linux_dsm_epyc7002/drivers/media/platform/omap3isp/ispvideo.c

1399 lines
39 KiB
C
Raw Normal View History

/*
* ispvideo.c
*
* TI OMAP3 ISP - Generic video node
*
* Copyright (C) 2009-2010 Nokia Corporation
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <asm/cacheflush.h>
#include <linux/clk.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/omap-iommu.h>
#include <linux/pagemap.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-ioctl.h>
#include "ispvideo.h"
#include "isp.h"
/* -----------------------------------------------------------------------------
* Helper functions
*/
/*
* NOTE: When adding new media bus codes, always remember to add
* corresponding in-memory formats to the table below!!!
*/
static struct isp_format_info formats[] = {
{ V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8,
V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8,
V4L2_PIX_FMT_GREY, 8, 1, },
{ V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y10_1X10,
V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y8_1X8,
V4L2_PIX_FMT_Y10, 10, 2, },
{ V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y10_1X10,
V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y8_1X8,
V4L2_PIX_FMT_Y12, 12, 2, },
{ V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8,
V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8,
V4L2_PIX_FMT_SBGGR8, 8, 1, },
{ V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8,
V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8,
V4L2_PIX_FMT_SGBRG8, 8, 1, },
{ V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8,
V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8,
V4L2_PIX_FMT_SGRBG8, 8, 1, },
{ V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8,
V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8,
V4L2_PIX_FMT_SRGGB8, 8, 1, },
{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8,
V4L2_MBUS_FMT_SBGGR10_1X10, 0,
V4L2_PIX_FMT_SBGGR10DPCM8, 8, 1, },
{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8,
V4L2_MBUS_FMT_SGBRG10_1X10, 0,
V4L2_PIX_FMT_SGBRG10DPCM8, 8, 1, },
{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8,
V4L2_MBUS_FMT_SGRBG10_1X10, 0,
V4L2_PIX_FMT_SGRBG10DPCM8, 8, 1, },
{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8,
V4L2_MBUS_FMT_SRGGB10_1X10, 0,
V4L2_PIX_FMT_SRGGB10DPCM8, 8, 1, },
{ V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR10_1X10,
V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR8_1X8,
V4L2_PIX_FMT_SBGGR10, 10, 2, },
{ V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG10_1X10,
V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG8_1X8,
V4L2_PIX_FMT_SGBRG10, 10, 2, },
{ V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG10_1X10,
V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG8_1X8,
V4L2_PIX_FMT_SGRBG10, 10, 2, },
{ V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB10_1X10,
V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB8_1X8,
V4L2_PIX_FMT_SRGGB10, 10, 2, },
{ V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR10_1X10,
V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR8_1X8,
V4L2_PIX_FMT_SBGGR12, 12, 2, },
{ V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG10_1X10,
V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG8_1X8,
V4L2_PIX_FMT_SGBRG12, 12, 2, },
{ V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG10_1X10,
V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG8_1X8,
V4L2_PIX_FMT_SGRBG12, 12, 2, },
{ V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB10_1X10,
V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB8_1X8,
V4L2_PIX_FMT_SRGGB12, 12, 2, },
{ V4L2_MBUS_FMT_UYVY8_1X16, V4L2_MBUS_FMT_UYVY8_1X16,
V4L2_MBUS_FMT_UYVY8_1X16, 0,
V4L2_PIX_FMT_UYVY, 16, 2, },
{ V4L2_MBUS_FMT_YUYV8_1X16, V4L2_MBUS_FMT_YUYV8_1X16,
V4L2_MBUS_FMT_YUYV8_1X16, 0,
V4L2_PIX_FMT_YUYV, 16, 2, },
{ V4L2_MBUS_FMT_UYVY8_2X8, V4L2_MBUS_FMT_UYVY8_2X8,
V4L2_MBUS_FMT_UYVY8_2X8, 0,
V4L2_PIX_FMT_UYVY, 8, 2, },
{ V4L2_MBUS_FMT_YUYV8_2X8, V4L2_MBUS_FMT_YUYV8_2X8,
V4L2_MBUS_FMT_YUYV8_2X8, 0,
V4L2_PIX_FMT_YUYV, 8, 2, },
/* Empty entry to catch the unsupported pixel code (0) used by the CCDC
* module and avoid NULL pointer dereferences.
*/
{ 0, }
};
const struct isp_format_info *
omap3isp_video_format_info(enum v4l2_mbus_pixelcode code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
if (formats[i].code == code)
return &formats[i];
}
return NULL;
}
/*
* isp_video_mbus_to_pix - Convert v4l2_mbus_framefmt to v4l2_pix_format
* @video: ISP video instance
* @mbus: v4l2_mbus_framefmt format (input)
* @pix: v4l2_pix_format format (output)
*
* Fill the output pix structure with information from the input mbus format.
* The bytesperline and sizeimage fields are computed from the requested bytes
* per line value in the pix format and information from the video instance.
*
* Return the number of padding bytes at end of line.
*/
static unsigned int isp_video_mbus_to_pix(const struct isp_video *video,
const struct v4l2_mbus_framefmt *mbus,
struct v4l2_pix_format *pix)
{
unsigned int bpl = pix->bytesperline;
unsigned int min_bpl;
unsigned int i;
memset(pix, 0, sizeof(*pix));
pix->width = mbus->width;
pix->height = mbus->height;
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
if (formats[i].code == mbus->code)
break;
}
if (WARN_ON(i == ARRAY_SIZE(formats)))
return 0;
min_bpl = pix->width * formats[i].bpp;
/* Clamp the requested bytes per line value. If the maximum bytes per
* line value is zero, the module doesn't support user configurable line
* sizes. Override the requested value with the minimum in that case.
*/
if (video->bpl_max)
bpl = clamp(bpl, min_bpl, video->bpl_max);
else
bpl = min_bpl;
if (!video->bpl_zero_padding || bpl != min_bpl)
bpl = ALIGN(bpl, video->bpl_alignment);
pix->pixelformat = formats[i].pixelformat;
pix->bytesperline = bpl;
pix->sizeimage = pix->bytesperline * pix->height;
pix->colorspace = mbus->colorspace;
pix->field = mbus->field;
return bpl - min_bpl;
}
static void isp_video_pix_to_mbus(const struct v4l2_pix_format *pix,
struct v4l2_mbus_framefmt *mbus)
{
unsigned int i;
memset(mbus, 0, sizeof(*mbus));
mbus->width = pix->width;
mbus->height = pix->height;
/* Skip the last format in the loop so that it will be selected if no
* match is found.
*/
for (i = 0; i < ARRAY_SIZE(formats) - 1; ++i) {
if (formats[i].pixelformat == pix->pixelformat)
break;
}
mbus->code = formats[i].code;
mbus->colorspace = pix->colorspace;
mbus->field = pix->field;
}
static struct v4l2_subdev *
isp_video_remote_subdev(struct isp_video *video, u32 *pad)
{
struct media_pad *remote;
remote = media_entity_remote_pad(&video->pad);
if (remote == NULL ||
media_entity_type(remote->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
return NULL;
if (pad)
*pad = remote->index;
return media_entity_to_v4l2_subdev(remote->entity);
}
/* Return a pointer to the ISP video instance at the far end of the pipeline. */
static int isp_video_get_graph_data(struct isp_video *video,
struct isp_pipeline *pipe)
{
struct media_entity_graph graph;
struct media_entity *entity = &video->video.entity;
struct media_device *mdev = entity->parent;
struct isp_video *far_end = NULL;
mutex_lock(&mdev->graph_mutex);
media_entity_graph_walk_start(&graph, entity);
while ((entity = media_entity_graph_walk_next(&graph))) {
struct isp_video *__video;
pipe->entities |= 1 << entity->id;
if (far_end != NULL)
continue;
if (entity == &video->video.entity)
continue;
if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE)
continue;
__video = to_isp_video(media_entity_to_video_device(entity));
if (__video->type != video->type)
far_end = __video;
}
mutex_unlock(&mdev->graph_mutex);
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
pipe->input = far_end;
pipe->output = video;
} else {
if (far_end == NULL)
return -EPIPE;
pipe->input = video;
pipe->output = far_end;
}
return 0;
}
static int
__isp_video_get_format(struct isp_video *video, struct v4l2_format *format)
{
struct v4l2_subdev_format fmt;
struct v4l2_subdev *subdev;
u32 pad;
int ret;
subdev = isp_video_remote_subdev(video, &pad);
if (subdev == NULL)
return -EINVAL;
fmt.pad = pad;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
mutex_lock(&video->mutex);
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
mutex_unlock(&video->mutex);
if (ret)
return ret;
format->type = video->type;
return isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix);
}
static int
isp_video_check_format(struct isp_video *video, struct isp_video_fh *vfh)
{
struct v4l2_format format;
int ret;
memcpy(&format, &vfh->format, sizeof(format));
ret = __isp_video_get_format(video, &format);
if (ret < 0)
return ret;
if (vfh->format.fmt.pix.pixelformat != format.fmt.pix.pixelformat ||
vfh->format.fmt.pix.height != format.fmt.pix.height ||
vfh->format.fmt.pix.width != format.fmt.pix.width ||
vfh->format.fmt.pix.bytesperline != format.fmt.pix.bytesperline ||
vfh->format.fmt.pix.sizeimage != format.fmt.pix.sizeimage)
return -EINVAL;
return ret;
}
/* -----------------------------------------------------------------------------
* IOMMU management
*/
#define IOMMU_FLAG (IOVMF_ENDIAN_LITTLE | IOVMF_ELSZ_8)
/*
* ispmmu_vmap - Wrapper for Virtual memory mapping of a scatter gather list
* @dev: Device pointer specific to the OMAP3 ISP.
* @sglist: Pointer to source Scatter gather list to allocate.
* @sglen: Number of elements of the scatter-gatter list.
*
* Returns a resulting mapped device address by the ISP MMU, or -ENOMEM if
* we ran out of memory.
*/
static dma_addr_t
ispmmu_vmap(struct isp_device *isp, const struct scatterlist *sglist, int sglen)
{
struct sg_table *sgt;
u32 da;
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
if (sgt == NULL)
return -ENOMEM;
sgt->sgl = (struct scatterlist *)sglist;
sgt->nents = sglen;
sgt->orig_nents = sglen;
da = omap_iommu_vmap(isp->domain, isp->dev, 0, sgt, IOMMU_FLAG);
if (IS_ERR_VALUE(da))
kfree(sgt);
return da;
}
/*
* ispmmu_vunmap - Unmap a device address from the ISP MMU
* @dev: Device pointer specific to the OMAP3 ISP.
* @da: Device address generated from a ispmmu_vmap call.
*/
static void ispmmu_vunmap(struct isp_device *isp, dma_addr_t da)
{
struct sg_table *sgt;
sgt = omap_iommu_vunmap(isp->domain, isp->dev, (u32)da);
kfree(sgt);
}
/* -----------------------------------------------------------------------------
* Video queue operations
*/
static void isp_video_queue_prepare(struct isp_video_queue *queue,
unsigned int *nbuffers, unsigned int *size)
{
struct isp_video_fh *vfh =
container_of(queue, struct isp_video_fh, queue);
struct isp_video *video = vfh->video;
*size = vfh->format.fmt.pix.sizeimage;
if (*size == 0)
return;
*nbuffers = min(*nbuffers, video->capture_mem / PAGE_ALIGN(*size));
}
static void isp_video_buffer_cleanup(struct isp_video_buffer *buf)
{
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
struct isp_buffer *buffer = to_isp_buffer(buf);
struct isp_video *video = vfh->video;
if (buffer->isp_addr) {
ispmmu_vunmap(video->isp, buffer->isp_addr);
buffer->isp_addr = 0;
}
}
static int isp_video_buffer_prepare(struct isp_video_buffer *buf)
{
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
struct isp_buffer *buffer = to_isp_buffer(buf);
struct isp_video *video = vfh->video;
unsigned long addr;
/* Refuse to prepare the buffer is the video node has registered an
* error. We don't need to take any lock here as the operation is
* inherently racy. The authoritative check will be performed in the
* queue handler, which can't return an error, this check is just a best
* effort to notify userspace as early as possible.
*/
if (unlikely(video->error))
return -EIO;
addr = ispmmu_vmap(video->isp, buf->sglist, buf->sglen);
if (IS_ERR_VALUE(addr))
return -EIO;
if (!IS_ALIGNED(addr, 32)) {
dev_dbg(video->isp->dev, "Buffer address must be "
"aligned to 32 bytes boundary.\n");
ispmmu_vunmap(video->isp, buffer->isp_addr);
return -EINVAL;
}
buf->vbuf.bytesused = vfh->format.fmt.pix.sizeimage;
buffer->isp_addr = addr;
return 0;
}
/*
* isp_video_buffer_queue - Add buffer to streaming queue
* @buf: Video buffer
*
* In memory-to-memory mode, start streaming on the pipeline if buffers are
* queued on both the input and the output, if the pipeline isn't already busy.
* If the pipeline is busy, it will be restarted in the output module interrupt
* handler.
*/
static void isp_video_buffer_queue(struct isp_video_buffer *buf)
{
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
struct isp_buffer *buffer = to_isp_buffer(buf);
struct isp_video *video = vfh->video;
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
enum isp_pipeline_state state;
unsigned long flags;
unsigned int empty;
unsigned int start;
if (unlikely(video->error)) {
buf->state = ISP_BUF_STATE_ERROR;
wake_up(&buf->wait);
return;
}
empty = list_empty(&video->dmaqueue);
list_add_tail(&buffer->buffer.irqlist, &video->dmaqueue);
if (empty) {
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
state = ISP_PIPELINE_QUEUE_OUTPUT;
else
state = ISP_PIPELINE_QUEUE_INPUT;
spin_lock_irqsave(&pipe->lock, flags);
pipe->state |= state;
video->ops->queue(video, buffer);
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED;
start = isp_pipeline_ready(pipe);
if (start)
pipe->state |= ISP_PIPELINE_STREAM;
spin_unlock_irqrestore(&pipe->lock, flags);
if (start)
omap3isp_pipeline_set_stream(pipe,
ISP_PIPELINE_STREAM_SINGLESHOT);
}
}
static const struct isp_video_queue_operations isp_video_queue_ops = {
.queue_prepare = &isp_video_queue_prepare,
.buffer_prepare = &isp_video_buffer_prepare,
.buffer_queue = &isp_video_buffer_queue,
.buffer_cleanup = &isp_video_buffer_cleanup,
};
/*
* omap3isp_video_buffer_next - Complete the current buffer and return the next
* @video: ISP video object
*
* Remove the current video buffer from the DMA queue and fill its timestamp,
* field count and state fields before waking up its completion handler.
*
* For capture video nodes the buffer state is set to ISP_BUF_STATE_DONE if no
* error has been flagged in the pipeline, or to ISP_BUF_STATE_ERROR otherwise.
* For video output nodes the buffer state is always set to ISP_BUF_STATE_DONE.
*
* The DMA queue is expected to contain at least one buffer.
*
* Return a pointer to the next buffer in the DMA queue, or NULL if the queue is
* empty.
*/
struct isp_buffer *omap3isp_video_buffer_next(struct isp_video *video)
{
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
struct isp_video_queue *queue = video->queue;
enum isp_pipeline_state state;
struct isp_video_buffer *buf;
unsigned long flags;
struct timespec ts;
spin_lock_irqsave(&queue->irqlock, flags);
if (WARN_ON(list_empty(&video->dmaqueue))) {
spin_unlock_irqrestore(&queue->irqlock, flags);
return NULL;
}
buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer,
irqlist);
list_del(&buf->irqlist);
spin_unlock_irqrestore(&queue->irqlock, flags);
ktime_get_ts(&ts);
buf->vbuf.timestamp.tv_sec = ts.tv_sec;
buf->vbuf.timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
/* Do frame number propagation only if this is the output video node.
* Frame number either comes from the CSI receivers or it gets
* incremented here if H3A is not active.
* Note: There is no guarantee that the output buffer will finish
* first, so the input number might lag behind by 1 in some cases.
*/
if (video == pipe->output && !pipe->do_propagation)
buf->vbuf.sequence = atomic_inc_return(&pipe->frame_number);
else
buf->vbuf.sequence = atomic_read(&pipe->frame_number);
/* Report pipeline errors to userspace on the capture device side. */
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && pipe->error) {
buf->state = ISP_BUF_STATE_ERROR;
pipe->error = false;
} else {
buf->state = ISP_BUF_STATE_DONE;
}
wake_up(&buf->wait);
if (list_empty(&video->dmaqueue)) {
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
state = ISP_PIPELINE_QUEUE_OUTPUT
| ISP_PIPELINE_STREAM;
else
state = ISP_PIPELINE_QUEUE_INPUT
| ISP_PIPELINE_STREAM;
spin_lock_irqsave(&pipe->lock, flags);
pipe->state &= ~state;
if (video->pipe.stream_state == ISP_PIPELINE_STREAM_CONTINUOUS)
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
spin_unlock_irqrestore(&pipe->lock, flags);
return NULL;
}
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && pipe->input != NULL) {
spin_lock_irqsave(&pipe->lock, flags);
pipe->state &= ~ISP_PIPELINE_STREAM;
spin_unlock_irqrestore(&pipe->lock, flags);
}
buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer,
irqlist);
buf->state = ISP_BUF_STATE_ACTIVE;
return to_isp_buffer(buf);
}
/*
* omap3isp_video_cancel_stream - Cancel stream on a video node
* @video: ISP video object
*
* Cancelling a stream mark all buffers on the video node as erroneous and makes
* sure no new buffer can be queued.
*/
void omap3isp_video_cancel_stream(struct isp_video *video)
{
struct isp_video_queue *queue = video->queue;
unsigned long flags;
spin_lock_irqsave(&queue->irqlock, flags);
while (!list_empty(&video->dmaqueue)) {
struct isp_video_buffer *buf;
buf = list_first_entry(&video->dmaqueue,
struct isp_video_buffer, irqlist);
list_del(&buf->irqlist);
buf->state = ISP_BUF_STATE_ERROR;
wake_up(&buf->wait);
}
video->error = true;
spin_unlock_irqrestore(&queue->irqlock, flags);
}
/*
* omap3isp_video_resume - Perform resume operation on the buffers
* @video: ISP video object
* @continuous: Pipeline is in single shot mode if 0 or continuous mode otherwise
*
* This function is intended to be used on suspend/resume scenario. It
* requests video queue layer to discard buffers marked as DONE if it's in
* continuous mode and requests ISP modules to queue again the ACTIVE buffer
* if there's any.
*/
void omap3isp_video_resume(struct isp_video *video, int continuous)
{
struct isp_buffer *buf = NULL;
if (continuous && video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
omap3isp_video_queue_discard_done(video->queue);
if (!list_empty(&video->dmaqueue)) {
buf = list_first_entry(&video->dmaqueue,
struct isp_buffer, buffer.irqlist);
video->ops->queue(video, buf);
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED;
} else {
if (continuous)
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
}
}
/* -----------------------------------------------------------------------------
* V4L2 ioctls
*/
static int
isp_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
struct isp_video *video = video_drvdata(file);
strlcpy(cap->driver, ISP_VIDEO_DRIVER_NAME, sizeof(cap->driver));
strlcpy(cap->card, video->video.name, sizeof(cap->card));
strlcpy(cap->bus_info, "media", sizeof(cap->bus_info));
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
else
cap->capabilities = V4L2_CAP_VIDEO_OUTPUT | V4L2_CAP_STREAMING;
return 0;
}
static int
isp_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
if (format->type != video->type)
return -EINVAL;
mutex_lock(&video->mutex);
*format = vfh->format;
mutex_unlock(&video->mutex);
return 0;
}
static int
isp_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
struct v4l2_mbus_framefmt fmt;
if (format->type != video->type)
return -EINVAL;
mutex_lock(&video->mutex);
/* Fill the bytesperline and sizeimage fields by converting to media bus
* format and back to pixel format.
*/
isp_video_pix_to_mbus(&format->fmt.pix, &fmt);
isp_video_mbus_to_pix(video, &fmt, &format->fmt.pix);
vfh->format = *format;
mutex_unlock(&video->mutex);
return 0;
}
static int
isp_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct isp_video *video = video_drvdata(file);
struct v4l2_subdev_format fmt;
struct v4l2_subdev *subdev;
u32 pad;
int ret;
if (format->type != video->type)
return -EINVAL;
subdev = isp_video_remote_subdev(video, &pad);
if (subdev == NULL)
return -EINVAL;
isp_video_pix_to_mbus(&format->fmt.pix, &fmt.format);
fmt.pad = pad;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
if (ret)
return ret == -ENOIOCTLCMD ? -ENOTTY : ret;
isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix);
return 0;
}
static int
isp_video_cropcap(struct file *file, void *fh, struct v4l2_cropcap *cropcap)
{
struct isp_video *video = video_drvdata(file);
struct v4l2_subdev *subdev;
int ret;
subdev = isp_video_remote_subdev(video, NULL);
if (subdev == NULL)
return -EINVAL;
mutex_lock(&video->mutex);
ret = v4l2_subdev_call(subdev, video, cropcap, cropcap);
mutex_unlock(&video->mutex);
return ret == -ENOIOCTLCMD ? -ENOTTY : ret;
}
static int
isp_video_get_crop(struct file *file, void *fh, struct v4l2_crop *crop)
{
struct isp_video *video = video_drvdata(file);
struct v4l2_subdev_format format;
struct v4l2_subdev *subdev;
u32 pad;
int ret;
subdev = isp_video_remote_subdev(video, &pad);
if (subdev == NULL)
return -EINVAL;
/* Try the get crop operation first and fallback to get format if not
* implemented.
*/
ret = v4l2_subdev_call(subdev, video, g_crop, crop);
if (ret != -ENOIOCTLCMD)
return ret;
format.pad = pad;
format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &format);
if (ret < 0)
return ret == -ENOIOCTLCMD ? -ENOTTY : ret;
crop->c.left = 0;
crop->c.top = 0;
crop->c.width = format.format.width;
crop->c.height = format.format.height;
return 0;
}
static int
isp_video_set_crop(struct file *file, void *fh, const struct v4l2_crop *crop)
{
struct isp_video *video = video_drvdata(file);
struct v4l2_subdev *subdev;
int ret;
subdev = isp_video_remote_subdev(video, NULL);
if (subdev == NULL)
return -EINVAL;
mutex_lock(&video->mutex);
ret = v4l2_subdev_call(subdev, video, s_crop, crop);
mutex_unlock(&video->mutex);
return ret == -ENOIOCTLCMD ? -ENOTTY : ret;
}
static int
isp_video_get_param(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT ||
video->type != a->type)
return -EINVAL;
memset(a, 0, sizeof(*a));
a->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
a->parm.output.capability = V4L2_CAP_TIMEPERFRAME;
a->parm.output.timeperframe = vfh->timeperframe;
return 0;
}
static int
isp_video_set_param(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT ||
video->type != a->type)
return -EINVAL;
if (a->parm.output.timeperframe.denominator == 0)
a->parm.output.timeperframe.denominator = 1;
vfh->timeperframe = a->parm.output.timeperframe;
return 0;
}
static int
isp_video_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *rb)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
return omap3isp_video_queue_reqbufs(&vfh->queue, rb);
}
static int
isp_video_querybuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
return omap3isp_video_queue_querybuf(&vfh->queue, b);
}
static int
isp_video_qbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
return omap3isp_video_queue_qbuf(&vfh->queue, b);
}
static int
isp_video_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
return omap3isp_video_queue_dqbuf(&vfh->queue, b,
file->f_flags & O_NONBLOCK);
}
static int isp_video_check_external_subdevs(struct isp_video *video,
struct isp_pipeline *pipe)
{
struct isp_device *isp = video->isp;
struct media_entity *ents[] = {
&isp->isp_csi2a.subdev.entity,
&isp->isp_csi2c.subdev.entity,
&isp->isp_ccp2.subdev.entity,
&isp->isp_ccdc.subdev.entity
};
struct media_pad *source_pad;
struct media_entity *source = NULL;
struct media_entity *sink;
struct v4l2_subdev_format fmt;
struct v4l2_ext_controls ctrls;
struct v4l2_ext_control ctrl;
unsigned int i;
int ret = 0;
/* Memory-to-memory pipelines have no external subdev. */
if (pipe->input != NULL)
return 0;
for (i = 0; i < ARRAY_SIZE(ents); i++) {
/* Is the entity part of the pipeline? */
if (!(pipe->entities & (1 << ents[i]->id)))
continue;
/* ISP entities have always sink pad == 0. Find source. */
source_pad = media_entity_remote_pad(&ents[i]->pads[0]);
if (source_pad == NULL)
continue;
source = source_pad->entity;
sink = ents[i];
break;
}
if (!source) {
dev_warn(isp->dev, "can't find source, failing now\n");
return ret;
}
if (media_entity_type(source) != MEDIA_ENT_T_V4L2_SUBDEV)
return 0;
pipe->external = media_entity_to_v4l2_subdev(source);
fmt.pad = source_pad->index;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(media_entity_to_v4l2_subdev(sink),
pad, get_fmt, NULL, &fmt);
if (unlikely(ret < 0)) {
dev_warn(isp->dev, "get_fmt returned null!\n");
return ret;
}
pipe->external_width =
omap3isp_video_format_info(fmt.format.code)->width;
memset(&ctrls, 0, sizeof(ctrls));
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_PIXEL_RATE;
ctrls.count = 1;
ctrls.controls = &ctrl;
ret = v4l2_g_ext_ctrls(pipe->external->ctrl_handler, &ctrls);
if (ret < 0) {
dev_warn(isp->dev, "no pixel rate control in subdev %s\n",
pipe->external->name);
return ret;
}
pipe->external_rate = ctrl.value64;
if (pipe->entities & (1 << isp->isp_ccdc.subdev.entity.id)) {
unsigned int rate = UINT_MAX;
/*
* Check that maximum allowed CCDC pixel rate isn't
* exceeded by the pixel rate.
*/
omap3isp_ccdc_max_rate(&isp->isp_ccdc, &rate);
if (pipe->external_rate > rate)
return -ENOSPC;
}
return 0;
}
/*
* Stream management
*
* Every ISP pipeline has a single input and a single output. The input can be
* either a sensor or a video node. The output is always a video node.
*
* As every pipeline has an output video node, the ISP video objects at the
* pipeline output stores the pipeline state. It tracks the streaming state of
* both the input and output, as well as the availability of buffers.
*
* In sensor-to-memory mode, frames are always available at the pipeline input.
* Starting the sensor usually requires I2C transfers and must be done in
* interruptible context. The pipeline is started and stopped synchronously
* to the stream on/off commands. All modules in the pipeline will get their
* subdev set stream handler called. The module at the end of the pipeline must
* delay starting the hardware until buffers are available at its output.
*
* In memory-to-memory mode, starting/stopping the stream requires
* synchronization between the input and output. ISP modules can't be stopped
* in the middle of a frame, and at least some of the modules seem to become
* busy as soon as they're started, even if they don't receive a frame start
* event. For that reason frames need to be processed in single-shot mode. The
* driver needs to wait until a frame is completely processed and written to
* memory before restarting the pipeline for the next frame. Pipelined
* processing might be possible but requires more testing.
*
* Stream start must be delayed until buffers are available at both the input
* and output. The pipeline must be started in the videobuf queue callback with
* the buffers queue spinlock held. The modules subdev set stream operation must
* not sleep.
*/
static int
isp_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
enum isp_pipeline_state state;
struct isp_pipeline *pipe;
unsigned long flags;
int ret;
if (type != video->type)
return -EINVAL;
mutex_lock(&video->stream_lock);
if (video->streaming) {
mutex_unlock(&video->stream_lock);
return -EBUSY;
}
/* Start streaming on the pipeline. No link touching an entity in the
* pipeline can be activated or deactivated once streaming is started.
*/
pipe = video->video.entity.pipe
? to_isp_pipeline(&video->video.entity) : &video->pipe;
pipe->entities = 0;
if (video->isp->pdata->set_constraints)
video->isp->pdata->set_constraints(video->isp, true);
pipe->l3_ick = clk_get_rate(video->isp->clock[ISP_CLK_L3_ICK]);
pipe->max_rate = pipe->l3_ick;
ret = media_entity_pipeline_start(&video->video.entity, &pipe->pipe);
if (ret < 0)
goto err_pipeline_start;
/* Verify that the currently configured format matches the output of
* the connected subdev.
*/
ret = isp_video_check_format(video, vfh);
if (ret < 0)
goto err_check_format;
video->bpl_padding = ret;
video->bpl_value = vfh->format.fmt.pix.bytesperline;
ret = isp_video_get_graph_data(video, pipe);
if (ret < 0)
goto err_check_format;
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
state = ISP_PIPELINE_STREAM_OUTPUT | ISP_PIPELINE_IDLE_OUTPUT;
else
state = ISP_PIPELINE_STREAM_INPUT | ISP_PIPELINE_IDLE_INPUT;
ret = isp_video_check_external_subdevs(video, pipe);
if (ret < 0)
goto err_check_format;
pipe->error = false;
spin_lock_irqsave(&pipe->lock, flags);
pipe->state &= ~ISP_PIPELINE_STREAM;
pipe->state |= state;
spin_unlock_irqrestore(&pipe->lock, flags);
/* Set the maximum time per frame as the value requested by userspace.
* This is a soft limit that can be overridden if the hardware doesn't
* support the request limit.
*/
if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
pipe->max_timeperframe = vfh->timeperframe;
video->queue = &vfh->queue;
INIT_LIST_HEAD(&video->dmaqueue);
atomic_set(&pipe->frame_number, -1);
ret = omap3isp_video_queue_streamon(&vfh->queue);
if (ret < 0)
goto err_check_format;
/* In sensor-to-memory mode, the stream can be started synchronously
* to the stream on command. In memory-to-memory mode, it will be
* started when buffers are queued on both the input and output.
*/
if (pipe->input == NULL) {
ret = omap3isp_pipeline_set_stream(pipe,
ISP_PIPELINE_STREAM_CONTINUOUS);
if (ret < 0)
goto err_set_stream;
spin_lock_irqsave(&video->queue->irqlock, flags);
if (list_empty(&video->dmaqueue))
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
spin_unlock_irqrestore(&video->queue->irqlock, flags);
}
video->streaming = 1;
mutex_unlock(&video->stream_lock);
return 0;
err_set_stream:
omap3isp_video_queue_streamoff(&vfh->queue);
err_check_format:
media_entity_pipeline_stop(&video->video.entity);
err_pipeline_start:
if (video->isp->pdata->set_constraints)
video->isp->pdata->set_constraints(video->isp, false);
/* The DMA queue must be emptied here, otherwise CCDC interrupts that
* will get triggered the next time the CCDC is powered up will try to
* access buffers that might have been freed but still present in the
* DMA queue. This can easily get triggered if the above
* omap3isp_pipeline_set_stream() call fails on a system with a
* free-running sensor.
*/
INIT_LIST_HEAD(&video->dmaqueue);
video->queue = NULL;
mutex_unlock(&video->stream_lock);
return ret;
}
static int
isp_video_streamoff(struct file *file, void *fh, enum v4l2_buf_type type)
{
struct isp_video_fh *vfh = to_isp_video_fh(fh);
struct isp_video *video = video_drvdata(file);
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
enum isp_pipeline_state state;
unsigned int streaming;
unsigned long flags;
if (type != video->type)
return -EINVAL;
mutex_lock(&video->stream_lock);
/* Make sure we're not streaming yet. */
mutex_lock(&vfh->queue.lock);
streaming = vfh->queue.streaming;
mutex_unlock(&vfh->queue.lock);
if (!streaming)
goto done;
/* Update the pipeline state. */
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
state = ISP_PIPELINE_STREAM_OUTPUT
| ISP_PIPELINE_QUEUE_OUTPUT;
else
state = ISP_PIPELINE_STREAM_INPUT
| ISP_PIPELINE_QUEUE_INPUT;
spin_lock_irqsave(&pipe->lock, flags);
pipe->state &= ~state;
spin_unlock_irqrestore(&pipe->lock, flags);
/* Stop the stream. */
omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_STOPPED);
omap3isp_video_queue_streamoff(&vfh->queue);
video->queue = NULL;
video->streaming = 0;
video->error = false;
if (video->isp->pdata->set_constraints)
video->isp->pdata->set_constraints(video->isp, false);
media_entity_pipeline_stop(&video->video.entity);
done:
mutex_unlock(&video->stream_lock);
return 0;
}
static int
isp_video_enum_input(struct file *file, void *fh, struct v4l2_input *input)
{
if (input->index > 0)
return -EINVAL;
strlcpy(input->name, "camera", sizeof(input->name));
input->type = V4L2_INPUT_TYPE_CAMERA;
return 0;
}
static int
isp_video_g_input(struct file *file, void *fh, unsigned int *input)
{
*input = 0;
return 0;
}
static int
isp_video_s_input(struct file *file, void *fh, unsigned int input)
{
return input == 0 ? 0 : -EINVAL;
}
static const struct v4l2_ioctl_ops isp_video_ioctl_ops = {
.vidioc_querycap = isp_video_querycap,
.vidioc_g_fmt_vid_cap = isp_video_get_format,
.vidioc_s_fmt_vid_cap = isp_video_set_format,
.vidioc_try_fmt_vid_cap = isp_video_try_format,
.vidioc_g_fmt_vid_out = isp_video_get_format,
.vidioc_s_fmt_vid_out = isp_video_set_format,
.vidioc_try_fmt_vid_out = isp_video_try_format,
.vidioc_cropcap = isp_video_cropcap,
.vidioc_g_crop = isp_video_get_crop,
.vidioc_s_crop = isp_video_set_crop,
.vidioc_g_parm = isp_video_get_param,
.vidioc_s_parm = isp_video_set_param,
.vidioc_reqbufs = isp_video_reqbufs,
.vidioc_querybuf = isp_video_querybuf,
.vidioc_qbuf = isp_video_qbuf,
.vidioc_dqbuf = isp_video_dqbuf,
.vidioc_streamon = isp_video_streamon,
.vidioc_streamoff = isp_video_streamoff,
.vidioc_enum_input = isp_video_enum_input,
.vidioc_g_input = isp_video_g_input,
.vidioc_s_input = isp_video_s_input,
};
/* -----------------------------------------------------------------------------
* V4L2 file operations
*/
static int isp_video_open(struct file *file)
{
struct isp_video *video = video_drvdata(file);
struct isp_video_fh *handle;
int ret = 0;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (handle == NULL)
return -ENOMEM;
v4l2_fh_init(&handle->vfh, &video->video);
v4l2_fh_add(&handle->vfh);
/* If this is the first user, initialise the pipeline. */
if (omap3isp_get(video->isp) == NULL) {
ret = -EBUSY;
goto done;
}
ret = omap3isp_pipeline_pm_use(&video->video.entity, 1);
if (ret < 0) {
omap3isp_put(video->isp);
goto done;
}
omap3isp_video_queue_init(&handle->queue, video->type,
&isp_video_queue_ops, video->isp->dev,
sizeof(struct isp_buffer));
memset(&handle->format, 0, sizeof(handle->format));
handle->format.type = video->type;
handle->timeperframe.denominator = 1;
handle->video = video;
file->private_data = &handle->vfh;
done:
if (ret < 0) {
v4l2_fh_del(&handle->vfh);
kfree(handle);
}
return ret;
}
static int isp_video_release(struct file *file)
{
struct isp_video *video = video_drvdata(file);
struct v4l2_fh *vfh = file->private_data;
struct isp_video_fh *handle = to_isp_video_fh(vfh);
/* Disable streaming and free the buffers queue resources. */
isp_video_streamoff(file, vfh, video->type);
mutex_lock(&handle->queue.lock);
omap3isp_video_queue_cleanup(&handle->queue);
mutex_unlock(&handle->queue.lock);
omap3isp_pipeline_pm_use(&video->video.entity, 0);
/* Release the file handle. */
v4l2_fh_del(vfh);
kfree(handle);
file->private_data = NULL;
omap3isp_put(video->isp);
return 0;
}
static unsigned int isp_video_poll(struct file *file, poll_table *wait)
{
struct isp_video_fh *vfh = to_isp_video_fh(file->private_data);
struct isp_video_queue *queue = &vfh->queue;
return omap3isp_video_queue_poll(queue, file, wait);
}
static int isp_video_mmap(struct file *file, struct vm_area_struct *vma)
{
struct isp_video_fh *vfh = to_isp_video_fh(file->private_data);
return omap3isp_video_queue_mmap(&vfh->queue, vma);
}
static struct v4l2_file_operations isp_video_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = video_ioctl2,
.open = isp_video_open,
.release = isp_video_release,
.poll = isp_video_poll,
.mmap = isp_video_mmap,
};
/* -----------------------------------------------------------------------------
* ISP video core
*/
static const struct isp_video_operations isp_video_dummy_ops = {
};
int omap3isp_video_init(struct isp_video *video, const char *name)
{
const char *direction;
int ret;
switch (video->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
direction = "output";
video->pad.flags = MEDIA_PAD_FL_SINK
| MEDIA_PAD_FL_MUST_CONNECT;
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
direction = "input";
video->pad.flags = MEDIA_PAD_FL_SOURCE
| MEDIA_PAD_FL_MUST_CONNECT;
video->video.vfl_dir = VFL_DIR_TX;
break;
default:
return -EINVAL;
}
ret = media_entity_init(&video->video.entity, 1, &video->pad, 0);
if (ret < 0)
return ret;
mutex_init(&video->mutex);
atomic_set(&video->active, 0);
spin_lock_init(&video->pipe.lock);
mutex_init(&video->stream_lock);
/* Initialize the video device. */
if (video->ops == NULL)
video->ops = &isp_video_dummy_ops;
video->video.fops = &isp_video_fops;
snprintf(video->video.name, sizeof(video->video.name),
"OMAP3 ISP %s %s", name, direction);
video->video.vfl_type = VFL_TYPE_GRABBER;
video->video.release = video_device_release_empty;
video->video.ioctl_ops = &isp_video_ioctl_ops;
video->pipe.stream_state = ISP_PIPELINE_STREAM_STOPPED;
video_set_drvdata(&video->video, video);
return 0;
}
void omap3isp_video_cleanup(struct isp_video *video)
{
media_entity_cleanup(&video->video.entity);
mutex_destroy(&video->stream_lock);
mutex_destroy(&video->mutex);
}
int omap3isp_video_register(struct isp_video *video, struct v4l2_device *vdev)
{
int ret;
video->video.v4l2_dev = vdev;
ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
if (ret < 0)
dev_err(video->isp->dev,
"%s: could not register video device (%d)\n",
__func__, ret);
return ret;
}
void omap3isp_video_unregister(struct isp_video *video)
{
if (video_is_registered(&video->video))
video_unregister_device(&video->video);
}