linux_dsm_epyc7002/arch/x86/kernel/cpu/topology.c

100 lines
2.5 KiB
C
Raw Normal View History

/*
* Check for extended topology enumeration cpuid leaf 0xb and if it
* exists, use it for populating initial_apicid and cpu topology
* detection.
*/
#include <linux/cpu.h>
#include <asm/apic.h>
#include <asm/pat.h>
#include <asm/processor.h>
/* leaf 0xb SMT level */
#define SMT_LEVEL 0
/* leaf 0xb sub-leaf types */
#define INVALID_TYPE 0
#define SMT_TYPE 1
#define CORE_TYPE 2
#define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
#define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
#define LEVEL_MAX_SIBLINGS(ebx) ((ebx) & 0xffff)
/*
* Check for extended topology enumeration cpuid leaf 0xb and if it
* exists, use it for populating initial_apicid and cpu topology
* detection.
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void detect_extended_topology(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned int eax, ebx, ecx, edx, sub_index;
unsigned int ht_mask_width, core_plus_mask_width;
unsigned int core_select_mask, core_level_siblings;
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
static bool printed;
if (c->cpuid_level < 0xb)
return;
cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
/*
* check if the cpuid leaf 0xb is actually implemented.
*/
if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE))
return;
set_cpu_cap(c, X86_FEATURE_XTOPOLOGY);
/*
* initial apic id, which also represents 32-bit extended x2apic id.
*/
c->initial_apicid = edx;
/*
* Populate HT related information from sub-leaf level 0.
*/
core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx);
core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
sub_index = 1;
do {
cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
/*
* Check for the Core type in the implemented sub leaves.
*/
if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
core_level_siblings = LEVEL_MAX_SIBLINGS(ebx);
core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
break;
}
sub_index++;
} while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width;
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, ht_mask_width)
& core_select_mask;
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, core_plus_mask_width);
/*
* Reinit the apicid, now that we have extended initial_apicid.
*/
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
c->x86_max_cores = (core_level_siblings / smp_num_siblings);
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
if (!printed) {
pr_info("CPU: Physical Processor ID: %d\n",
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
c->phys_proc_id);
if (c->x86_max_cores > 1)
pr_info("CPU: Processor Core ID: %d\n",
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
c->cpu_core_id);
printed = 1;
}
return;
#endif
}