linux_dsm_epyc7002/drivers/net/wireless/ath/ath5k/dma.c

929 lines
24 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* DMA and interrupt masking functions *
\*************************************/
/**
* DOC: DMA and interrupt masking functions
*
* Here we setup descriptor pointers (rxdp/txdp) start/stop dma engine and
* handle queue setup for 5210 chipset (rest are handled on qcu.c).
* Also we setup interrupt mask register (IMR) and read the various interrupt
* status registers (ISR).
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
/*********\
* Receive *
\*********/
/**
* ath5k_hw_start_rx_dma() - Start DMA receive
* @ah: The &struct ath5k_hw
*/
void
ath5k_hw_start_rx_dma(struct ath5k_hw *ah)
{
ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
}
/**
* ath5k_hw_stop_rx_dma() - Stop DMA receive
* @ah: The &struct ath5k_hw
*/
static int
ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
{
unsigned int i;
ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
/*
* It may take some time to disable the DMA receive unit
*/
for (i = 1000; i > 0 &&
(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
i--)
udelay(100);
if (!i)
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"failed to stop RX DMA !\n");
return i ? 0 : -EBUSY;
}
/**
* ath5k_hw_get_rxdp() - Get RX Descriptor's address
* @ah: The &struct ath5k_hw
*/
u32
ath5k_hw_get_rxdp(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_RXDP);
}
/**
* ath5k_hw_set_rxdp() - Set RX Descriptor's address
* @ah: The &struct ath5k_hw
* @phys_addr: RX descriptor address
*
* Returns -EIO if rx is active
*/
int
ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr)
{
if (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"tried to set RXDP while rx was active !\n");
return -EIO;
}
ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
return 0;
}
/**********\
* Transmit *
\**********/
/**
* ath5k_hw_start_tx_dma() - Start DMA transmit for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Start DMA transmit for a specific queue and since 5210 doesn't have
* QCU/DCU, set up queue parameters for 5210 here based on queue type (one
* queue for normal data and one queue for beacons). For queue setup
* on newer chips check out qcu.c. Returns -EINVAL if queue number is out
* of range or if queue is already disabled.
*
* NOTE: Must be called after setting up tx control descriptor for that
* queue (see below).
*/
int
ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
u32 tx_queue;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EINVAL;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set the queue by type on 5210
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
break;
case AR5K_TX_QUEUE_BEACON:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BSR);
break;
case AR5K_TX_QUEUE_CAB:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
AR5K_BCR_BDMAE, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Start queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/* Return if queue is disabled */
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
return -EIO;
/* Start queue */
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
}
return 0;
}
/**
* ath5k_hw_stop_tx_dma() - Stop DMA transmit on a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Stop DMA transmit on a specific hw queue and drain queue so we don't
* have any pending frames. Returns -EBUSY if we still have pending frames,
* -EINVAL if queue number is out of range or inactive.
*/
static int
ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
unsigned int i = 40;
u32 tx_queue, pending;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EINVAL;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set by queue type
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
/* XXX Fix me... */
tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, 0, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Stop queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/*
* Enable DCU early termination to quickly
* flush any pending frames from QCU
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_DCU_EARLY);
/*
* Schedule TX disable and wait until queue is empty
*/
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
/* Wait for queue to stop */
for (i = 1000; i > 0 &&
(AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue) != 0);
i--)
udelay(100);
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"queue %i didn't stop !\n", queue);
/* Check for pending frames */
i = 1000;
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
/* For 2413+ order PCU to drop packets using
* QUIET mechanism */
if (ah->ah_mac_version >= (AR5K_SREV_AR2414 >> 4) &&
pending) {
/* Set periodicity and duration */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(100, AR5K_QUIET_CTL2_QT_PER)|
AR5K_REG_SM(10, AR5K_QUIET_CTL2_QT_DUR),
AR5K_QUIET_CTL2);
/* Enable quiet period for current TSF */
ath5k_hw_reg_write(ah,
AR5K_QUIET_CTL1_QT_EN |
AR5K_REG_SM(ath5k_hw_reg_read(ah,
AR5K_TSF_L32_5211) >> 10,
AR5K_QUIET_CTL1_NEXT_QT_TSF),
AR5K_QUIET_CTL1);
/* Force channel idle high */
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_CHANNEL_IDLE_HIGH);
/* Wait a while and disable mechanism */
udelay(400);
AR5K_REG_DISABLE_BITS(ah, AR5K_QUIET_CTL1,
AR5K_QUIET_CTL1_QT_EN);
/* Re-check for pending frames */
i = 100;
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_CHANNEL_IDLE_HIGH);
if (pending)
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"quiet mechanism didn't work q:%i !\n",
queue);
}
/*
* Disable DCU early termination
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_DCU_EARLY);
/* Clear register */
ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
if (pending) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"tx dma didn't stop (q:%i, frm:%i) !\n",
queue, pending);
return -EBUSY;
}
}
/* TODO: Check for success on 5210 else return error */
return 0;
}
/**
* ath5k_hw_stop_beacon_queue() - Stop beacon queue
* @ah: The &struct ath5k_hw
* @queue: The queue number
*
* Returns -EIO if queue didn't stop
*/
int
ath5k_hw_stop_beacon_queue(struct ath5k_hw *ah, unsigned int queue)
{
int ret;
ret = ath5k_hw_stop_tx_dma(ah, queue);
if (ret) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"beacon queue didn't stop !\n");
return -EIO;
}
return 0;
}
/**
* ath5k_hw_get_txdp() - Get TX Descriptor's address for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Get TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and use tx queue type since we only have 2 queues.
* We use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just read the corresponding TXDP register.
*
* XXX: Is TXDP read and clear ?
*/
u32
ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue)
{
u16 tx_reg;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Get the transmit queue descriptor pointer from the selected queue
*/
/*5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return 0xffffffff;
}
} else {
tx_reg = AR5K_QUEUE_TXDP(queue);
}
return ath5k_hw_reg_read(ah, tx_reg);
}
/**
* ath5k_hw_set_txdp() - Set TX Descriptor's address for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
* @phys_addr: The physical address
*
* Set TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and we use tx queue type since we only have 2 queues
* so as above we use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just set the corresponding TXDP register.
* Returns -EINVAL if queue type is invalid for 5210 and -EIO if queue is still
* active.
*/
int
ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
{
u16 tx_reg;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Set the transmit queue descriptor pointer register by type
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return -EINVAL;
}
} else {
/*
* Set the transmit queue descriptor pointer for
* the selected queue on QCU for 5211+
* (this won't work if the queue is still active)
*/
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return -EIO;
tx_reg = AR5K_QUEUE_TXDP(queue);
}
/* Set descriptor pointer */
ath5k_hw_reg_write(ah, phys_addr, tx_reg);
return 0;
}
/**
* ath5k_hw_update_tx_triglevel() - Update tx trigger level
* @ah: The &struct ath5k_hw
* @increase: Flag to force increase of trigger level
*
* This function increases/decreases the tx trigger level for the tx fifo
* buffer (aka FIFO threshold) that is used to indicate when PCU flushes
* the buffer and transmits its data. Lowering this results sending small
* frames more quickly but can lead to tx underruns, raising it a lot can
* result other problems. Right now we start with the lowest possible
* (64Bytes) and if we get tx underrun we increase it using the increase
* flag. Returns -EIO if we have reached maximum/minimum.
*
* XXX: Link this with tx DMA size ?
* XXX2: Use it to save interrupts ?
*/
int
ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
{
u32 trigger_level, imr;
int ret = -EIO;
/*
* Disable interrupts by setting the mask
*/
imr = ath5k_hw_set_imr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
AR5K_TXCFG_TXFULL);
if (!increase) {
if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
goto done;
} else
trigger_level +=
((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
/*
* Update trigger level on success
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
else
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_TXFULL, trigger_level);
ret = 0;
done:
/*
* Restore interrupt mask
*/
ath5k_hw_set_imr(ah, imr);
return ret;
}
/*******************\
* Interrupt masking *
\*******************/
/**
* ath5k_hw_is_intr_pending() - Check if we have pending interrupts
* @ah: The &struct ath5k_hw
*
* Check if we have pending interrupts to process. Returns 1 if we
* have pending interrupts and 0 if we haven't.
*/
bool
ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_INTPEND) == 1 ? 1 : 0;
}
/**
* ath5k_hw_get_isr() - Get interrupt status
* @ah: The @struct ath5k_hw
* @interrupt_mask: Driver's interrupt mask used to filter out
* interrupts in sw.
*
* This function is used inside our interrupt handler to determine the reason
* for the interrupt by reading Primary Interrupt Status Register. Returns an
* abstract interrupt status mask which is mostly ISR with some uncommon bits
* being mapped on some standard non hw-specific positions
* (check out &ath5k_int).
*
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
* NOTE: We do write-to-clear, so the active PISR/SISR bits at the time this
* function gets called are cleared on return.
*/
int
ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
{
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
u32 data = 0;
/*
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
* Read interrupt status from Primary Interrupt
* Register.
*
* Note: PISR/SISR Not available on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
u32 isr = 0;
isr = ath5k_hw_reg_read(ah, AR5K_ISR);
if (unlikely(isr == AR5K_INT_NOCARD)) {
*interrupt_mask = isr;
return -ENODEV;
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/*
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
* Filter out the non-common bits from the interrupt
* status.
*/
*interrupt_mask = (isr & AR5K_INT_COMMON) & ah->ah_imr;
/* Hanlde INT_FATAL */
if (unlikely(isr & (AR5K_ISR_SSERR | AR5K_ISR_MCABT
| AR5K_ISR_DPERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*
* XXX: BMISS interrupts may occur after association.
* I found this on 5210 code but it needs testing. If this is
* true we should disable them before assoc and re-enable them
* after a successful assoc + some jiffies.
interrupt_mask &= ~AR5K_INT_BMISS;
*/
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
data = isr;
} else {
u32 pisr = 0;
u32 pisr_clear = 0;
u32 sisr0 = 0;
u32 sisr1 = 0;
u32 sisr2 = 0;
u32 sisr3 = 0;
u32 sisr4 = 0;
/* Read PISR and SISRs... */
pisr = ath5k_hw_reg_read(ah, AR5K_PISR);
if (unlikely(pisr == AR5K_INT_NOCARD)) {
*interrupt_mask = pisr;
return -ENODEV;
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
sisr0 = ath5k_hw_reg_read(ah, AR5K_SISR0);
sisr1 = ath5k_hw_reg_read(ah, AR5K_SISR1);
sisr2 = ath5k_hw_reg_read(ah, AR5K_SISR2);
sisr3 = ath5k_hw_reg_read(ah, AR5K_SISR3);
sisr4 = ath5k_hw_reg_read(ah, AR5K_SISR4);
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/*
* PISR holds the logical OR of interrupt bits
* from SISR registers:
*
* TXOK and TXDESC -> Logical OR of TXOK and TXDESC
* per-queue bits on SISR0
*
* TXERR and TXEOL -> Logical OR of TXERR and TXEOL
* per-queue bits on SISR1
*
* TXURN -> Logical OR of TXURN per-queue bits on SISR2
*
* HIUERR -> Logical OR of MCABT, SSERR and DPER bits on SISR2
*
* BCNMISC -> Logical OR of TIM, CAB_END, DTIM_SYNC
* BCN_TIMEOUT, CAB_TIMEOUT and DTIM
* (and TSFOOR ?) bits on SISR2
*
* QCBRORN and QCBRURN -> Logical OR of QCBRORN and
* QCBRURN per-queue bits on SISR3
* QTRIG -> Logical OR of QTRIG per-queue bits on SISR4
*
* If we clean these bits on PISR we 'll also clear all
* related bits from SISRs, e.g. if we write the TXOK bit on
* PISR we 'll clean all TXOK bits from SISR0 so if a new TXOK
* interrupt got fired for another queue while we were reading
* the interrupt registers and we write back the TXOK bit on
* PISR we 'll lose it. So make sure that we don't write back
* on PISR any bits that come from SISRs. Clearing them from
* SISRs will also clear PISR so no need to worry here.
*/
/* XXX: There seems to be an issue on some cards
* with tx interrupt flags not being updated
* on PISR despite that all Tx interrupt bits
* are cleared on SISRs. Since we handle all
* Tx queues all together it shouldn't be an
* issue if we clear Tx interrupt flags also
* on PISR to avoid that.
*/
pisr_clear = (pisr & ~AR5K_ISR_BITS_FROM_SISRS) |
(pisr & AR5K_INT_TX_ALL);
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/*
* Write to clear them...
* Note: This means that each bit we write back
* to the registers will get cleared, leaving the
* rest unaffected. So this won't affect new interrupts
* we didn't catch while reading/processing, we 'll get
* them next time get_isr gets called.
*/
ath5k_hw_reg_write(ah, sisr0, AR5K_SISR0);
ath5k_hw_reg_write(ah, sisr1, AR5K_SISR1);
ath5k_hw_reg_write(ah, sisr2, AR5K_SISR2);
ath5k_hw_reg_write(ah, sisr3, AR5K_SISR3);
ath5k_hw_reg_write(ah, sisr4, AR5K_SISR4);
ath5k_hw_reg_write(ah, pisr_clear, AR5K_PISR);
/* Flush previous write */
ath5k_hw_reg_read(ah, AR5K_PISR);
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/*
* Filter out the non-common bits from the interrupt
* status.
*/
*interrupt_mask = (pisr & AR5K_INT_COMMON) & ah->ah_imr;
/* We treat TXOK,TXDESC, TXERR and TXEOL
* the same way (schedule the tx tasklet)
* so we track them all together per queue */
if (pisr & AR5K_ISR_TXOK)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr0,
AR5K_SISR0_QCU_TXOK);
if (pisr & AR5K_ISR_TXDESC)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr0,
AR5K_SISR0_QCU_TXDESC);
if (pisr & AR5K_ISR_TXERR)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr1,
AR5K_SISR1_QCU_TXERR);
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
if (pisr & AR5K_ISR_TXEOL)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr1,
AR5K_SISR1_QCU_TXEOL);
/* Currently this is not much useful since we treat
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
* all queues the same way if we get a TXURN (update
* tx trigger level) but we might need it later on*/
if (pisr & AR5K_ISR_TXURN)
ah->ah_txq_isr_txurn |= AR5K_REG_MS(sisr2,
AR5K_SISR2_QCU_TXURN);
/* Misc Beacon related interrupts */
/* For AR5211 */
if (pisr & AR5K_ISR_TIM)
*interrupt_mask |= AR5K_INT_TIM;
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/* For AR5212+ */
if (pisr & AR5K_ISR_BCNMISC) {
if (sisr2 & AR5K_SISR2_TIM)
*interrupt_mask |= AR5K_INT_TIM;
if (sisr2 & AR5K_SISR2_DTIM)
*interrupt_mask |= AR5K_INT_DTIM;
if (sisr2 & AR5K_SISR2_DTIM_SYNC)
*interrupt_mask |= AR5K_INT_DTIM_SYNC;
if (sisr2 & AR5K_SISR2_BCN_TIMEOUT)
*interrupt_mask |= AR5K_INT_BCN_TIMEOUT;
if (sisr2 & AR5K_SISR2_CAB_TIMEOUT)
*interrupt_mask |= AR5K_INT_CAB_TIMEOUT;
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/* Below interrupts are unlikely to happen */
/* HIU = Host Interface Unit (PCI etc)
* Can be one of MCABT, SSERR, DPERR from SISR2 */
if (unlikely(pisr & (AR5K_ISR_HIUERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*Beacon Not Ready*/
if (unlikely(pisr & (AR5K_ISR_BNR)))
*interrupt_mask |= AR5K_INT_BNR;
/* A queue got CBR overrun */
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
if (unlikely(pisr & (AR5K_ISR_QCBRORN))) {
*interrupt_mask |= AR5K_INT_QCBRORN;
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
ah->ah_txq_isr_qcborn |= AR5K_REG_MS(sisr3,
AR5K_SISR3_QCBRORN);
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/* A queue got CBR underrun */
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
if (unlikely(pisr & (AR5K_ISR_QCBRURN))) {
*interrupt_mask |= AR5K_INT_QCBRURN;
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
ah->ah_txq_isr_qcburn |= AR5K_REG_MS(sisr3,
AR5K_SISR3_QCBRURN);
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
/* A queue got triggered */
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
if (unlikely(pisr & (AR5K_ISR_QTRIG))) {
*interrupt_mask |= AR5K_INT_QTRIG;
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
ah->ah_txq_isr_qtrig |= AR5K_REG_MS(sisr4,
AR5K_SISR4_QTRIG);
}
ath5k: Switch from read-and-clear to write-to-clear method when handling PISR/SISR registers Since card has 12 tx queues and we want to keep track of the interrupts per queue we can't fit all these interrupt bits on a single register. So we have 5 registers, the primary interrupt status register (PISR) and the 4 secondary interupt status registers (SISRs). In order to be able to read them all at once (atomic operation) Atheros introduced the Read-And-Clear registers to make things easier. So when reading RAC_PISR register, hw does a read on PISR and all SISRs, returns the value of PISR, copies all SISR values to their shadow copies (RAC_SISRx) and clears PISR and SISRs. This saves us from reading PISR/SISRs in a sequence. So far we 've used this approach and MadWiFi/Windows driver etc also used it for years. It turns out this operation is not atomic after all (at least not on all cards) That means it's possible to loose some interrupts because they came after the copy step and hw cleared them on the clean step ! That's probably the reason we got missed beacons, got stuck queues etc and couldn't figure out what was going on. With this patch we switch from RaC operation to an alternative method (that makes more sense IMHO anyway, I just chose to be on the safe side so far). Instead of reading RAC registers, we read the normal PISR/SISR registers and clear any bits we got by writing them back on the register. This will clear only the bits we got on our read step and leave any new bits unaffected (at least that's what docs say). So if any new interrupts come up we won't miss it. I've tested this with an AR5213 and an AR2425 and it seems O.K. Many thanks to Adrian Chadd for debuging this and reviewing the patch ! v2: Make sure we don't clear PISR bits that map to SISR generated interrupts (added a comment on the code for this) Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-26 01:40:20 +07:00
data = pisr;
}
/*
* In case we didn't handle anything,
* print the register value.
*/
if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
ATH5K_PRINTF("ISR: 0x%08x IMR: 0x%08x\n", data, ah->ah_imr);
return 0;
}
/**
* ath5k_hw_set_imr() - Set interrupt mask
* @ah: The &struct ath5k_hw
* @new_mask: The new interrupt mask to be set
*
* Set the interrupt mask in hw to save interrupts. We do that by mapping
* ath5k_int bits to hw-specific bits to remove abstraction and writing
* Interrupt Mask Register.
*/
enum ath5k_int
ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
{
enum ath5k_int old_mask, int_mask;
old_mask = ah->ah_imr;
/*
* Disable card interrupts to prevent any race conditions
* (they will be re-enabled afterwards if AR5K_INT GLOBAL
* is set again on the new mask).
*/
if (old_mask & AR5K_INT_GLOBAL) {
ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
}
/*
* Add additional, chipset-dependent interrupt mask flags
* and write them to the IMR (interrupt mask register).
*/
int_mask = new_mask & AR5K_INT_COMMON;
if (ah->ah_version != AR5K_AR5210) {
/* Preserve per queue TXURN interrupt mask */
u32 simr2 = ath5k_hw_reg_read(ah, AR5K_SIMR2)
& AR5K_SIMR2_QCU_TXURN;
/* Fatal interrupt abstraction for 5211+ */
if (new_mask & AR5K_INT_FATAL) {
int_mask |= AR5K_IMR_HIUERR;
simr2 |= (AR5K_SIMR2_MCABT | AR5K_SIMR2_SSERR
| AR5K_SIMR2_DPERR);
}
/* Misc beacon related interrupts */
if (new_mask & AR5K_INT_TIM)
int_mask |= AR5K_IMR_TIM;
if (new_mask & AR5K_INT_TIM)
simr2 |= AR5K_SISR2_TIM;
if (new_mask & AR5K_INT_DTIM)
simr2 |= AR5K_SISR2_DTIM;
if (new_mask & AR5K_INT_DTIM_SYNC)
simr2 |= AR5K_SISR2_DTIM_SYNC;
if (new_mask & AR5K_INT_BCN_TIMEOUT)
simr2 |= AR5K_SISR2_BCN_TIMEOUT;
if (new_mask & AR5K_INT_CAB_TIMEOUT)
simr2 |= AR5K_SISR2_CAB_TIMEOUT;
/*Beacon Not Ready*/
if (new_mask & AR5K_INT_BNR)
int_mask |= AR5K_INT_BNR;
/* Note: Per queue interrupt masks
* are set via ath5k_hw_reset_tx_queue() (qcu.c) */
ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
ath5k_hw_reg_write(ah, simr2, AR5K_SIMR2);
} else {
/* Fatal interrupt abstraction for 5210 */
if (new_mask & AR5K_INT_FATAL)
int_mask |= (AR5K_IMR_SSERR | AR5K_IMR_MCABT
| AR5K_IMR_HIUERR | AR5K_IMR_DPERR);
/* Only common interrupts left for 5210 (no SIMRs) */
ath5k_hw_reg_write(ah, int_mask, AR5K_IMR);
}
/* If RXNOFRM interrupt is masked disable it
* by setting AR5K_RXNOFRM to zero */
if (!(new_mask & AR5K_INT_RXNOFRM))
ath5k_hw_reg_write(ah, 0, AR5K_RXNOFRM);
/* Store new interrupt mask */
ah->ah_imr = new_mask;
/* ..re-enable interrupts if AR5K_INT_GLOBAL is set */
if (new_mask & AR5K_INT_GLOBAL) {
ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
}
return old_mask;
}
/********************\
Init/Stop functions
\********************/
/**
* ath5k_hw_dma_init() - Initialize DMA unit
* @ah: The &struct ath5k_hw
*
* Set DMA size and pre-enable interrupts
* (driver handles tx/rx buffer setup and
* dma start/stop)
*
* XXX: Save/restore RXDP/TXDP registers ?
*/
void
ath5k_hw_dma_init(struct ath5k_hw *ah)
{
/*
* Set Rx/Tx DMA Configuration
*
* Set standard DMA size (128). Note that
* a DMA size of 512 causes rx overruns and tx errors
* on pci-e cards (tested on 5424 but since rx overruns
* also occur on 5416/5418 with madwifi we set 128
* for all PCI-E cards to be safe).
*
* XXX: need to check 5210 for this
* TODO: Check out tx trigger level, it's always 64 on dumps but I
* guess we can tweak it and see how it goes ;-)
*/
if (ah->ah_version != AR5K_AR5210) {
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_imr(ah, ah->ah_imr);
}
/**
* ath5k_hw_dma_stop() - stop DMA unit
* @ah: The &struct ath5k_hw
*
* Stop tx/rx DMA and interrupts. Returns
* -EBUSY if tx or rx dma failed to stop.
*
* XXX: Sometimes DMA unit hangs and we have
* stuck frames on tx queues, only a reset
* can fix that.
*/
int
ath5k_hw_dma_stop(struct ath5k_hw *ah)
{
int i, qmax, err;
err = 0;
/* Disable interrupts */
ath5k_hw_set_imr(ah, 0);
/* Stop rx dma */
err = ath5k_hw_stop_rx_dma(ah);
if (err)
return err;
/* Clear any pending interrupts
* and disable tx dma */
if (ah->ah_version != AR5K_AR5210) {
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
qmax = AR5K_NUM_TX_QUEUES;
} else {
/* PISR/SISR Not available on 5210 */
ath5k_hw_reg_read(ah, AR5K_ISR);
qmax = AR5K_NUM_TX_QUEUES_NOQCU;
}
for (i = 0; i < qmax; i++) {
err = ath5k_hw_stop_tx_dma(ah, i);
/* -EINVAL -> queue inactive */
if (err && err != -EINVAL)
return err;
}
return 0;
}