linux_dsm_epyc7002/arch/arm/mach-iop13xx/setup.c

610 lines
15 KiB
C
Raw Normal View History

/*
* iop13xx platform Initialization
* Copyright (c) 2005-2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
*/
#include <linux/dma-mapping.h>
#include <linux/serial_8250.h>
#include <linux/io.h>
#ifdef CONFIG_MTD_PHYSMAP
#include <linux/mtd/physmap.h>
#endif
#include <asm/mach/map.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#include <asm/hardware/iop_adma.h>
#define IOP13XX_UART_XTAL 33334000
#define IOP13XX_SETUP_DEBUG 0
#define PRINTK(x...) ((void)(IOP13XX_SETUP_DEBUG && printk(x)))
/* Standard IO mapping for all IOP13XX based systems
*/
static struct map_desc iop13xx_std_desc[] __initdata = {
{ /* mem mapped registers */
.virtual = (unsigned long)IOP13XX_PMMR_VIRT_MEM_BASE,
.pfn = __phys_to_pfn(IOP13XX_PMMR_PHYS_MEM_BASE),
.length = IOP13XX_PMMR_SIZE,
.type = MT_DEVICE,
},
};
static struct resource iop13xx_uart0_resources[] = {
[0] = {
.start = IOP13XX_UART0_PHYS,
.end = IOP13XX_UART0_PHYS + 0x3f,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_UART0,
.end = IRQ_IOP13XX_UART0,
.flags = IORESOURCE_IRQ
}
};
static struct resource iop13xx_uart1_resources[] = {
[0] = {
.start = IOP13XX_UART1_PHYS,
.end = IOP13XX_UART1_PHYS + 0x3f,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_UART1,
.end = IRQ_IOP13XX_UART1,
.flags = IORESOURCE_IRQ
}
};
static struct plat_serial8250_port iop13xx_uart0_data[] = {
{
.membase = IOP13XX_UART0_VIRT,
.mapbase = IOP13XX_UART0_PHYS,
.irq = IRQ_IOP13XX_UART0,
.uartclk = IOP13XX_UART_XTAL,
.regshift = 2,
.iotype = UPIO_MEM,
.flags = UPF_SKIP_TEST,
},
{ },
};
static struct plat_serial8250_port iop13xx_uart1_data[] = {
{
.membase = IOP13XX_UART1_VIRT,
.mapbase = IOP13XX_UART1_PHYS,
.irq = IRQ_IOP13XX_UART1,
.uartclk = IOP13XX_UART_XTAL,
.regshift = 2,
.iotype = UPIO_MEM,
.flags = UPF_SKIP_TEST,
},
{ },
};
/* The ids are fixed up later in iop13xx_platform_init */
static struct platform_device iop13xx_uart0 = {
.name = "serial8250",
.id = 0,
.dev.platform_data = iop13xx_uart0_data,
.num_resources = 2,
.resource = iop13xx_uart0_resources,
};
static struct platform_device iop13xx_uart1 = {
.name = "serial8250",
.id = 0,
.dev.platform_data = iop13xx_uart1_data,
.num_resources = 2,
.resource = iop13xx_uart1_resources
};
static struct resource iop13xx_i2c_0_resources[] = {
[0] = {
.start = IOP13XX_I2C0_PHYS,
.end = IOP13XX_I2C0_PHYS + 0x18,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_I2C_0,
.end = IRQ_IOP13XX_I2C_0,
.flags = IORESOURCE_IRQ
}
};
static struct resource iop13xx_i2c_1_resources[] = {
[0] = {
.start = IOP13XX_I2C1_PHYS,
.end = IOP13XX_I2C1_PHYS + 0x18,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_I2C_1,
.end = IRQ_IOP13XX_I2C_1,
.flags = IORESOURCE_IRQ
}
};
static struct resource iop13xx_i2c_2_resources[] = {
[0] = {
.start = IOP13XX_I2C2_PHYS,
.end = IOP13XX_I2C2_PHYS + 0x18,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_I2C_2,
.end = IRQ_IOP13XX_I2C_2,
.flags = IORESOURCE_IRQ
}
};
/* I2C controllers. The IOP13XX uses the same block as the IOP3xx, so
* we just use the same device name.
*/
/* The ids are fixed up later in iop13xx_platform_init */
static struct platform_device iop13xx_i2c_0_controller = {
.name = "IOP3xx-I2C",
.id = 0,
.num_resources = 2,
.resource = iop13xx_i2c_0_resources
};
static struct platform_device iop13xx_i2c_1_controller = {
.name = "IOP3xx-I2C",
.id = 0,
.num_resources = 2,
.resource = iop13xx_i2c_1_resources
};
static struct platform_device iop13xx_i2c_2_controller = {
.name = "IOP3xx-I2C",
.id = 0,
.num_resources = 2,
.resource = iop13xx_i2c_2_resources
};
#ifdef CONFIG_MTD_PHYSMAP
/* PBI Flash Device
*/
static struct physmap_flash_data iq8134x_flash_data = {
.width = 2,
};
static struct resource iq8134x_flash_resource = {
.start = IQ81340_FLASHBASE,
.end = 0,
.flags = IORESOURCE_MEM,
};
static struct platform_device iq8134x_flash = {
.name = "physmap-flash",
.id = 0,
.dev = { .platform_data = &iq8134x_flash_data, },
.num_resources = 1,
.resource = &iq8134x_flash_resource,
};
static unsigned long iq8134x_probe_flash_size(void)
{
uint8_t __iomem *flash_addr = ioremap(IQ81340_FLASHBASE, PAGE_SIZE);
int i;
char query[3];
unsigned long size = 0;
int width = iq8134x_flash_data.width;
if (flash_addr) {
/* send CFI 'query' command */
writew(0x98, flash_addr);
/* check for CFI compliance */
for (i = 0; i < 3 * width; i += width)
query[i / width] = readb(flash_addr + (0x10 * width) + i);
/* read the size */
if (memcmp(query, "QRY", 3) == 0)
size = 1 << readb(flash_addr + (0x27 * width));
/* send CFI 'read array' command */
writew(0xff, flash_addr);
iounmap(flash_addr);
}
return size;
}
#endif
/* ADMA Channels */
static struct resource iop13xx_adma_0_resources[] = {
[0] = {
.start = IOP13XX_ADMA_PHYS_BASE(0),
.end = IOP13XX_ADMA_UPPER_PA(0),
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_ADMA0_EOT,
.end = IRQ_IOP13XX_ADMA0_EOT,
.flags = IORESOURCE_IRQ
},
[2] = {
.start = IRQ_IOP13XX_ADMA0_EOC,
.end = IRQ_IOP13XX_ADMA0_EOC,
.flags = IORESOURCE_IRQ
},
[3] = {
.start = IRQ_IOP13XX_ADMA0_ERR,
.end = IRQ_IOP13XX_ADMA0_ERR,
.flags = IORESOURCE_IRQ
}
};
static struct resource iop13xx_adma_1_resources[] = {
[0] = {
.start = IOP13XX_ADMA_PHYS_BASE(1),
.end = IOP13XX_ADMA_UPPER_PA(1),
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_ADMA1_EOT,
.end = IRQ_IOP13XX_ADMA1_EOT,
.flags = IORESOURCE_IRQ
},
[2] = {
.start = IRQ_IOP13XX_ADMA1_EOC,
.end = IRQ_IOP13XX_ADMA1_EOC,
.flags = IORESOURCE_IRQ
},
[3] = {
.start = IRQ_IOP13XX_ADMA1_ERR,
.end = IRQ_IOP13XX_ADMA1_ERR,
.flags = IORESOURCE_IRQ
}
};
static struct resource iop13xx_adma_2_resources[] = {
[0] = {
.start = IOP13XX_ADMA_PHYS_BASE(2),
.end = IOP13XX_ADMA_UPPER_PA(2),
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IOP13XX_ADMA2_EOT,
.end = IRQ_IOP13XX_ADMA2_EOT,
.flags = IORESOURCE_IRQ
},
[2] = {
.start = IRQ_IOP13XX_ADMA2_EOC,
.end = IRQ_IOP13XX_ADMA2_EOC,
.flags = IORESOURCE_IRQ
},
[3] = {
.start = IRQ_IOP13XX_ADMA2_ERR,
.end = IRQ_IOP13XX_ADMA2_ERR,
.flags = IORESOURCE_IRQ
}
};
static u64 iop13xx_adma_dmamask = DMA_BIT_MASK(64);
static struct iop_adma_platform_data iop13xx_adma_0_data = {
.hw_id = 0,
.pool_size = PAGE_SIZE,
};
static struct iop_adma_platform_data iop13xx_adma_1_data = {
.hw_id = 1,
.pool_size = PAGE_SIZE,
};
static struct iop_adma_platform_data iop13xx_adma_2_data = {
.hw_id = 2,
.pool_size = PAGE_SIZE,
};
/* The ids are fixed up later in iop13xx_platform_init */
static struct platform_device iop13xx_adma_0_channel = {
.name = "iop-adma",
.id = 0,
.num_resources = 4,
.resource = iop13xx_adma_0_resources,
.dev = {
.dma_mask = &iop13xx_adma_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(64),
.platform_data = (void *) &iop13xx_adma_0_data,
},
};
static struct platform_device iop13xx_adma_1_channel = {
.name = "iop-adma",
.id = 0,
.num_resources = 4,
.resource = iop13xx_adma_1_resources,
.dev = {
.dma_mask = &iop13xx_adma_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(64),
.platform_data = (void *) &iop13xx_adma_1_data,
},
};
static struct platform_device iop13xx_adma_2_channel = {
.name = "iop-adma",
.id = 0,
.num_resources = 4,
.resource = iop13xx_adma_2_resources,
.dev = {
.dma_mask = &iop13xx_adma_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(64),
.platform_data = (void *) &iop13xx_adma_2_data,
},
};
void __init iop13xx_map_io(void)
{
/* Initialize the Static Page Table maps */
iotable_init(iop13xx_std_desc, ARRAY_SIZE(iop13xx_std_desc));
}
static int init_uart;
static int init_i2c;
static int init_adma;
void __init iop13xx_platform_init(void)
{
int i;
u32 uart_idx, i2c_idx, adma_idx, plat_idx;
struct platform_device *iop13xx_devices[IQ81340_MAX_PLAT_DEVICES];
/* set the bases so we can read the device id */
iop13xx_set_atu_mmr_bases();
memset(iop13xx_devices, 0, sizeof(iop13xx_devices));
if (init_uart == IOP13XX_INIT_UART_DEFAULT) {
switch (iop13xx_dev_id()) {
/* enable both uarts on iop341 */
case 0x3380:
case 0x3384:
case 0x3388:
case 0x338c:
init_uart |= IOP13XX_INIT_UART_0;
init_uart |= IOP13XX_INIT_UART_1;
break;
/* only enable uart 1 */
default:
init_uart |= IOP13XX_INIT_UART_1;
}
}
if (init_i2c == IOP13XX_INIT_I2C_DEFAULT) {
switch (iop13xx_dev_id()) {
/* enable all i2c units on iop341 and iop342 */
case 0x3380:
case 0x3384:
case 0x3388:
case 0x338c:
case 0x3382:
case 0x3386:
case 0x338a:
case 0x338e:
init_i2c |= IOP13XX_INIT_I2C_0;
init_i2c |= IOP13XX_INIT_I2C_1;
init_i2c |= IOP13XX_INIT_I2C_2;
break;
/* only enable i2c 1 and 2 */
default:
init_i2c |= IOP13XX_INIT_I2C_1;
init_i2c |= IOP13XX_INIT_I2C_2;
}
}
if (init_adma == IOP13XX_INIT_ADMA_DEFAULT) {
init_adma |= IOP13XX_INIT_ADMA_0;
init_adma |= IOP13XX_INIT_ADMA_1;
init_adma |= IOP13XX_INIT_ADMA_2;
}
plat_idx = 0;
uart_idx = 0;
i2c_idx = 0;
/* uart 1 (if enabled) is ttyS0 */
if (init_uart & IOP13XX_INIT_UART_1) {
PRINTK("Adding uart1 to platform device list\n");
iop13xx_uart1.id = uart_idx++;
iop13xx_devices[plat_idx++] = &iop13xx_uart1;
}
if (init_uart & IOP13XX_INIT_UART_0) {
PRINTK("Adding uart0 to platform device list\n");
iop13xx_uart0.id = uart_idx++;
iop13xx_devices[plat_idx++] = &iop13xx_uart0;
}
for(i = 0; i < IQ81340_NUM_I2C; i++) {
if ((init_i2c & (1 << i)) && IOP13XX_SETUP_DEBUG)
printk("Adding i2c%d to platform device list\n", i);
switch(init_i2c & (1 << i)) {
case IOP13XX_INIT_I2C_0:
iop13xx_i2c_0_controller.id = i2c_idx++;
iop13xx_devices[plat_idx++] =
&iop13xx_i2c_0_controller;
break;
case IOP13XX_INIT_I2C_1:
iop13xx_i2c_1_controller.id = i2c_idx++;
iop13xx_devices[plat_idx++] =
&iop13xx_i2c_1_controller;
break;
case IOP13XX_INIT_I2C_2:
iop13xx_i2c_2_controller.id = i2c_idx++;
iop13xx_devices[plat_idx++] =
&iop13xx_i2c_2_controller;
break;
}
}
/* initialize adma channel ids and capabilities */
adma_idx = 0;
for (i = 0; i < IQ81340_NUM_ADMA; i++) {
struct iop_adma_platform_data *plat_data;
if ((init_adma & (1 << i)) && IOP13XX_SETUP_DEBUG)
printk(KERN_INFO
"Adding adma%d to platform device list\n", i);
switch (init_adma & (1 << i)) {
case IOP13XX_INIT_ADMA_0:
iop13xx_adma_0_channel.id = adma_idx++;
iop13xx_devices[plat_idx++] = &iop13xx_adma_0_channel;
plat_data = &iop13xx_adma_0_data;
dma_cap_set(DMA_MEMCPY, plat_data->cap_mask);
dma_cap_set(DMA_XOR, plat_data->cap_mask);
dma_cap_set(DMA_XOR_VAL, plat_data->cap_mask);
dma_cap_set(DMA_MEMSET, plat_data->cap_mask);
dma_cap_set(DMA_INTERRUPT, plat_data->cap_mask);
break;
case IOP13XX_INIT_ADMA_1:
iop13xx_adma_1_channel.id = adma_idx++;
iop13xx_devices[plat_idx++] = &iop13xx_adma_1_channel;
plat_data = &iop13xx_adma_1_data;
dma_cap_set(DMA_MEMCPY, plat_data->cap_mask);
dma_cap_set(DMA_XOR, plat_data->cap_mask);
dma_cap_set(DMA_XOR_VAL, plat_data->cap_mask);
dma_cap_set(DMA_MEMSET, plat_data->cap_mask);
dma_cap_set(DMA_INTERRUPT, plat_data->cap_mask);
break;
case IOP13XX_INIT_ADMA_2:
iop13xx_adma_2_channel.id = adma_idx++;
iop13xx_devices[plat_idx++] = &iop13xx_adma_2_channel;
plat_data = &iop13xx_adma_2_data;
dma_cap_set(DMA_MEMCPY, plat_data->cap_mask);
dma_cap_set(DMA_XOR, plat_data->cap_mask);
dma_cap_set(DMA_XOR_VAL, plat_data->cap_mask);
dma_cap_set(DMA_MEMSET, plat_data->cap_mask);
dma_cap_set(DMA_INTERRUPT, plat_data->cap_mask);
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
dma_cap_set(DMA_PQ, plat_data->cap_mask);
dma_cap_set(DMA_PQ_VAL, plat_data->cap_mask);
break;
}
}
#ifdef CONFIG_MTD_PHYSMAP
iq8134x_flash_resource.end = iq8134x_flash_resource.start +
iq8134x_probe_flash_size() - 1;
if (iq8134x_flash_resource.end > iq8134x_flash_resource.start)
iop13xx_devices[plat_idx++] = &iq8134x_flash;
else
printk(KERN_ERR "%s: Failed to probe flash size\n", __func__);
#endif
platform_add_devices(iop13xx_devices, plat_idx);
}
static int __init iop13xx_init_uart_setup(char *str)
{
if (str) {
while (*str != '\0') {
switch(*str) {
case '0':
init_uart |= IOP13XX_INIT_UART_0;
break;
case '1':
init_uart |= IOP13XX_INIT_UART_1;
break;
case ',':
case '=':
break;
default:
PRINTK("\"iop13xx_init_uart\" malformed"
" at character: \'%c\'", *str);
*(str + 1) = '\0';
init_uart = IOP13XX_INIT_UART_DEFAULT;
}
str++;
}
}
return 1;
}
static int __init iop13xx_init_i2c_setup(char *str)
{
if (str) {
while (*str != '\0') {
switch(*str) {
case '0':
init_i2c |= IOP13XX_INIT_I2C_0;
break;
case '1':
init_i2c |= IOP13XX_INIT_I2C_1;
break;
case '2':
init_i2c |= IOP13XX_INIT_I2C_2;
break;
case ',':
case '=':
break;
default:
PRINTK("\"iop13xx_init_i2c\" malformed"
" at character: \'%c\'", *str);
*(str + 1) = '\0';
init_i2c = IOP13XX_INIT_I2C_DEFAULT;
}
str++;
}
}
return 1;
}
static int __init iop13xx_init_adma_setup(char *str)
{
if (str) {
while (*str != '\0') {
switch (*str) {
case '0':
init_adma |= IOP13XX_INIT_ADMA_0;
break;
case '1':
init_adma |= IOP13XX_INIT_ADMA_1;
break;
case '2':
init_adma |= IOP13XX_INIT_ADMA_2;
break;
case ',':
case '=':
break;
default:
PRINTK("\"iop13xx_init_adma\" malformed"
" at character: \'%c\'", *str);
*(str + 1) = '\0';
init_adma = IOP13XX_INIT_ADMA_DEFAULT;
}
str++;
}
}
return 1;
}
__setup("iop13xx_init_adma", iop13xx_init_adma_setup);
__setup("iop13xx_init_uart", iop13xx_init_uart_setup);
__setup("iop13xx_init_i2c", iop13xx_init_i2c_setup);
void iop13xx_restart(char mode, const char *cmd)
{
/*
* Reset the internal bus (warning both cores are reset)
*/
write_wdtcr(IOP_WDTCR_EN_ARM);
write_wdtcr(IOP_WDTCR_EN);
write_wdtsr(IOP13XX_WDTSR_WRITE_EN | IOP13XX_WDTCR_IB_RESET);
write_wdtcr(0x1000);
}