined" label, and the access would not have been allowed otherwise an audit record and a console message are generated. The audit record "request" string is marked with either "(US)" or "(UO)", to indicate that the request was granted because of an unconfined label. The fact that an inode was accessed by an unconfined label is remembered, and subsequent accesses to that "impure" object are noted in the log. The impurity is not stored in the filesystem, so a file mislabled as a side effect of using an unconfined label may still cause concern after a reboot. So, it's there, it's dangerous, but so many application developers seem incapable of living without it I have given in. I've tried to make it as safe as I can, but in the end it's still a chain saw. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
#define SMK_INODE_IMPURE 0x08 /* involved in an impure transaction */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* A label access rule.
*/
struct smack_rule {
struct list_head list;
struct smack_known *smk_subject;
struct smack_known *smk_object;
int smk_access;
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
};
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
/*
* An entry in the table identifying hosts.
*/
struct smk_netlbladdr {
struct list_head list;
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
struct sockaddr_in smk_host; /* network address */
struct in_addr smk_mask; /* network mask */
struct smack_known *smk_label; /* label */
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
};
/*
* An entry in the table identifying ports.
*/
struct smk_port_label {
struct list_head list;
struct sock *smk_sock; /* socket initialized on */
unsigned short smk_port; /* the port number */
struct smack_known *smk_in; /* inbound label */
struct smack_known *smk_out; /* outgoing label */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
};
struct smack_onlycap {
struct list_head list;
struct smack_known *smk_label;
};
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Mount options
*/
#define SMK_FSDEFAULT "smackfsdef="
#define SMK_FSFLOOR "smackfsfloor="
#define SMK_FSHAT "smackfshat="
#define SMK_FSROOT "smackfsroot="
#define SMK_FSTRANS "smackfstransmute="
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#define SMACK_CIPSO_OPTION "-CIPSO"
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
* How communications on this socket are treated.
* Usually it's determined by the underlying netlabel code
* but there are certain cases, including single label hosts
* and potentially single label interfaces for which the
* treatment can not be known in advance.
*
* The possibility of additional labeling schemes being
* introduced in the future exists as well.
*/
#define SMACK_UNLABELED_SOCKET 0
#define SMACK_CIPSO_SOCKET 1
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* CIPSO defaults.
*/
#define SMACK_CIPSO_DOI_DEFAULT 3 /* Historical */
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
#define SMACK_CIPSO_DOI_INVALID -1 /* Not a DOI */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#define SMACK_CIPSO_DIRECT_DEFAULT 250 /* Arbitrary */
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
#define SMACK_CIPSO_MAPPED_DEFAULT 251 /* Also arbitrary */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#define SMACK_CIPSO_MAXLEVEL 255 /* CIPSO 2.2 standard */
/*
* CIPSO 2.2 standard is 239, but Smack wants to use the
* categories in a structured way that limits the value to
* the bits in 23 bytes, hence the unusual number.
*/
#define SMACK_CIPSO_MAXCATNUM 184 /* 23 * 8 */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Ptrace rules
*/
#define SMACK_PTRACE_DEFAULT 0
#define SMACK_PTRACE_EXACT 1
#define SMACK_PTRACE_DRACONIAN 2
#define SMACK_PTRACE_MAX SMACK_PTRACE_DRACONIAN
/*
* Flags for untraditional access modes.
* It shouldn't be necessary to avoid conflicts with definitions
* in fs.h, but do so anyway.
*/
#define MAY_TRANSMUTE 0x00001000 /* Controls directory labeling */
#define MAY_LOCK 0x00002000 /* Locks should be writes, but ... */
#define MAY_BRINGUP 0x00004000 /* Report use of this rule */
Smack: Allow an unconfined label in bringup mode I have vehemently opposed adding a "permissive" mode to Smack for the simple reasons that it would be subject to massive abuse and that developers refuse to turn it off come product release. I still believe that this is true, and still refuse to add a general "permissive mode". So don't ask again. Bumjin Im suggested an approach that addresses most of the concerns, and I have implemented it here. I still believe that we'd be better off without this sort of thing, but it looks like this minimizes the abuse potential. Firstly, you have to configure Smack Bringup Mode. That allows for "release" software to be ammune from abuse. Second, only one label gets to be "permissive" at a time. You can use it for debugging, but that's about it. A label written to smackfs/unconfined is treated specially. If either the subject or object label of an access check matches the "unconfined" label, and the access would not have been allowed otherwise an audit record and a console message are generated. The audit record "request" string is marked with either "(US)" or "(UO)", to indicate that the request was granted because of an unconfined label. The fact that an inode was accessed by an unconfined label is remembered, and subsequent accesses to that "impure" object are noted in the log. The impurity is not stored in the filesystem, so a file mislabled as a side effect of using an unconfined label may still cause concern after a reboot. So, it's there, it's dangerous, but so many application developers seem incapable of living without it I have given in. I've tried to make it as safe as I can, but in the end it's still a chain saw. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
#define SMACK_BRINGUP_ALLOW 1 /* Allow bringup mode */
#define SMACK_UNCONFINED_SUBJECT 2 /* Allow unconfined label */
#define SMACK_UNCONFINED_OBJECT 3 /* Allow unconfined label */
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Just to make the common cases easier to deal with
*/
#define MAY_ANYREAD (MAY_READ | MAY_EXEC)
#define MAY_READWRITE (MAY_READ | MAY_WRITE)
#define MAY_NOT 0
/*
* Number of access types used by Smack (rwxatlb)
*/
#define SMK_NUM_ACCESS_TYPE 7
/* SMACK data */
struct smack_audit_data {
const char *function;
char *subject;
char *object;
char *request;
int result;
};
/*
* Smack audit data; is empty if CONFIG_AUDIT not set
* to save some stack
*/
struct smk_audit_info {
#ifdef CONFIG_AUDIT
struct common_audit_data a;
struct smack_audit_data sad;
#endif
};
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* These functions are in smack_lsm.c
*/
struct inode_smack *new_inode_smack(struct smack_known *);
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* These functions are in smack_access.c
*/
Subject: [PATCH] Smack: mmap controls for library containment In the embedded world there are often situations where libraries are updated from a variety of sources, for a variety of reasons, and with any number of security characteristics. These differences might include privilege required for a given library provided interface to function properly, as occurs from time to time in graphics libraries. There are also cases where it is important to limit use of libraries based on the provider of the library and the security aware application may make choices based on that criteria. These issues are addressed by providing an additional Smack label that may optionally be assigned to an object, the SMACK64MMAP attribute. An mmap operation is allowed if there is no such attribute. If there is a SMACK64MMAP attribute the mmap is permitted only if a subject with that label has all of the access permitted a subject with the current task label. Security aware applications may from time to time wish to reduce their "privilege" to avoid accidental use of privilege. One case where this arises is the environment in which multiple sources provide libraries to perform the same functions. An application may know that it should eschew services made available from a particular vendor, or of a particular version. In support of this a secondary list of Smack rules has been added that is local to the task. This list is consulted only in the case where the global list has approved access. It can only further restrict access. Unlike the global last, if no entry is found on the local list access is granted. An application can add entries to its own list by writing to /smack/load-self. The changes appear large as they involve refactoring the list handling to accomodate there being more than one rule list. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2011-01-17 23:05:27 +07:00
int smk_access_entry(char *, char *, struct list_head *);
int smk_access(struct smack_known *, struct smack_known *,
int, struct smk_audit_info *);
int smk_tskacc(struct task_smack *, struct smack_known *,
u32, struct smk_audit_info *);
int smk_curacc(struct smack_known *, u32, struct smk_audit_info *);
struct smack_known *smack_from_secid(const u32);
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
char *smk_parse_smack(const char *string, int len);
int smk_netlbl_mls(int, char *, struct netlbl_lsm_secattr *, int);
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
struct smack_known *smk_import_entry(const char *, int);
security: smack: add a hash table to quicken smk_find_entry() Accepted for the smack-next tree after changing the number of slots from 128 to 16. This patch adds a hash table to quicken searching of a smack label by its name. Basically, the patch improves performance of SMACK initialization. Parsing of rules involves translation from a string to a smack_known (aka label) entity which is done in smk_find_entry(). The current implementation of the function iterates over a global list of smack_known resulting in O(N) complexity for smk_find_entry(). The total complexity of SMACK initialization becomes O(rules * labels). Therefore it scales quadratically with a complexity of a system. Applying the patch reduced the complexity of smk_find_entry() to O(1) as long as number of label is in hundreds. If the number of labels is increased please update SMACK_HASH_SLOTS constant defined in security/smack/smack.h. Introducing the configuration of this constant with Kconfig or cmdline might be a good idea. The size of the hash table was adjusted experimentally. The rule set used by TIZEN contains circa 17K rules for 500 labels. The table above contains results of SMACK initialization using 'time smackctl apply' bash command. The 'Ref' is a kernel without this patch applied. The consecutive values refers to value of SMACK_HASH_SLOTS. Every measurement was repeated three times to reduce noise. | Ref | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 -------------------------------------------------------------------------------------------- Run1 | 1.156 | 1.096 | 0.883 | 0.764 | 0.692 | 0.667 | 0.649 | 0.633 | 0.634 | 0.629 | 0.620 Run2 | 1.156 | 1.111 | 0.885 | 0.764 | 0.694 | 0.661 | 0.649 | 0.651 | 0.634 | 0.638 | 0.623 Run3 | 1.160 | 1.107 | 0.886 | 0.764 | 0.694 | 0.671 | 0.661 | 0.638 | 0.631 | 0.624 | 0.638 AVG | 1.157 | 1.105 | 0.885 | 0.764 | 0.693 | 0.666 | 0.653 | 0.641 | 0.633 | 0.630 | 0.627 Surprisingly, a single hlist is slightly faster than a double-linked list. The speed-up saturates near 64 slots. Therefore I chose value 128 to provide some margin if more labels were used. It looks that IO becomes a new bottleneck. Signed-off-by: Tomasz Stanislawski <t.stanislaws@samsung.com>
2013-06-11 19:55:13 +07:00
void smk_insert_entry(struct smack_known *skp);
Smack: Rule list lookup performance This patch is targeted for the smack-next tree. Smack access checks suffer from two significant performance issues. In cases where there are large numbers of rules the search of the single list of rules is wasteful. Comparing the string values of the smack labels is less efficient than a numeric comparison would. These changes take advantage of the Smack label list, which maintains the mapping of Smack labels to secids and optional CIPSO labels. Because the labels are kept perpetually, an access check can be done strictly based on the address of the label in the list without ever looking at the label itself. Rather than keeping one global list of rules the rules with a particular subject label can be based off of that label list entry. The access check need never look at entries that do not use the current subject label. This requires that packets coming off the network with CIPSO direct Smack labels that have never been seen before be treated carefully. The only case where they could be delivered is where the receiving socket has an IPIN star label, so that case is explicitly addressed. On a system with 39,800 rules (200 labels in all permutations) a system with this patch runs an access speed test in 5% of the time of the old version. That should be a best case improvement. If all of the rules are associated with the same subject label and all of the accesses are for processes with that label (unlikely) the improvement is about 30%. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2011-09-21 02:24:36 +07:00
struct smack_known *smk_find_entry(const char *);
int smack_privileged(int cap);
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Shared data.
*/
extern int smack_enabled;
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
extern int smack_cipso_direct;
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
extern int smack_cipso_mapped;
extern struct smack_known *smack_net_ambient;
extern struct smack_known *smack_syslog_label;
Smack: Allow an unconfined label in bringup mode I have vehemently opposed adding a "permissive" mode to Smack for the simple reasons that it would be subject to massive abuse and that developers refuse to turn it off come product release. I still believe that this is true, and still refuse to add a general "permissive mode". So don't ask again. Bumjin Im suggested an approach that addresses most of the concerns, and I have implemented it here. I still believe that we'd be better off without this sort of thing, but it looks like this minimizes the abuse potential. Firstly, you have to configure Smack Bringup Mode. That allows for "release" software to be ammune from abuse. Second, only one label gets to be "permissive" at a time. You can use it for debugging, but that's about it. A label written to smackfs/unconfined is treated specially. If either the subject or object label of an access check matches the "unconfined" label, and the access would not have been allowed otherwise an audit record and a console message are generated. The audit record "request" string is marked with either "(US)" or "(UO)", to indicate that the request was granted because of an unconfined label. The fact that an inode was accessed by an unconfined label is remembered, and subsequent accesses to that "impure" object are noted in the log. The impurity is not stored in the filesystem, so a file mislabled as a side effect of using an unconfined label may still cause concern after a reboot. So, it's there, it's dangerous, but so many application developers seem incapable of living without it I have given in. I've tried to make it as safe as I can, but in the end it's still a chain saw. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
#ifdef CONFIG_SECURITY_SMACK_BRINGUP
extern struct smack_known *smack_unconfined;
#endif
extern struct smack_known smack_cipso_option;
extern int smack_ptrace_rule;
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
extern struct smack_known smack_known_floor;
extern struct smack_known smack_known_hat;
extern struct smack_known smack_known_huh;
extern struct smack_known smack_known_invalid;
extern struct smack_known smack_known_star;
smack: Add support for unlabeled network hosts and networks Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2009-01-01 00:54:12 +07:00
extern struct smack_known smack_known_web;
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
Smack: allow for significantly longer Smack labels v4 V4 updated to current linux-security#next Targeted for git://gitorious.org/smack-next/kernel.git Modern application runtime environments like to use naming schemes that are structured and generated without human intervention. Even though the Smack limit of 23 characters for a label name is perfectly rational for human use there have been complaints that the limit is a problem in environments where names are composed from a set or sources, including vendor, author, distribution channel and application name. Names like softwarehouse-pgwodehouse-coolappstore-mellowmuskrats are becoming harder to avoid. This patch introduces long label support in Smack. Labels are now limited to 255 characters instead of the old 23. The primary reason for limiting the labels to 23 characters was so they could be directly contained in CIPSO category sets. This is still done were possible, but for labels that are too large a mapping is required. This is perfectly safe for communication that stays "on the box" and doesn't require much coordination between boxes beyond what would have been required to keep label names consistent. The bulk of this patch is in smackfs, adding and updating administrative interfaces. Because existing APIs can't be changed new ones that do much the same things as old ones have been introduced. The Smack specific CIPSO data representation has been removed and replaced with the data format used by netlabel. The CIPSO header is now computed when a label is imported rather than on use. This results in improved IP performance. The smack label is now allocated separately from the containing structure, allowing for larger strings. Four new /smack interfaces have been introduced as four of the old interfaces strictly required labels be specified in fixed length arrays. The access interface is supplemented with the check interface: access "Subject Object rwxat" access2 "Subject Object rwaxt" The load interface is supplemented with the rules interface: load "Subject Object rwxat" load2 "Subject Object rwaxt" The load-self interface is supplemented with the self-rules interface: load-self "Subject Object rwxat" load-self2 "Subject Object rwaxt" The cipso interface is supplemented with the wire interface: cipso "Subject lvl cnt c1 c2 ..." cipso2 "Subject lvl cnt c1 c2 ..." The old interfaces are maintained for compatibility. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2012-05-07 05:22:02 +07:00
extern struct mutex smack_known_lock;
extern struct list_head smack_known_list;
extern struct list_head smk_netlbladdr_list;
extern struct mutex smack_onlycap_lock;
extern struct list_head smack_onlycap_list;
security: smack: add a hash table to quicken smk_find_entry() Accepted for the smack-next tree after changing the number of slots from 128 to 16. This patch adds a hash table to quicken searching of a smack label by its name. Basically, the patch improves performance of SMACK initialization. Parsing of rules involves translation from a string to a smack_known (aka label) entity which is done in smk_find_entry(). The current implementation of the function iterates over a global list of smack_known resulting in O(N) complexity for smk_find_entry(). The total complexity of SMACK initialization becomes O(rules * labels). Therefore it scales quadratically with a complexity of a system. Applying the patch reduced the complexity of smk_find_entry() to O(1) as long as number of label is in hundreds. If the number of labels is increased please update SMACK_HASH_SLOTS constant defined in security/smack/smack.h. Introducing the configuration of this constant with Kconfig or cmdline might be a good idea. The size of the hash table was adjusted experimentally. The rule set used by TIZEN contains circa 17K rules for 500 labels. The table above contains results of SMACK initialization using 'time smackctl apply' bash command. The 'Ref' is a kernel without this patch applied. The consecutive values refers to value of SMACK_HASH_SLOTS. Every measurement was repeated three times to reduce noise. | Ref | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 -------------------------------------------------------------------------------------------- Run1 | 1.156 | 1.096 | 0.883 | 0.764 | 0.692 | 0.667 | 0.649 | 0.633 | 0.634 | 0.629 | 0.620 Run2 | 1.156 | 1.111 | 0.885 | 0.764 | 0.694 | 0.661 | 0.649 | 0.651 | 0.634 | 0.638 | 0.623 Run3 | 1.160 | 1.107 | 0.886 | 0.764 | 0.694 | 0.671 | 0.661 | 0.638 | 0.631 | 0.624 | 0.638 AVG | 1.157 | 1.105 | 0.885 | 0.764 | 0.693 | 0.666 | 0.653 | 0.641 | 0.633 | 0.630 | 0.627 Surprisingly, a single hlist is slightly faster than a double-linked list. The speed-up saturates near 64 slots. Therefore I chose value 128 to provide some margin if more labels were used. It looks that IO becomes a new bottleneck. Signed-off-by: Tomasz Stanislawski <t.stanislaws@samsung.com>
2013-06-11 19:55:13 +07:00
#define SMACK_HASH_SLOTS 16
extern struct hlist_head smack_known_hash[SMACK_HASH_SLOTS];
/*
* Is the directory transmuting?
*/
static inline int smk_inode_transmutable(const struct inode *isp)
{
struct inode_smack *sip = isp->i_security;
return (sip->smk_flags & SMK_INODE_TRANSMUTE) != 0;
}
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
/*
* Present a pointer to the smack label entry in an inode blob.
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
*/
static inline struct smack_known *smk_of_inode(const struct inode *isp)
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
{
struct inode_smack *sip = isp->i_security;
return sip->smk_inode;
}
/*
* Present a pointer to the smack label entry in an task blob.
*/
static inline struct smack_known *smk_of_task(const struct task_smack *tsp)
{
return tsp->smk_task;
}
smack: fix possible use after frees in task_security() callers We hit use after free on dereferncing pointer to task_smack struct in smk_of_task() called from smack_task_to_inode(). task_security() macro uses task_cred_xxx() to get pointer to the task_smack. task_cred_xxx() could be used only for non-pointer members of task's credentials. It cannot be used for pointer members since what they point to may disapper after dropping RCU read lock. Mainly task_security() used this way: smk_of_task(task_security(p)) Intead of this introduce function smk_of_task_struct() which takes task_struct as argument and returns pointer to smk_known struct and do this under RCU read lock. Bogus task_security() macro is not used anymore, so remove it. KASan's report for this: AddressSanitizer: use after free in smack_task_to_inode+0x50/0x70 at addr c4635600 ============================================================================= BUG kmalloc-64 (Tainted: PO): kasan error ----------------------------------------------------------------------------- Disabling lock debugging due to kernel taint INFO: Allocated in new_task_smack+0x44/0xd8 age=39 cpu=0 pid=1866 kmem_cache_alloc_trace+0x88/0x1bc new_task_smack+0x44/0xd8 smack_cred_prepare+0x48/0x21c security_prepare_creds+0x44/0x4c prepare_creds+0xdc/0x110 smack_setprocattr+0x104/0x150 security_setprocattr+0x4c/0x54 proc_pid_attr_write+0x12c/0x194 vfs_write+0x1b0/0x370 SyS_write+0x5c/0x94 ret_fast_syscall+0x0/0x48 INFO: Freed in smack_cred_free+0xc4/0xd0 age=27 cpu=0 pid=1564 kfree+0x270/0x290 smack_cred_free+0xc4/0xd0 security_cred_free+0x34/0x3c put_cred_rcu+0x58/0xcc rcu_process_callbacks+0x738/0x998 __do_softirq+0x264/0x4cc do_softirq+0x94/0xf4 irq_exit+0xbc/0x120 handle_IRQ+0x104/0x134 gic_handle_irq+0x70/0xac __irq_svc+0x44/0x78 _raw_spin_unlock+0x18/0x48 sync_inodes_sb+0x17c/0x1d8 sync_filesystem+0xac/0xfc vdfs_file_fsync+0x90/0xc0 vfs_fsync_range+0x74/0x7c INFO: Slab 0xd3b23f50 objects=32 used=31 fp=0xc4635600 flags=0x4080 INFO: Object 0xc4635600 @offset=5632 fp=0x (null) Bytes b4 c46355f0: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ Object c4635600: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Object c4635610: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Object c4635620: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Object c4635630: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. Redzone c4635640: bb bb bb bb .... Padding c46356e8: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ Padding c46356f8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ CPU: 5 PID: 834 Comm: launchpad_prelo Tainted: PBO 3.10.30 #1 Backtrace: [<c00233a4>] (dump_backtrace+0x0/0x158) from [<c0023dec>] (show_stack+0x20/0x24) r7:c4634010 r6:d3b23f50 r5:c4635600 r4:d1002140 [<c0023dcc>] (show_stack+0x0/0x24) from [<c06d6d7c>] (dump_stack+0x20/0x28) [<c06d6d5c>] (dump_stack+0x0/0x28) from [<c01c1d50>] (print_trailer+0x124/0x144) [<c01c1c2c>] (print_trailer+0x0/0x144) from [<c01c1e88>] (object_err+0x3c/0x44) r7:c4635600 r6:d1002140 r5:d3b23f50 r4:c4635600 [<c01c1e4c>] (object_err+0x0/0x44) from [<c01cac18>] (kasan_report_error+0x2b8/0x538) r6:d1002140 r5:d3b23f50 r4:c6429cf8 r3:c09e1aa7 [<c01ca960>] (kasan_report_error+0x0/0x538) from [<c01c9430>] (__asan_load4+0xd4/0xf8) [<c01c935c>] (__asan_load4+0x0/0xf8) from [<c031e168>] (smack_task_to_inode+0x50/0x70) r5:c4635600 r4:ca9da000 [<c031e118>] (smack_task_to_inode+0x0/0x70) from [<c031af64>] (security_task_to_inode+0x3c/0x44) r5:cca25e80 r4:c0ba9780 [<c031af28>] (security_task_to_inode+0x0/0x44) from [<c023d614>] (pid_revalidate+0x124/0x178) r6:00000000 r5:cca25e80 r4:cbabe3c0 r3:00008124 [<c023d4f0>] (pid_revalidate+0x0/0x178) from [<c01db98c>] (lookup_fast+0x35c/0x43y4) r9:c6429efc r8:00000101 r7:c079d940 r6:c6429e90 r5:c6429ed8 r4:c83c4148 [<c01db630>] (lookup_fast+0x0/0x434) from [<c01deec8>] (do_last.isra.24+0x1c0/0x1108) [<c01ded08>] (do_last.isra.24+0x0/0x1108) from [<c01dff04>] (path_openat.isra.25+0xf4/0x648) [<c01dfe10>] (path_openat.isra.25+0x0/0x648) from [<c01e1458>] (do_filp_open+0x3c/0x88) [<c01e141c>] (do_filp_open+0x0/0x88) from [<c01ccb28>] (do_sys_open+0xf0/0x198) r7:00000001 r6:c0ea2180 r5:0000000b r4:00000000 [<c01cca38>] (do_sys_open+0x0/0x198) from [<c01ccc00>] (SyS_open+0x30/0x34) [<c01ccbd0>] (SyS_open+0x0/0x34) from [<c001db80>] (ret_fast_syscall+0x0/0x48) Read of size 4 by thread T834: Memory state around the buggy address: c4635380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc c4635400: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc c4635480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc c4635500: 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc c4635580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >c4635600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ c4635680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb c4635700: 00 00 00 00 04 fc fc fc fc fc fc fc fc fc fc fc c4635780: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc c4635800: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc c4635880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: <stable@vger.kernel.org>
2015-01-13 22:52:40 +07:00
static inline struct smack_known *smk_of_task_struct(const struct task_struct *t)
{
struct smack_known *skp;
rcu_read_lock();
skp = smk_of_task(__task_cred(t)->security);
rcu_read_unlock();
return skp;
}
/*
* Present a pointer to the forked smack label entry in an task blob.
*/
static inline struct smack_known *smk_of_forked(const struct task_smack *tsp)
{
return tsp->smk_forked;
}
/*
* Present a pointer to the smack label in the current task blob.
*/
static inline struct smack_known *smk_of_current(void)
{
return smk_of_task(current_security());
}
/*
* logging functions
*/
#define SMACK_AUDIT_DENIED 0x1
#define SMACK_AUDIT_ACCEPT 0x2
extern int log_policy;
void smack_log(char *subject_label, char *object_label,
int request,
int result, struct smk_audit_info *auditdata);
#ifdef CONFIG_AUDIT
/*
* some inline functions to set up audit data
* they do nothing if CONFIG_AUDIT is not set
*
*/
static inline void smk_ad_init(struct smk_audit_info *a, const char *func,
char type)
{
memset(&a->sad, 0, sizeof(a->sad));
a->a.type = type;
a->a.smack_audit_data = &a->sad;
a->a.smack_audit_data->function = func;
}
static inline void smk_ad_init_net(struct smk_audit_info *a, const char *func,
char type, struct lsm_network_audit *net)
{
smk_ad_init(a, func, type);
memset(net, 0, sizeof(*net));
a->a.u.net = net;
}
static inline void smk_ad_setfield_u_tsk(struct smk_audit_info *a,
struct task_struct *t)
{
a->a.u.tsk = t;
}
static inline void smk_ad_setfield_u_fs_path_dentry(struct smk_audit_info *a,
struct dentry *d)
{
a->a.u.dentry = d;
}
static inline void smk_ad_setfield_u_fs_inode(struct smk_audit_info *a,
struct inode *i)
{
a->a.u.inode = i;
}
static inline void smk_ad_setfield_u_fs_path(struct smk_audit_info *a,
struct path p)
{
a->a.u.path = p;
}
static inline void smk_ad_setfield_u_net_sk(struct smk_audit_info *a,
struct sock *sk)
{
a->a.u.net->sk = sk;
}
#else /* no AUDIT */
static inline void smk_ad_init(struct smk_audit_info *a, const char *func,
char type)
{
}
static inline void smk_ad_setfield_u_tsk(struct smk_audit_info *a,
struct task_struct *t)
{
}
static inline void smk_ad_setfield_u_fs_path_dentry(struct smk_audit_info *a,
struct dentry *d)
{
}
static inline void smk_ad_setfield_u_fs_path_mnt(struct smk_audit_info *a,
struct vfsmount *m)
{
}
static inline void smk_ad_setfield_u_fs_inode(struct smk_audit_info *a,
struct inode *i)
{
}
static inline void smk_ad_setfield_u_fs_path(struct smk_audit_info *a,
struct path p)
{
}
static inline void smk_ad_setfield_u_net_sk(struct smk_audit_info *a,
struct sock *sk)
{
}
#endif
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
#endif /* _SECURITY_SMACK_H */