linux_dsm_epyc7002/drivers/i2c/busses/i2c-s3c2410.c

1184 lines
26 KiB
C
Raw Normal View History

/* linux/drivers/i2c/busses/i2c-s3c2410.c
*
* Copyright (C) 2004,2005,2009 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* S3C2410 I2C Controller
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of_i2c.h>
#include <linux/of_gpio.h>
#include <asm/irq.h>
#include <plat/regs-iic.h>
#include <plat/iic.h>
/* Treat S3C2410 as baseline hardware, anything else is supported via quirks */
#define QUIRK_S3C2440 (1 << 0)
#define QUIRK_HDMIPHY (1 << 1)
#define QUIRK_NO_GPIO (1 << 2)
/* i2c controller state */
enum s3c24xx_i2c_state {
STATE_IDLE,
STATE_START,
STATE_READ,
STATE_WRITE,
STATE_STOP
};
struct s3c24xx_i2c {
spinlock_t lock;
wait_queue_head_t wait;
unsigned int quirks;
unsigned int suspended:1;
struct i2c_msg *msg;
unsigned int msg_num;
unsigned int msg_idx;
unsigned int msg_ptr;
unsigned int tx_setup;
unsigned int irq;
enum s3c24xx_i2c_state state;
unsigned long clkrate;
void __iomem *regs;
struct clk *clk;
struct device *dev;
struct resource *ioarea;
struct i2c_adapter adap;
struct s3c2410_platform_i2c *pdata;
int gpios[2];
#ifdef CONFIG_CPU_FREQ
struct notifier_block freq_transition;
#endif
};
static struct platform_device_id s3c24xx_driver_ids[] = {
{
.name = "s3c2410-i2c",
.driver_data = 0,
}, {
.name = "s3c2440-i2c",
.driver_data = QUIRK_S3C2440,
}, {
.name = "s3c2440-hdmiphy-i2c",
.driver_data = QUIRK_S3C2440 | QUIRK_HDMIPHY | QUIRK_NO_GPIO,
}, { },
};
MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
#ifdef CONFIG_OF
static const struct of_device_id s3c24xx_i2c_match[] = {
{ .compatible = "samsung,s3c2410-i2c", .data = (void *)0 },
{ .compatible = "samsung,s3c2440-i2c", .data = (void *)QUIRK_S3C2440 },
{ .compatible = "samsung,s3c2440-hdmiphy-i2c",
.data = (void *)(QUIRK_S3C2440 | QUIRK_HDMIPHY | QUIRK_NO_GPIO) },
{},
};
MODULE_DEVICE_TABLE(of, s3c24xx_i2c_match);
#endif
/* s3c24xx_get_device_quirks
*
* Get controller type either from device tree or platform device variant.
*/
static inline unsigned int s3c24xx_get_device_quirks(struct platform_device *pdev)
{
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(&s3c24xx_i2c_match, pdev->dev.of_node);
return (unsigned int)match->data;
}
return platform_get_device_id(pdev)->driver_data;
}
/* s3c24xx_i2c_master_complete
*
* complete the message and wake up the caller, using the given return code,
* or zero to mean ok.
*/
static inline void s3c24xx_i2c_master_complete(struct s3c24xx_i2c *i2c, int ret)
{
dev_dbg(i2c->dev, "master_complete %d\n", ret);
i2c->msg_ptr = 0;
i2c->msg = NULL;
i2c->msg_idx++;
i2c->msg_num = 0;
if (ret)
i2c->msg_idx = ret;
wake_up(&i2c->wait);
}
static inline void s3c24xx_i2c_disable_ack(struct s3c24xx_i2c *i2c)
{
unsigned long tmp;
tmp = readl(i2c->regs + S3C2410_IICCON);
writel(tmp & ~S3C2410_IICCON_ACKEN, i2c->regs + S3C2410_IICCON);
}
static inline void s3c24xx_i2c_enable_ack(struct s3c24xx_i2c *i2c)
{
unsigned long tmp;
tmp = readl(i2c->regs + S3C2410_IICCON);
writel(tmp | S3C2410_IICCON_ACKEN, i2c->regs + S3C2410_IICCON);
}
/* irq enable/disable functions */
static inline void s3c24xx_i2c_disable_irq(struct s3c24xx_i2c *i2c)
{
unsigned long tmp;
tmp = readl(i2c->regs + S3C2410_IICCON);
writel(tmp & ~S3C2410_IICCON_IRQEN, i2c->regs + S3C2410_IICCON);
}
static inline void s3c24xx_i2c_enable_irq(struct s3c24xx_i2c *i2c)
{
unsigned long tmp;
tmp = readl(i2c->regs + S3C2410_IICCON);
writel(tmp | S3C2410_IICCON_IRQEN, i2c->regs + S3C2410_IICCON);
}
/* s3c24xx_i2c_message_start
*
* put the start of a message onto the bus
*/
static void s3c24xx_i2c_message_start(struct s3c24xx_i2c *i2c,
struct i2c_msg *msg)
{
unsigned int addr = (msg->addr & 0x7f) << 1;
unsigned long stat;
unsigned long iiccon;
stat = 0;
stat |= S3C2410_IICSTAT_TXRXEN;
if (msg->flags & I2C_M_RD) {
stat |= S3C2410_IICSTAT_MASTER_RX;
addr |= 1;
} else
stat |= S3C2410_IICSTAT_MASTER_TX;
if (msg->flags & I2C_M_REV_DIR_ADDR)
addr ^= 1;
/* todo - check for wether ack wanted or not */
s3c24xx_i2c_enable_ack(i2c);
iiccon = readl(i2c->regs + S3C2410_IICCON);
writel(stat, i2c->regs + S3C2410_IICSTAT);
dev_dbg(i2c->dev, "START: %08lx to IICSTAT, %02x to DS\n", stat, addr);
writeb(addr, i2c->regs + S3C2410_IICDS);
/* delay here to ensure the data byte has gotten onto the bus
* before the transaction is started */
ndelay(i2c->tx_setup);
dev_dbg(i2c->dev, "iiccon, %08lx\n", iiccon);
writel(iiccon, i2c->regs + S3C2410_IICCON);
stat |= S3C2410_IICSTAT_START;
writel(stat, i2c->regs + S3C2410_IICSTAT);
}
static inline void s3c24xx_i2c_stop(struct s3c24xx_i2c *i2c, int ret)
{
unsigned long iicstat = readl(i2c->regs + S3C2410_IICSTAT);
dev_dbg(i2c->dev, "STOP\n");
/* stop the transfer */
iicstat &= ~S3C2410_IICSTAT_START;
writel(iicstat, i2c->regs + S3C2410_IICSTAT);
i2c->state = STATE_STOP;
s3c24xx_i2c_master_complete(i2c, ret);
s3c24xx_i2c_disable_irq(i2c);
}
/* helper functions to determine the current state in the set of
* messages we are sending */
/* is_lastmsg()
*
* returns TRUE if the current message is the last in the set
*/
static inline int is_lastmsg(struct s3c24xx_i2c *i2c)
{
return i2c->msg_idx >= (i2c->msg_num - 1);
}
/* is_msglast
*
* returns TRUE if we this is the last byte in the current message
*/
static inline int is_msglast(struct s3c24xx_i2c *i2c)
{
return i2c->msg_ptr == i2c->msg->len-1;
}
/* is_msgend
*
* returns TRUE if we reached the end of the current message
*/
static inline int is_msgend(struct s3c24xx_i2c *i2c)
{
return i2c->msg_ptr >= i2c->msg->len;
}
/* i2c_s3c_irq_nextbyte
*
* process an interrupt and work out what to do
*/
static int i2c_s3c_irq_nextbyte(struct s3c24xx_i2c *i2c, unsigned long iicstat)
{
unsigned long tmp;
unsigned char byte;
int ret = 0;
switch (i2c->state) {
case STATE_IDLE:
dev_err(i2c->dev, "%s: called in STATE_IDLE\n", __func__);
goto out;
case STATE_STOP:
dev_err(i2c->dev, "%s: called in STATE_STOP\n", __func__);
s3c24xx_i2c_disable_irq(i2c);
goto out_ack;
case STATE_START:
/* last thing we did was send a start condition on the
* bus, or started a new i2c message
*/
if (iicstat & S3C2410_IICSTAT_LASTBIT &&
!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
/* ack was not received... */
dev_dbg(i2c->dev, "ack was not received\n");
s3c24xx_i2c_stop(i2c, -ENXIO);
goto out_ack;
}
if (i2c->msg->flags & I2C_M_RD)
i2c->state = STATE_READ;
else
i2c->state = STATE_WRITE;
/* terminate the transfer if there is nothing to do
* as this is used by the i2c probe to find devices. */
if (is_lastmsg(i2c) && i2c->msg->len == 0) {
s3c24xx_i2c_stop(i2c, 0);
goto out_ack;
}
if (i2c->state == STATE_READ)
goto prepare_read;
/* fall through to the write state, as we will need to
* send a byte as well */
case STATE_WRITE:
/* we are writing data to the device... check for the
* end of the message, and if so, work out what to do
*/
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
if (iicstat & S3C2410_IICSTAT_LASTBIT) {
dev_dbg(i2c->dev, "WRITE: No Ack\n");
s3c24xx_i2c_stop(i2c, -ECONNREFUSED);
goto out_ack;
}
}
retry_write:
if (!is_msgend(i2c)) {
byte = i2c->msg->buf[i2c->msg_ptr++];
writeb(byte, i2c->regs + S3C2410_IICDS);
/* delay after writing the byte to allow the
* data setup time on the bus, as writing the
* data to the register causes the first bit
* to appear on SDA, and SCL will change as
* soon as the interrupt is acknowledged */
ndelay(i2c->tx_setup);
} else if (!is_lastmsg(i2c)) {
/* we need to go to the next i2c message */
dev_dbg(i2c->dev, "WRITE: Next Message\n");
i2c->msg_ptr = 0;
i2c->msg_idx++;
i2c->msg++;
/* check to see if we need to do another message */
if (i2c->msg->flags & I2C_M_NOSTART) {
if (i2c->msg->flags & I2C_M_RD) {
/* cannot do this, the controller
* forces us to send a new START
* when we change direction */
s3c24xx_i2c_stop(i2c, -EINVAL);
}
goto retry_write;
} else {
/* send the new start */
s3c24xx_i2c_message_start(i2c, i2c->msg);
i2c->state = STATE_START;
}
} else {
/* send stop */
s3c24xx_i2c_stop(i2c, 0);
}
break;
case STATE_READ:
/* we have a byte of data in the data register, do
* something with it, and then work out wether we are
* going to do any more read/write
*/
byte = readb(i2c->regs + S3C2410_IICDS);
i2c->msg->buf[i2c->msg_ptr++] = byte;
prepare_read:
if (is_msglast(i2c)) {
/* last byte of buffer */
if (is_lastmsg(i2c))
s3c24xx_i2c_disable_ack(i2c);
} else if (is_msgend(i2c)) {
/* ok, we've read the entire buffer, see if there
* is anything else we need to do */
if (is_lastmsg(i2c)) {
/* last message, send stop and complete */
dev_dbg(i2c->dev, "READ: Send Stop\n");
s3c24xx_i2c_stop(i2c, 0);
} else {
/* go to the next transfer */
dev_dbg(i2c->dev, "READ: Next Transfer\n");
i2c->msg_ptr = 0;
i2c->msg_idx++;
i2c->msg++;
}
}
break;
}
/* acknowlegde the IRQ and get back on with the work */
out_ack:
tmp = readl(i2c->regs + S3C2410_IICCON);
tmp &= ~S3C2410_IICCON_IRQPEND;
writel(tmp, i2c->regs + S3C2410_IICCON);
out:
return ret;
}
/* s3c24xx_i2c_irq
*
* top level IRQ servicing routine
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
static irqreturn_t s3c24xx_i2c_irq(int irqno, void *dev_id)
{
struct s3c24xx_i2c *i2c = dev_id;
unsigned long status;
unsigned long tmp;
status = readl(i2c->regs + S3C2410_IICSTAT);
if (status & S3C2410_IICSTAT_ARBITR) {
/* deal with arbitration loss */
dev_err(i2c->dev, "deal with arbitration loss\n");
}
if (i2c->state == STATE_IDLE) {
dev_dbg(i2c->dev, "IRQ: error i2c->state == IDLE\n");
tmp = readl(i2c->regs + S3C2410_IICCON);
tmp &= ~S3C2410_IICCON_IRQPEND;
writel(tmp, i2c->regs + S3C2410_IICCON);
goto out;
}
/* pretty much this leaves us with the fact that we've
* transmitted or received whatever byte we last sent */
i2c_s3c_irq_nextbyte(i2c, status);
out:
return IRQ_HANDLED;
}
/* s3c24xx_i2c_set_master
*
* get the i2c bus for a master transaction
*/
static int s3c24xx_i2c_set_master(struct s3c24xx_i2c *i2c)
{
unsigned long iicstat;
int timeout = 400;
/* the timeout for HDMIPHY is reduced to 10 ms because
* the hangup is expected to happen, so waiting 400 ms
* causes only unnecessary system hangup
*/
if (i2c->quirks & QUIRK_HDMIPHY)
timeout = 10;
while (timeout-- > 0) {
iicstat = readl(i2c->regs + S3C2410_IICSTAT);
if (!(iicstat & S3C2410_IICSTAT_BUSBUSY))
return 0;
msleep(1);
}
/* hang-up of bus dedicated for HDMIPHY occurred, resetting */
if (i2c->quirks & QUIRK_HDMIPHY) {
writel(0, i2c->regs + S3C2410_IICCON);
writel(0, i2c->regs + S3C2410_IICSTAT);
writel(0, i2c->regs + S3C2410_IICDS);
return 0;
}
return -ETIMEDOUT;
}
/* s3c24xx_i2c_doxfer
*
* this starts an i2c transfer
*/
static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c,
struct i2c_msg *msgs, int num)
{
unsigned long iicstat, timeout;
int spins = 20;
int ret;
if (i2c->suspended)
return -EIO;
ret = s3c24xx_i2c_set_master(i2c);
if (ret != 0) {
dev_err(i2c->dev, "cannot get bus (error %d)\n", ret);
ret = -EAGAIN;
goto out;
}
spin_lock_irq(&i2c->lock);
i2c->msg = msgs;
i2c->msg_num = num;
i2c->msg_ptr = 0;
i2c->msg_idx = 0;
i2c->state = STATE_START;
s3c24xx_i2c_enable_irq(i2c);
s3c24xx_i2c_message_start(i2c, msgs);
spin_unlock_irq(&i2c->lock);
timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);
ret = i2c->msg_idx;
/* having these next two as dev_err() makes life very
* noisy when doing an i2cdetect */
if (timeout == 0)
dev_dbg(i2c->dev, "timeout\n");
else if (ret != num)
dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret);
/* ensure the stop has been through the bus */
dev_dbg(i2c->dev, "waiting for bus idle\n");
/* first, try busy waiting briefly */
do {
cpu_relax();
iicstat = readl(i2c->regs + S3C2410_IICSTAT);
} while ((iicstat & S3C2410_IICSTAT_START) && --spins);
/* if that timed out sleep */
if (!spins) {
msleep(1);
iicstat = readl(i2c->regs + S3C2410_IICSTAT);
}
if (iicstat & S3C2410_IICSTAT_START)
dev_warn(i2c->dev, "timeout waiting for bus idle\n");
out:
return ret;
}
/* s3c24xx_i2c_xfer
*
* first port of call from the i2c bus code when an message needs
* transferring across the i2c bus.
*/
static int s3c24xx_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data;
int retry;
int ret;
pm_runtime_get_sync(&adap->dev);
clk_enable(i2c->clk);
for (retry = 0; retry < adap->retries; retry++) {
ret = s3c24xx_i2c_doxfer(i2c, msgs, num);
if (ret != -EAGAIN) {
clk_disable(i2c->clk);
pm_runtime_put_sync(&adap->dev);
return ret;
}
dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry);
udelay(100);
}
clk_disable(i2c->clk);
pm_runtime_put_sync(&adap->dev);
return -EREMOTEIO;
}
/* declare our i2c functionality */
static u32 s3c24xx_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_NOSTART |
I2C_FUNC_PROTOCOL_MANGLING;
}
/* i2c bus registration info */
static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
.master_xfer = s3c24xx_i2c_xfer,
.functionality = s3c24xx_i2c_func,
};
/* s3c24xx_i2c_calcdivisor
*
* return the divisor settings for a given frequency
*/
static int s3c24xx_i2c_calcdivisor(unsigned long clkin, unsigned int wanted,
unsigned int *div1, unsigned int *divs)
{
unsigned int calc_divs = clkin / wanted;
unsigned int calc_div1;
if (calc_divs > (16*16))
calc_div1 = 512;
else
calc_div1 = 16;
calc_divs += calc_div1-1;
calc_divs /= calc_div1;
if (calc_divs == 0)
calc_divs = 1;
if (calc_divs > 17)
calc_divs = 17;
*divs = calc_divs;
*div1 = calc_div1;
return clkin / (calc_divs * calc_div1);
}
/* s3c24xx_i2c_clockrate
*
* work out a divisor for the user requested frequency setting,
* either by the requested frequency, or scanning the acceptable
* range of frequencies until something is found
*/
static int s3c24xx_i2c_clockrate(struct s3c24xx_i2c *i2c, unsigned int *got)
{
struct s3c2410_platform_i2c *pdata = i2c->pdata;
unsigned long clkin = clk_get_rate(i2c->clk);
unsigned int divs, div1;
unsigned long target_frequency;
u32 iiccon;
int freq;
i2c->clkrate = clkin;
clkin /= 1000; /* clkin now in KHz */
dev_dbg(i2c->dev, "pdata desired frequency %lu\n", pdata->frequency);
target_frequency = pdata->frequency ? pdata->frequency : 100000;
target_frequency /= 1000; /* Target frequency now in KHz */
freq = s3c24xx_i2c_calcdivisor(clkin, target_frequency, &div1, &divs);
if (freq > target_frequency) {
dev_err(i2c->dev,
"Unable to achieve desired frequency %luKHz." \
" Lowest achievable %dKHz\n", target_frequency, freq);
return -EINVAL;
}
*got = freq;
iiccon = readl(i2c->regs + S3C2410_IICCON);
iiccon &= ~(S3C2410_IICCON_SCALEMASK | S3C2410_IICCON_TXDIV_512);
iiccon |= (divs-1);
if (div1 == 512)
iiccon |= S3C2410_IICCON_TXDIV_512;
writel(iiccon, i2c->regs + S3C2410_IICCON);
if (i2c->quirks & QUIRK_S3C2440) {
unsigned long sda_delay;
if (pdata->sda_delay) {
sda_delay = clkin * pdata->sda_delay;
sda_delay = DIV_ROUND_UP(sda_delay, 1000000);
sda_delay = DIV_ROUND_UP(sda_delay, 5);
if (sda_delay > 3)
sda_delay = 3;
sda_delay |= S3C2410_IICLC_FILTER_ON;
} else
sda_delay = 0;
dev_dbg(i2c->dev, "IICLC=%08lx\n", sda_delay);
writel(sda_delay, i2c->regs + S3C2440_IICLC);
}
return 0;
}
#ifdef CONFIG_CPU_FREQ
#define freq_to_i2c(_n) container_of(_n, struct s3c24xx_i2c, freq_transition)
static int s3c24xx_i2c_cpufreq_transition(struct notifier_block *nb,
unsigned long val, void *data)
{
struct s3c24xx_i2c *i2c = freq_to_i2c(nb);
unsigned long flags;
unsigned int got;
int delta_f;
int ret;
delta_f = clk_get_rate(i2c->clk) - i2c->clkrate;
/* if we're post-change and the input clock has slowed down
* or at pre-change and the clock is about to speed up, then
* adjust our clock rate. <0 is slow, >0 speedup.
*/
if ((val == CPUFREQ_POSTCHANGE && delta_f < 0) ||
(val == CPUFREQ_PRECHANGE && delta_f > 0)) {
spin_lock_irqsave(&i2c->lock, flags);
ret = s3c24xx_i2c_clockrate(i2c, &got);
spin_unlock_irqrestore(&i2c->lock, flags);
if (ret < 0)
dev_err(i2c->dev, "cannot find frequency\n");
else
dev_info(i2c->dev, "setting freq %d\n", got);
}
return 0;
}
static inline int s3c24xx_i2c_register_cpufreq(struct s3c24xx_i2c *i2c)
{
i2c->freq_transition.notifier_call = s3c24xx_i2c_cpufreq_transition;
return cpufreq_register_notifier(&i2c->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
static inline void s3c24xx_i2c_deregister_cpufreq(struct s3c24xx_i2c *i2c)
{
cpufreq_unregister_notifier(&i2c->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
#else
static inline int s3c24xx_i2c_register_cpufreq(struct s3c24xx_i2c *i2c)
{
return 0;
}
static inline void s3c24xx_i2c_deregister_cpufreq(struct s3c24xx_i2c *i2c)
{
}
#endif
#ifdef CONFIG_OF
static int s3c24xx_i2c_parse_dt_gpio(struct s3c24xx_i2c *i2c)
{
int idx, gpio, ret;
if (i2c->quirks & QUIRK_NO_GPIO)
return 0;
for (idx = 0; idx < 2; idx++) {
gpio = of_get_gpio(i2c->dev->of_node, idx);
if (!gpio_is_valid(gpio)) {
dev_err(i2c->dev, "invalid gpio[%d]: %d\n", idx, gpio);
goto free_gpio;
}
ret = gpio_request(gpio, "i2c-bus");
if (ret) {
dev_err(i2c->dev, "gpio [%d] request failed\n", gpio);
goto free_gpio;
}
}
return 0;
free_gpio:
while (--idx >= 0)
gpio_free(i2c->gpios[idx]);
return -EINVAL;
}
static void s3c24xx_i2c_dt_gpio_free(struct s3c24xx_i2c *i2c)
{
unsigned int idx;
if (i2c->quirks & QUIRK_NO_GPIO)
return;
for (idx = 0; idx < 2; idx++)
gpio_free(i2c->gpios[idx]);
}
#else
static int s3c24xx_i2c_parse_dt_gpio(struct s3c24xx_i2c *i2c)
{
return 0;
}
static void s3c24xx_i2c_dt_gpio_free(struct s3c24xx_i2c *i2c)
{
}
#endif
/* s3c24xx_i2c_init
*
* initialise the controller, set the IO lines and frequency
*/
static int s3c24xx_i2c_init(struct s3c24xx_i2c *i2c)
{
unsigned long iicon = S3C2410_IICCON_IRQEN | S3C2410_IICCON_ACKEN;
struct s3c2410_platform_i2c *pdata;
unsigned int freq;
/* get the plafrom data */
pdata = i2c->pdata;
/* inititalise the gpio */
if (pdata->cfg_gpio)
pdata->cfg_gpio(to_platform_device(i2c->dev));
else
if (s3c24xx_i2c_parse_dt_gpio(i2c))
return -EINVAL;
/* write slave address */
writeb(pdata->slave_addr, i2c->regs + S3C2410_IICADD);
dev_info(i2c->dev, "slave address 0x%02x\n", pdata->slave_addr);
writel(iicon, i2c->regs + S3C2410_IICCON);
/* we need to work out the divisors for the clock... */
if (s3c24xx_i2c_clockrate(i2c, &freq) != 0) {
writel(0, i2c->regs + S3C2410_IICCON);
dev_err(i2c->dev, "cannot meet bus frequency required\n");
return -EINVAL;
}
/* todo - check that the i2c lines aren't being dragged anywhere */
dev_info(i2c->dev, "bus frequency set to %d KHz\n", freq);
dev_dbg(i2c->dev, "S3C2410_IICCON=0x%02lx\n", iicon);
return 0;
}
#ifdef CONFIG_OF
/* s3c24xx_i2c_parse_dt
*
* Parse the device tree node and retreive the platform data.
*/
static void
s3c24xx_i2c_parse_dt(struct device_node *np, struct s3c24xx_i2c *i2c)
{
struct s3c2410_platform_i2c *pdata = i2c->pdata;
if (!np)
return;
pdata->bus_num = -1; /* i2c bus number is dynamically assigned */
of_property_read_u32(np, "samsung,i2c-sda-delay", &pdata->sda_delay);
of_property_read_u32(np, "samsung,i2c-slave-addr", &pdata->slave_addr);
of_property_read_u32(np, "samsung,i2c-max-bus-freq",
(u32 *)&pdata->frequency);
}
#else
static void
s3c24xx_i2c_parse_dt(struct device_node *np, struct s3c24xx_i2c *i2c)
{
return;
}
#endif
/* s3c24xx_i2c_probe
*
* called by the bus driver when a suitable device is found
*/
static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
struct s3c24xx_i2c *i2c;
struct s3c2410_platform_i2c *pdata = NULL;
struct resource *res;
int ret;
if (!pdev->dev.of_node) {
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data\n");
return -EINVAL;
}
}
i2c = devm_kzalloc(&pdev->dev, sizeof(struct s3c24xx_i2c), GFP_KERNEL);
if (!i2c) {
dev_err(&pdev->dev, "no memory for state\n");
return -ENOMEM;
}
i2c->pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!i2c->pdata) {
ret = -ENOMEM;
goto err_noclk;
}
i2c->quirks = s3c24xx_get_device_quirks(pdev);
if (pdata)
memcpy(i2c->pdata, pdata, sizeof(*pdata));
else
s3c24xx_i2c_parse_dt(pdev->dev.of_node, i2c);
strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));
i2c->adap.owner = THIS_MODULE;
i2c->adap.algo = &s3c24xx_i2c_algorithm;
i2c->adap.retries = 2;
i2c->adap.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
i2c->tx_setup = 50;
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait);
/* find the clock and enable it */
i2c->dev = &pdev->dev;
i2c->clk = clk_get(&pdev->dev, "i2c");
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
ret = -ENOENT;
goto err_noclk;
}
dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);
clk_enable(i2c->clk);
/* map the registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "cannot find IO resource\n");
ret = -ENOENT;
goto err_clk;
}
i2c->ioarea = request_mem_region(res->start, resource_size(res),
pdev->name);
if (i2c->ioarea == NULL) {
dev_err(&pdev->dev, "cannot request IO\n");
ret = -ENXIO;
goto err_clk;
}
i2c->regs = ioremap(res->start, resource_size(res));
if (i2c->regs == NULL) {
dev_err(&pdev->dev, "cannot map IO\n");
ret = -ENXIO;
goto err_ioarea;
}
dev_dbg(&pdev->dev, "registers %p (%p, %p)\n",
i2c->regs, i2c->ioarea, res);
/* setup info block for the i2c core */
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &pdev->dev;
/* initialise the i2c controller */
ret = s3c24xx_i2c_init(i2c);
if (ret != 0)
goto err_iomap;
/* find the IRQ for this unit (note, this relies on the init call to
* ensure no current IRQs pending
*/
i2c->irq = ret = platform_get_irq(pdev, 0);
if (ret <= 0) {
dev_err(&pdev->dev, "cannot find IRQ\n");
goto err_iomap;
}
ret = request_irq(i2c->irq, s3c24xx_i2c_irq, 0,
dev_name(&pdev->dev), i2c);
if (ret != 0) {
dev_err(&pdev->dev, "cannot claim IRQ %d\n", i2c->irq);
goto err_iomap;
}
ret = s3c24xx_i2c_register_cpufreq(i2c);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register cpufreq notifier\n");
goto err_irq;
}
/* Note, previous versions of the driver used i2c_add_adapter()
* to add the bus at any number. We now pass the bus number via
* the platform data, so if unset it will now default to always
* being bus 0.
*/
i2c->adap.nr = i2c->pdata->bus_num;
i2c->adap.dev.of_node = pdev->dev.of_node;
ret = i2c_add_numbered_adapter(&i2c->adap);
if (ret < 0) {
dev_err(&pdev->dev, "failed to add bus to i2c core\n");
goto err_cpufreq;
}
of_i2c_register_devices(&i2c->adap);
platform_set_drvdata(pdev, i2c);
pm_runtime_enable(&pdev->dev);
pm_runtime_enable(&i2c->adap.dev);
dev_info(&pdev->dev, "%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));
clk_disable(i2c->clk);
return 0;
err_cpufreq:
s3c24xx_i2c_deregister_cpufreq(i2c);
err_irq:
free_irq(i2c->irq, i2c);
err_iomap:
iounmap(i2c->regs);
err_ioarea:
release_resource(i2c->ioarea);
kfree(i2c->ioarea);
err_clk:
clk_disable(i2c->clk);
clk_put(i2c->clk);
err_noclk:
return ret;
}
/* s3c24xx_i2c_remove
*
* called when device is removed from the bus
*/
static int s3c24xx_i2c_remove(struct platform_device *pdev)
{
struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);
pm_runtime_disable(&i2c->adap.dev);
pm_runtime_disable(&pdev->dev);
s3c24xx_i2c_deregister_cpufreq(i2c);
i2c_del_adapter(&i2c->adap);
free_irq(i2c->irq, i2c);
clk_disable(i2c->clk);
clk_put(i2c->clk);
iounmap(i2c->regs);
release_resource(i2c->ioarea);
s3c24xx_i2c_dt_gpio_free(i2c);
kfree(i2c->ioarea);
return 0;
}
#ifdef CONFIG_PM
static int s3c24xx_i2c_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);
i2c->suspended = 1;
return 0;
}
static int s3c24xx_i2c_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);
i2c->suspended = 0;
clk_enable(i2c->clk);
s3c24xx_i2c_init(i2c);
clk_disable(i2c->clk);
return 0;
}
static const struct dev_pm_ops s3c24xx_i2c_dev_pm_ops = {
.suspend_noirq = s3c24xx_i2c_suspend_noirq,
.resume = s3c24xx_i2c_resume,
};
#define S3C24XX_DEV_PM_OPS (&s3c24xx_i2c_dev_pm_ops)
#else
#define S3C24XX_DEV_PM_OPS NULL
#endif
/* device driver for platform bus bits */
static struct platform_driver s3c24xx_i2c_driver = {
.probe = s3c24xx_i2c_probe,
.remove = s3c24xx_i2c_remove,
.id_table = s3c24xx_driver_ids,
.driver = {
.owner = THIS_MODULE,
.name = "s3c-i2c",
.pm = S3C24XX_DEV_PM_OPS,
.of_match_table = of_match_ptr(s3c24xx_i2c_match),
},
};
static int __init i2c_adap_s3c_init(void)
{
return platform_driver_register(&s3c24xx_i2c_driver);
}
subsys_initcall(i2c_adap_s3c_init);
static void __exit i2c_adap_s3c_exit(void)
{
platform_driver_unregister(&s3c24xx_i2c_driver);
}
module_exit(i2c_adap_s3c_exit);
MODULE_DESCRIPTION("S3C24XX I2C Bus driver");
MODULE_AUTHOR("Ben Dooks, <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");