linux_dsm_epyc7002/include/linux/backing-dev.h

507 lines
14 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/backing-dev.h
*
* low-level device information and state which is propagated up through
* to high-level code.
*/
#ifndef _LINUX_BACKING_DEV_H
#define _LINUX_BACKING_DEV_H
#include <linux/kernel.h>
#include <linux/fs.h>
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
#include <linux/sched.h>
#include <linux/blkdev.h>
memcg: fix a crash in wb_workfn when a device disappears Without memcg, there is a one-to-one mapping between the bdi and bdi_writeback structures. In this world, things are fairly straightforward; the first thing bdi_unregister() does is to shutdown the bdi_writeback structure (or wb), and part of that writeback ensures that no other work queued against the wb, and that the wb is fully drained. With memcg, however, there is a one-to-many relationship between the bdi and bdi_writeback structures; that is, there are multiple wb objects which can all point to a single bdi. There is a refcount which prevents the bdi object from being released (and hence, unregistered). So in theory, the bdi_unregister() *should* only get called once its refcount goes to zero (bdi_put will drop the refcount, and when it is zero, release_bdi gets called, which calls bdi_unregister). Unfortunately, del_gendisk() in block/gen_hd.c never got the memo about the Brave New memcg World, and calls bdi_unregister directly. It does this without informing the file system, or the memcg code, or anything else. This causes the root wb associated with the bdi to be unregistered, but none of the memcg-specific wb's are shutdown. So when one of these wb's are woken up to do delayed work, they try to dereference their wb->bdi->dev to fetch the device name, but unfortunately bdi->dev is now NULL, thanks to the bdi_unregister() called by del_gendisk(). As a result, *boom*. Fortunately, it looks like the rest of the writeback path is perfectly happy with bdi->dev and bdi->owner being NULL, so the simplest fix is to create a bdi_dev_name() function which can handle bdi->dev being NULL. This also allows us to bulletproof the writeback tracepoints to prevent them from dereferencing a NULL pointer and crashing the kernel if one is tracing with memcg's enabled, and an iSCSI device dies or a USB storage stick is pulled. The most common way of triggering this will be hotremoval of a device while writeback with memcg enabled is going on. It was triggering several times a day in a heavily loaded production environment. Google Bug Id: 145475544 Link: https://lore.kernel.org/r/20191227194829.150110-1-tytso@mit.edu Link: http://lkml.kernel.org/r/20191228005211.163952-1-tytso@mit.edu Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 13:11:04 +07:00
#include <linux/device.h>
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
#include <linux/writeback.h>
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
#include <linux/blk-cgroup.h>
#include <linux/backing-dev-defs.h>
writeback: don't embed root bdi_writeback_congested in bdi_writeback 52ebea749aae ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's (bdi_writeback's). As the congested state needs to be per-wb and referenced from blkcg side and multiple wbs, the patch made all non-root cong's (bdi_writeback_congested's) reference counted and indexed on bdi. When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all non-root cong's; however, this can hang indefinitely because wb's can also be referenced from blkcg_gq's which are destroyed after bdi destruction is complete. To fix the bug, bdi destruction will be updated to not wait for cong's to drain, which naturally means that cong's may outlive the associated bdi. This is fine for non-root cong's but is problematic for the root cong's which are embedded in their bdi's as they may end up getting dereferenced after the containing bdi's are freed. This patch makes root cong's behave the same as non-root cong's. They are no longer embedded in their bdi's but allocated separately during bdi initialization, indexed and reference counted the same way. * As cong handling is the same for all wb's, wb->congested initialization is moved into wb_init(). * When !CONFIG_CGROUP_WRITEBACK, there was no indexing or refcnting. bdi->wb_congested is now a pointer pointing to the root cong allocated during bdi init and minimal refcnting operations are implemented. * The above makes root wb init paths diverge depending on CONFIG_CGROUP_WRITEBACK. root wb init is moved to cgwb_bdi_init(). This patch in itself shouldn't cause any consequential behavior differences but prepares for the actual fix. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jon Christopherson <jon@jons.org> Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681 Tested-by: Jon Christopherson <jon@jons.org> Added <linux/slab.h> include to backing-dev.h for kfree() definition. Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-02 21:44:34 +07:00
#include <linux/slab.h>
static inline struct backing_dev_info *bdi_get(struct backing_dev_info *bdi)
{
kref_get(&bdi->refcnt);
return bdi;
}
struct backing_dev_info *bdi_get_by_id(u64 id);
void bdi_put(struct backing_dev_info *bdi);
__printf(2, 3)
int bdi_register(struct backing_dev_info *bdi, const char *fmt, ...);
__printf(2, 0)
int bdi_register_va(struct backing_dev_info *bdi, const char *fmt,
va_list args);
void bdi_set_owner(struct backing_dev_info *bdi, struct device *owner);
block: don't release bdi while request_queue has live references bdi's are initialized in two steps, bdi_init() and bdi_register(), but destroyed in a single step by bdi_destroy() which, for a bdi embedded in a request_queue, is called during blk_cleanup_queue() which makes the queue invisible and starts the draining of remaining usages. A request_queue's user can access the congestion state of the embedded bdi as long as it holds a reference to the queue. As such, it may access the congested state of a queue which finished blk_cleanup_queue() but hasn't reached blk_release_queue() yet. Because the congested state was embedded in backing_dev_info which in turn is embedded in request_queue, accessing the congested state after bdi_destroy() was called was fine. The bdi was destroyed but the memory region for the congested state remained accessible till the queue got released. a13f35e87140 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback") changed the situation. Now, the root congested state which is expected to be pinned while request_queue remains accessible is separately reference counted and the base ref is put during bdi_destroy(). This means that the root congested state may go away prematurely while the queue is between bdi_dstroy() and blk_cleanup_queue(), which was detected by Andrey's KASAN tests. The root cause of this problem is that bdi doesn't distinguish the two steps of destruction, unregistration and release, and now the root congested state actually requires a separate release step. To fix the issue, this patch separates out bdi_unregister() and bdi_exit() from bdi_destroy(). bdi_unregister() is called from blk_cleanup_queue() and bdi_exit() from blk_release_queue(). bdi_destroy() is now just a simple wrapper calling the two steps back-to-back. While at it, the prototype of bdi_destroy() is moved right below bdi_setup_and_register() so that the counterpart operations are located together. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: a13f35e87140 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback") Cc: stable@vger.kernel.org # v4.2+ Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com> Link: http://lkml.kernel.org/g/CAAeHK+zUJ74Zn17=rOyxacHU18SgCfC6bsYW=6kCY5GXJBwGfQ@mail.gmail.com Reviewed-by: Jan Kara <jack@suse.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-09-08 23:20:22 +07:00
void bdi_unregister(struct backing_dev_info *bdi);
struct backing_dev_info *bdi_alloc(int node_id);
block: don't release bdi while request_queue has live references bdi's are initialized in two steps, bdi_init() and bdi_register(), but destroyed in a single step by bdi_destroy() which, for a bdi embedded in a request_queue, is called during blk_cleanup_queue() which makes the queue invisible and starts the draining of remaining usages. A request_queue's user can access the congestion state of the embedded bdi as long as it holds a reference to the queue. As such, it may access the congested state of a queue which finished blk_cleanup_queue() but hasn't reached blk_release_queue() yet. Because the congested state was embedded in backing_dev_info which in turn is embedded in request_queue, accessing the congested state after bdi_destroy() was called was fine. The bdi was destroyed but the memory region for the congested state remained accessible till the queue got released. a13f35e87140 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback") changed the situation. Now, the root congested state which is expected to be pinned while request_queue remains accessible is separately reference counted and the base ref is put during bdi_destroy(). This means that the root congested state may go away prematurely while the queue is between bdi_dstroy() and blk_cleanup_queue(), which was detected by Andrey's KASAN tests. The root cause of this problem is that bdi doesn't distinguish the two steps of destruction, unregistration and release, and now the root congested state actually requires a separate release step. To fix the issue, this patch separates out bdi_unregister() and bdi_exit() from bdi_destroy(). bdi_unregister() is called from blk_cleanup_queue() and bdi_exit() from blk_release_queue(). bdi_destroy() is now just a simple wrapper calling the two steps back-to-back. While at it, the prototype of bdi_destroy() is moved right below bdi_setup_and_register() so that the counterpart operations are located together. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: a13f35e87140 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback") Cc: stable@vger.kernel.org # v4.2+ Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com> Link: http://lkml.kernel.org/g/CAAeHK+zUJ74Zn17=rOyxacHU18SgCfC6bsYW=6kCY5GXJBwGfQ@mail.gmail.com Reviewed-by: Jan Kara <jack@suse.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-09-08 23:20:22 +07:00
void wb_start_background_writeback(struct bdi_writeback *wb);
writeback: move backing_dev_info->wb_lock and ->worklist into bdi_writeback Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback) and the role of the separation is unclear. For cgroup support for writeback IOs, a bdi will be updated to host multiple wb's where each wb serves writeback IOs of a different cgroup on the bdi. To achieve that, a wb should carry all states necessary for servicing writeback IOs for a cgroup independently. This patch moves bdi->wb_lock and ->worklist into wb. * The lock protects bdi->worklist and bdi->wb.dwork scheduling. While moving, rename it to wb->work_lock as wb->wb_lock is confusing. Also, move wb->dwork downwards so that it's colocated with the new ->work_lock and ->work_list fields. * bdi_writeback_workfn() -> wb_workfn() bdi_wakeup_thread_delayed(bdi) -> wb_wakeup_delayed(wb) bdi_wakeup_thread(bdi) -> wb_wakeup(wb) bdi_queue_work(bdi, ...) -> wb_queue_work(wb, ...) __bdi_start_writeback(bdi, ...) -> __wb_start_writeback(wb, ...) get_next_work_item(bdi) -> get_next_work_item(wb) * bdi_wb_shutdown() is renamed to wb_shutdown() and now takes @wb. The function contained parts which belong to the containing bdi rather than the wb itself - testing cap_writeback_dirty and bdi_remove_from_list() invocation. Those are moved to bdi_unregister(). * bdi_wb_{init|exit}() are renamed to wb_{init|exit}(). Initializations of the moved bdi->wb_lock and ->work_list are relocated from bdi_init() to wb_init(). * As there's still only one bdi_writeback per backing_dev_info, all uses of bdi->state are mechanically replaced with bdi->wb.state introducing no behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:30 +07:00
void wb_workfn(struct work_struct *work);
void wb_wakeup_delayed(struct bdi_writeback *wb);
void wb_wait_for_completion(struct wb_completion *done);
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
extern spinlock_t bdi_lock;
extern struct list_head bdi_list;
writeback: replace custom worker pool implementation with unbound workqueue Writeback implements its own worker pool - each bdi can be associated with a worker thread which is created and destroyed dynamically. The worker thread for the default bdi is always present and serves as the "forker" thread which forks off worker threads for other bdis. there's no reason for writeback to implement its own worker pool when using unbound workqueue instead is much simpler and more efficient. This patch replaces custom worker pool implementation in writeback with an unbound workqueue. The conversion isn't too complicated but the followings are worth mentioning. * bdi_writeback->last_active, task and wakeup_timer are removed. delayed_work ->dwork is added instead. Explicit timer handling is no longer necessary. Everything works by either queueing / modding / flushing / canceling the delayed_work item. * bdi_writeback_thread() becomes bdi_writeback_workfn() which runs off bdi_writeback->dwork. On each execution, it processes bdi->work_list and reschedules itself if there are more things to do. The function also handles low-mem condition, which used to be handled by the forker thread. If the function is running off a rescuer thread, it only writes out limited number of pages so that the rescuer can serve other bdis too. This preserves the flusher creation failure behavior of the forker thread. * INIT_LIST_HEAD(&bdi->bdi_list) is used to tell bdi_writeback_workfn() about on-going bdi unregistration so that it always drains work_list even if it's running off the rescuer. Note that the original code was broken in this regard. Under memory pressure, a bdi could finish unregistration with non-empty work_list. * The default bdi is no longer special. It now is treated the same as any other bdi and bdi_cap_flush_forker() is removed. * BDI_pending is no longer used. Removed. * Some tracepoints become non-applicable. The following TPs are removed - writeback_nothread, writeback_wake_thread, writeback_wake_forker_thread, writeback_thread_start, writeback_thread_stop. Everything, including devices coming and going away and rescuer operation under simulated memory pressure, seems to work fine in my test setup. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Jeff Moyer <jmoyer@redhat.com>
2013-04-02 09:08:06 +07:00
extern struct workqueue_struct *bdi_wq;
extern struct workqueue_struct *bdi_async_bio_wq;
writeback: replace custom worker pool implementation with unbound workqueue Writeback implements its own worker pool - each bdi can be associated with a worker thread which is created and destroyed dynamically. The worker thread for the default bdi is always present and serves as the "forker" thread which forks off worker threads for other bdis. there's no reason for writeback to implement its own worker pool when using unbound workqueue instead is much simpler and more efficient. This patch replaces custom worker pool implementation in writeback with an unbound workqueue. The conversion isn't too complicated but the followings are worth mentioning. * bdi_writeback->last_active, task and wakeup_timer are removed. delayed_work ->dwork is added instead. Explicit timer handling is no longer necessary. Everything works by either queueing / modding / flushing / canceling the delayed_work item. * bdi_writeback_thread() becomes bdi_writeback_workfn() which runs off bdi_writeback->dwork. On each execution, it processes bdi->work_list and reschedules itself if there are more things to do. The function also handles low-mem condition, which used to be handled by the forker thread. If the function is running off a rescuer thread, it only writes out limited number of pages so that the rescuer can serve other bdis too. This preserves the flusher creation failure behavior of the forker thread. * INIT_LIST_HEAD(&bdi->bdi_list) is used to tell bdi_writeback_workfn() about on-going bdi unregistration so that it always drains work_list even if it's running off the rescuer. Note that the original code was broken in this regard. Under memory pressure, a bdi could finish unregistration with non-empty work_list. * The default bdi is no longer special. It now is treated the same as any other bdi and bdi_cap_flush_forker() is removed. * BDI_pending is no longer used. Removed. * Some tracepoints become non-applicable. The following TPs are removed - writeback_nothread, writeback_wake_thread, writeback_wake_forker_thread, writeback_thread_start, writeback_thread_stop. Everything, including devices coming and going away and rescuer operation under simulated memory pressure, seems to work fine in my test setup. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Jeff Moyer <jmoyer@redhat.com>
2013-04-02 09:08:06 +07:00
writeback: implement WB_has_dirty_io wb_state flag Currently, wb_has_dirty_io() determines whether a wb (bdi_writeback) has any dirty inode by testing all three IO lists on each invocation without actively keeping track. For cgroup writeback support, a single bdi will host multiple wb's each of which will host dirty inodes separately and we'll need to make bdi_has_dirty_io(), which currently only represents the root wb, aggregate has_dirty_io from all member wb's, which requires tracking transitions in has_dirty_io state on each wb. This patch introduces inode_wb_list_{move|del}_locked() to consolidate IO list operations leaving queue_io() the only other function which directly manipulates IO lists (via move_expired_inodes()). All three functions are updated to call wb_io_lists_[de]populated() which keep track of whether the wb has dirty inodes or not and record it using the new WB_has_dirty_io flag. inode_wb_list_moved_locked()'s return value indicates whether the wb had no dirty inodes before. mark_inode_dirty() is restructured so that the return value of inode_wb_list_move_locked() can be used for deciding whether to wake up the wb. While at it, change {bdi|wb}_has_dirty_io()'s return values to bool. These functions were returning 0 and 1 before. Also, add a comment explaining the synchronization of wb_state flags. v2: Updated to accommodate b_dirty_time. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:45 +07:00
static inline bool wb_has_dirty_io(struct bdi_writeback *wb)
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
{
writeback: implement WB_has_dirty_io wb_state flag Currently, wb_has_dirty_io() determines whether a wb (bdi_writeback) has any dirty inode by testing all three IO lists on each invocation without actively keeping track. For cgroup writeback support, a single bdi will host multiple wb's each of which will host dirty inodes separately and we'll need to make bdi_has_dirty_io(), which currently only represents the root wb, aggregate has_dirty_io from all member wb's, which requires tracking transitions in has_dirty_io state on each wb. This patch introduces inode_wb_list_{move|del}_locked() to consolidate IO list operations leaving queue_io() the only other function which directly manipulates IO lists (via move_expired_inodes()). All three functions are updated to call wb_io_lists_[de]populated() which keep track of whether the wb has dirty inodes or not and record it using the new WB_has_dirty_io flag. inode_wb_list_moved_locked()'s return value indicates whether the wb had no dirty inodes before. mark_inode_dirty() is restructured so that the return value of inode_wb_list_move_locked() can be used for deciding whether to wake up the wb. While at it, change {bdi|wb}_has_dirty_io()'s return values to bool. These functions were returning 0 and 1 before. Also, add a comment explaining the synchronization of wb_state flags. v2: Updated to accommodate b_dirty_time. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:45 +07:00
return test_bit(WB_has_dirty_io, &wb->state);
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
}
static inline bool bdi_has_dirty_io(struct backing_dev_info *bdi)
{
/*
* @bdi->tot_write_bandwidth is guaranteed to be > 0 if there are
* any dirty wbs. See wb_update_write_bandwidth().
*/
return atomic_long_read(&bdi->tot_write_bandwidth);
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
}
static inline void __add_wb_stat(struct bdi_writeback *wb,
enum wb_stat_item item, s64 amount)
{
percpu_counter_add_batch(&wb->stat[item], amount, WB_STAT_BATCH);
}
static inline void inc_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item)
{
__add_wb_stat(wb, item, 1);
}
static inline void dec_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item)
{
__add_wb_stat(wb, item, -1);
}
static inline s64 wb_stat(struct bdi_writeback *wb, enum wb_stat_item item)
{
return percpu_counter_read_positive(&wb->stat[item]);
}
static inline s64 wb_stat_sum(struct bdi_writeback *wb, enum wb_stat_item item)
{
return percpu_counter_sum_positive(&wb->stat[item]);
}
extern void wb_writeout_inc(struct bdi_writeback *wb);
/*
* maximal error of a stat counter.
*/
static inline unsigned long wb_stat_error(void)
{
#ifdef CONFIG_SMP
return nr_cpu_ids * WB_STAT_BATCH;
#else
return 1;
#endif
}
int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio);
int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio);
/*
* Flags in backing_dev_info::capability
*
* The first three flags control whether dirty pages will contribute to the
* VM's accounting and whether writepages() should be called for dirty pages
* (something that would not, for example, be appropriate for ramfs)
*
* WARNING: these flags are closely related and should not normally be
* used separately. The BDI_CAP_NO_ACCT_AND_WRITEBACK combines these
* three flags into a single convenience macro.
*
* BDI_CAP_NO_ACCT_DIRTY: Dirty pages shouldn't contribute to accounting
* BDI_CAP_NO_WRITEBACK: Don't write pages back
* BDI_CAP_NO_ACCT_WB: Don't automatically account writeback pages
mm/page-writeback.c: add strictlimit feature The feature prevents mistrusted filesystems (ie: FUSE mounts created by unprivileged users) to grow a large number of dirty pages before throttling. For such filesystems balance_dirty_pages always check bdi counters against bdi limits. I.e. even if global "nr_dirty" is under "freerun", it's not allowed to skip bdi checks. The only use case for now is fuse: it sets bdi max_ratio to 1% by default and system administrators are supposed to expect that this limit won't be exceeded. The feature is on if a BDI is marked by BDI_CAP_STRICTLIMIT flag. A filesystem may set the flag when it initializes its BDI. The problematic scenario comes from the fact that nobody pays attention to the NR_WRITEBACK_TEMP counter (i.e. number of pages under fuse writeback). The implementation of fuse writeback releases original page (by calling end_page_writeback) almost immediately. A fuse request queued for real processing bears a copy of original page. Hence, if userspace fuse daemon doesn't finalize write requests in timely manner, an aggressive mmap writer can pollute virtually all memory by those temporary fuse page copies. They are carefully accounted in NR_WRITEBACK_TEMP, but nobody cares. To make further explanations shorter, let me use "NR_WRITEBACK_TEMP problem" as a shortcut for "a possibility of uncontrolled grow of amount of RAM consumed by temporary pages allocated by kernel fuse to process writeback". The problem was very easy to reproduce. There is a trivial example filesystem implementation in fuse userspace distribution: fusexmp_fh.c. I added "sleep(1);" to the write methods, then recompiled and mounted it. Then created a huge file on the mount point and run a simple program which mmap-ed the file to a memory region, then wrote a data to the region. An hour later I observed almost all RAM consumed by fuse writeback. Since then some unrelated changes in kernel fuse made it more difficult to reproduce, but it is still possible now. Putting this theoretical happens-in-the-lab thing aside, there is another thing that really hurts real world (FUSE) users. This is write-through page cache policy FUSE currently uses. I.e. handling write(2), kernel fuse populates page cache and flushes user data to the server synchronously. This is excessively suboptimal. Pavel Emelyanov's patches ("writeback cache policy") solve the problem, but they also make resolving NR_WRITEBACK_TEMP problem absolutely necessary. Otherwise, simply copying a huge file to a fuse mount would result in memory starvation. Miklos, the maintainer of FUSE, believes strictlimit feature the way to go. And eventually putting FUSE topics aside, there is one more use-case for strictlimit feature. Using a slow USB stick (mass storage) in a machine with huge amount of RAM installed is a well-known pain. Let's make simple computations. Assuming 64GB of RAM installed, existing implementation of balance_dirty_pages will start throttling only after 9.6GB of RAM becomes dirty (freerun == 15% of total RAM). So, the command "cp 9GB_file /media/my-usb-storage/" may return in a few seconds, but subsequent "umount /media/my-usb-storage/" will take more than two hours if effective throughput of the storage is, to say, 1MB/sec. After inclusion of strictlimit feature, it will be trivial to add a knob (e.g. /sys/devices/virtual/bdi/x:y/strictlimit) to enable it on demand. Manually or via udev rule. May be I'm wrong, but it seems to be quite a natural desire to limit the amount of dirty memory for some devices we are not fully trust (in the sense of sustainable throughput). [akpm@linux-foundation.org: fix warning in page-writeback.c] Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com> Cc: Jan Kara <jack@suse.cz> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:22:46 +07:00
* BDI_CAP_STRICTLIMIT: Keep number of dirty pages below bdi threshold.
*
* BDI_CAP_CGROUP_WRITEBACK: Supports cgroup-aware writeback.
* BDI_CAP_SYNCHRONOUS_IO: Device is so fast that asynchronous IO would be
* inefficient.
*/
#define BDI_CAP_NO_ACCT_DIRTY 0x00000001
#define BDI_CAP_NO_WRITEBACK 0x00000002
#define BDI_CAP_NO_ACCT_WB 0x00000004
#define BDI_CAP_STABLE_WRITES 0x00000008
#define BDI_CAP_STRICTLIMIT 0x00000010
#define BDI_CAP_CGROUP_WRITEBACK 0x00000020
#define BDI_CAP_SYNCHRONOUS_IO 0x00000040
#define BDI_CAP_NO_ACCT_AND_WRITEBACK \
(BDI_CAP_NO_WRITEBACK | BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_ACCT_WB)
extern struct backing_dev_info noop_backing_dev_info;
/**
* writeback_in_progress - determine whether there is writeback in progress
* @wb: bdi_writeback of interest
*
* Determine whether there is writeback waiting to be handled against a
* bdi_writeback.
*/
static inline bool writeback_in_progress(struct bdi_writeback *wb)
{
return test_bit(WB_writeback_running, &wb->state);
}
static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
{
struct super_block *sb;
if (!inode)
return &noop_backing_dev_info;
sb = inode->i_sb;
#ifdef CONFIG_BLOCK
if (sb_is_blkdev_sb(sb))
return I_BDEV(inode)->bd_bdi;
#endif
return sb->s_bdi;
}
static inline int wb_congested(struct bdi_writeback *wb, int cong_bits)
{
struct backing_dev_info *bdi = wb->bdi;
if (bdi->congested_fn)
return bdi->congested_fn(bdi->congested_data, cong_bits);
return wb->congested->state & cong_bits;
}
long congestion_wait(int sync, long timeout);
mm/vmscan: don't mess with pgdat->flags in memcg reclaim memcg reclaim may alter pgdat->flags based on the state of LRU lists in cgroup and its children. PGDAT_WRITEBACK may force kswapd to sleep congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem pages. But the worst here is PGDAT_CONGESTED, since it may force all direct reclaims to stall in wait_iff_congested(). Note that only kswapd have powers to clear any of these bits. This might just never happen if cgroup limits configured that way. So all direct reclaims will stall as long as we have some congested bdi in the system. Leave all pgdat->flags manipulations to kswapd. kswapd scans the whole pgdat, only kswapd can clear pgdat->flags once node is balanced, thus it's reasonable to leave all decisions about node state to kswapd. Why only kswapd? Why not allow to global direct reclaim change these flags? It is because currently only kswapd can clear these flags. I'm less worried about the case when PGDAT_CONGESTED falsely not set, and more worried about the case when it falsely set. If direct reclaimer sets PGDAT_CONGESTED, do we have guarantee that after the congestion problem is sorted out, kswapd will be woken up and clear the flag? It seems like there is no such guarantee. E.g. direct reclaimers may eventually balance pgdat and kswapd simply won't wake up (see wakeup_kswapd()). Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim now loses its congestion throttling mechanism. Add per-cgroup congestion state and throttle cgroup2 reclaimers if memcg is in congestion state. Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY bits since they alter only kswapd behavior. The problem could be easily demonstrated by creating heavy congestion in one cgroup: echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control mkdir -p /sys/fs/cgroup/congester echo 512M > /sys/fs/cgroup/congester/memory.max echo $$ > /sys/fs/cgroup/congester/cgroup.procs /* generate a lot of diry data on slow HDD */ while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & .... while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & and some job in another cgroup: mkdir /sys/fs/cgroup/victim echo 128M > /sys/fs/cgroup/victim/memory.max # time cat /dev/sda > /dev/null real 10m15.054s user 0m0.487s sys 1m8.505s According to the tracepoint in wait_iff_congested(), the 'cat' spent 50% of the time sleeping there. With the patch, cat don't waste time anymore: # time cat /dev/sda > /dev/null real 5m32.911s user 0m0.411s sys 0m56.664s [aryabinin@virtuozzo.com: congestion state should be per-node] Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com [ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[ Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 06:28:03 +07:00
long wait_iff_congested(int sync, long timeout);
static inline bool bdi_cap_synchronous_io(struct backing_dev_info *bdi)
{
return bdi->capabilities & BDI_CAP_SYNCHRONOUS_IO;
}
bdi: allow block devices to say that they require stable page writes This patchset ("stable page writes, part 2") makes some key modifications to the original 'stable page writes' patchset. First, it provides creators (devices and filesystems) of a backing_dev_info a flag that declares whether or not it is necessary to ensure that page contents cannot change during writeout. It is no longer assumed that this is true of all devices (which was never true anyway). Second, the flag is used to relaxed the wait_on_page_writeback calls so that wait only occurs if the device needs it. Third, it fixes up the remaining disk-backed filesystems to use this improved conditional-wait logic to provide stable page writes on those filesystems. It is hoped that (for people not using checksumming devices, anyway) this patchset will give back unnecessary performance decreases since the original stable page write patchset went into 3.0. Sorry about not fixing it sooner. Complaints were registered by several people about the long write latencies introduced by the original stable page write patchset. Generally speaking, the kernel ought to allocate as little extra memory as possible to facilitate writeout, but for people who simply cannot wait, a second page stability strategy is (re)introduced: snapshotting page contents. The waiting behavior is still the default strategy; to enable page snapshotting, a superblock flag (MS_SNAP_STABLE) must be set. This flag is used to bandaid^Henable stable page writeback on ext3[1], and is not used anywhere else. Given that there are already a few storage devices and network FSes that have rolled their own page stability wait/page snapshot code, it would be nice to move towards consolidating all of these. It seems possible that iscsi and raid5 may wish to use the new stable page write support to enable zero-copy writeout. Thank you to Jan Kara for helping fix a couple more filesystems. Per Andrew Morton's request, here are the result of using dbench to measure latencies on ext2: 3.8.0-rc3: Operation Count AvgLat MaxLat ---------------------------------------- WriteX 109347 0.028 59.817 ReadX 347180 0.004 3.391 Flush 15514 29.828 287.283 Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms 3.8.0-rc3 + patches: WriteX 105556 0.029 4.273 ReadX 335004 0.005 4.112 Flush 14982 30.540 298.634 Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms As you can see, for ext2 the maximum write latency decreases from ~60ms on a laptop hard disk to ~4ms. I'm not sure why the flush latencies increase, though I suspect that being able to dirty pages faster gives the flusher more work to do. On ext4, the average write latency decreases as well as all the maximum latencies: 3.8.0-rc3: WriteX 85624 0.152 33.078 ReadX 272090 0.010 61.210 Flush 12129 36.219 168.260 Throughput 44.8618 MB/sec 4 clients 4 procs max_latency=168.276 ms 3.8.0-rc3 + patches: WriteX 86082 0.141 30.928 ReadX 273358 0.010 36.124 Flush 12214 34.800 165.689 Throughput 44.9941 MB/sec 4 clients 4 procs max_latency=165.722 ms XFS seems to exhibit similar latency improvements as ext2: 3.8.0-rc3: WriteX 125739 0.028 104.343 ReadX 399070 0.005 4.115 Flush 17851 25.004 131.390 Throughput 66.0024 MB/sec 4 clients 4 procs max_latency=131.406 ms 3.8.0-rc3 + patches: WriteX 123529 0.028 6.299 ReadX 392434 0.005 4.287 Flush 17549 25.120 188.687 Throughput 64.9113 MB/sec 4 clients 4 procs max_latency=188.704 ms ...and btrfs, just to round things out, also shows some latency decreases: 3.8.0-rc3: WriteX 67122 0.083 82.355 ReadX 212719 0.005 2.828 Flush 9547 47.561 147.418 Throughput 35.3391 MB/sec 4 clients 4 procs max_latency=147.433 ms 3.8.0-rc3 + patches: WriteX 64898 0.101 71.631 ReadX 206673 0.005 7.123 Flush 9190 47.963 219.034 Throughput 34.0795 MB/sec 4 clients 4 procs max_latency=219.044 ms Before this patchset, all filesystems would block, regardless of whether or not it was necessary. ext3 would wait, but still generate occasional checksum errors. The network filesystems were left to do their own thing, so they'd wait too. After this patchset, all the disk filesystems except ext3 and btrfs will wait only if the hardware requires it. ext3 (if necessary) snapshots pages instead of blocking, and btrfs provides its own bdi so the mm will never wait. Network filesystems haven't been touched, so either they provide their own wait code, or they don't block at all. The blocking behavior is back to what it was before 3.0 if you don't have a disk requiring stable page writes. This patchset has been tested on 3.8.0-rc3 on x64 with ext3, ext4, and xfs. I've spot-checked 3.8.0-rc4 and seem to be getting the same results as -rc3. [1] The alternative fixes to ext3 include fixing the locking order and page bit handling like we did for ext4 (but then why not just use ext4?), or setting PG_writeback so early that ext3 becomes extremely slow. I tried that, but the number of write()s I could initiate dropped by nearly an order of magnitude. That was a bit much even for the author of the stable page series! :) This patch: Creates a per-backing-device flag that tracks whether or not pages must be held immutable during writeout. Eventually it will be used to waive wait_for_page_writeback() if nothing requires stable pages. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-22 07:42:48 +07:00
static inline bool bdi_cap_stable_pages_required(struct backing_dev_info *bdi)
{
return bdi->capabilities & BDI_CAP_STABLE_WRITES;
}
static inline bool bdi_cap_writeback_dirty(struct backing_dev_info *bdi)
{
return !(bdi->capabilities & BDI_CAP_NO_WRITEBACK);
}
static inline bool bdi_cap_account_dirty(struct backing_dev_info *bdi)
{
return !(bdi->capabilities & BDI_CAP_NO_ACCT_DIRTY);
}
static inline bool bdi_cap_account_writeback(struct backing_dev_info *bdi)
{
/* Paranoia: BDI_CAP_NO_WRITEBACK implies BDI_CAP_NO_ACCT_WB */
return !(bdi->capabilities & (BDI_CAP_NO_ACCT_WB |
BDI_CAP_NO_WRITEBACK));
}
static inline bool mapping_cap_writeback_dirty(struct address_space *mapping)
{
return bdi_cap_writeback_dirty(inode_to_bdi(mapping->host));
}
static inline bool mapping_cap_account_dirty(struct address_space *mapping)
{
return bdi_cap_account_dirty(inode_to_bdi(mapping->host));
}
writeback: switch to per-bdi threads for flushing data This gets rid of pdflush for bdi writeout and kupdated style cleaning. pdflush writeout suffers from lack of locality and also requires more threads to handle the same workload, since it has to work in a non-blocking fashion against each queue. This also introduces lumpy behaviour and potential request starvation, since pdflush can be starved for queue access if others are accessing it. A sample ffsb workload that does random writes to files is about 8% faster here on a simple SATA drive during the benchmark phase. File layout also seems a LOT more smooth in vmstat: r b swpd free buff cache si so bi bo in cs us sy id wa 0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42 0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44 1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37 0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58 0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34 0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37 0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44 0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38 0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41 0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45 where vanilla tends to fluctuate a lot in the creation phase: r b swpd free buff cache si so bi bo in cs us sy id wa 1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36 1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51 0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40 0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37 1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41 0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49 0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36 1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43 0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39 1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45 1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34 0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54 A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A SSD based writeback test on XFS performs over 20% better as well, with the throughput being very stable around 1GB/sec, where pdflush only manages 750MB/sec and fluctuates wildly while doing so. Random buffered writes to many files behave a lot better as well, as does random mmap'ed writes. A separate thread is added to sync the super blocks. In the long term, adding sync_supers_bdi() functionality could get rid of this thread again. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 14:08:54 +07:00
static inline int bdi_sched_wait(void *word)
{
schedule();
return 0;
}
#ifdef CONFIG_CGROUP_WRITEBACK
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
struct bdi_writeback_congested *
wb_congested_get_create(struct backing_dev_info *bdi, int blkcg_id, gfp_t gfp);
void wb_congested_put(struct bdi_writeback_congested *congested);
struct bdi_writeback *wb_get_lookup(struct backing_dev_info *bdi,
struct cgroup_subsys_state *memcg_css);
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi,
struct cgroup_subsys_state *memcg_css,
gfp_t gfp);
void wb_memcg_offline(struct mem_cgroup *memcg);
void wb_blkcg_offline(struct blkcg *blkcg);
int inode_congested(struct inode *inode, int cong_bits);
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
/**
* inode_cgwb_enabled - test whether cgroup writeback is enabled on an inode
* @inode: inode of interest
*
* cgroup writeback requires support from both the bdi and filesystem.
* Also, both memcg and iocg have to be on the default hierarchy. Test
* whether all conditions are met.
*
* Note that the test result may change dynamically on the same inode
* depending on how memcg and iocg are configured.
*/
static inline bool inode_cgwb_enabled(struct inode *inode)
{
struct backing_dev_info *bdi = inode_to_bdi(inode);
return cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
cgroup_subsys_on_dfl(io_cgrp_subsys) &&
bdi_cap_account_dirty(bdi) &&
(bdi->capabilities & BDI_CAP_CGROUP_WRITEBACK) &&
(inode->i_sb->s_iflags & SB_I_CGROUPWB);
}
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
/**
* wb_find_current - find wb for %current on a bdi
* @bdi: bdi of interest
*
* Find the wb of @bdi which matches both the memcg and blkcg of %current.
* Must be called under rcu_read_lock() which protects the returend wb.
* NULL if not found.
*/
static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi)
{
struct cgroup_subsys_state *memcg_css;
struct bdi_writeback *wb;
memcg_css = task_css(current, memory_cgrp_id);
if (!memcg_css->parent)
return &bdi->wb;
wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id);
/*
* %current's blkcg equals the effective blkcg of its memcg. No
* need to use the relatively expensive cgroup_get_e_css().
*/
blkcg: rename subsystem name from blkio to io blkio interface has become messy over time and is currently the largest. In addition to the inconsistent naming scheme, it has multiple stat files which report more or less the same thing, a number of debug stat files which expose internal details which shouldn't have been part of the public interface in the first place, recursive and non-recursive stats and leaf and non-leaf knobs. Both recursive vs. non-recursive and leaf vs. non-leaf distinctions don't make any sense on the unified hierarchy as only leaf cgroups can contain processes. cgroups is going through a major interface revision with the unified hierarchy involving significant fundamental usage changes and given that a significant portion of the interface doesn't make sense anymore, it's a good time to reorganize the interface. As the first step, this patch renames the external visible subsystem name from "blkio" to "io". This is more concise, matches the other two major subsystem names, "cpu" and "memory", and better suited as blkcg will be involved in anything writeback related too whether an actual block device is involved or not. As the subsystem legacy_name is set to "blkio", the only userland visible change outside the unified hierarchy is that blkcg is reported as "io" instead of "blkio" in the subsystem initialized message during boot. On the unified hierarchy, blkcg now appears as "io". Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: cgroups@vger.kernel.org Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-19 04:55:29 +07:00
if (likely(wb && wb->blkcg_css == task_css(current, io_cgrp_id)))
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
return wb;
return NULL;
}
/**
* wb_get_create_current - get or create wb for %current on a bdi
* @bdi: bdi of interest
* @gfp: allocation mask
*
* Equivalent to wb_get_create() on %current's memcg. This function is
* called from a relatively hot path and optimizes the common cases using
* wb_find_current().
*/
static inline struct bdi_writeback *
wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp)
{
struct bdi_writeback *wb;
rcu_read_lock();
wb = wb_find_current(bdi);
if (wb && unlikely(!wb_tryget(wb)))
wb = NULL;
rcu_read_unlock();
if (unlikely(!wb)) {
struct cgroup_subsys_state *memcg_css;
memcg_css = task_get_css(current, memory_cgrp_id);
wb = wb_get_create(bdi, memcg_css, gfp);
css_put(memcg_css);
}
return wb;
}
2015-05-29 01:50:55 +07:00
/**
* inode_to_wb_is_valid - test whether an inode has a wb associated
* @inode: inode of interest
*
* Returns %true if @inode has a wb associated. May be called without any
* locking.
*/
static inline bool inode_to_wb_is_valid(struct inode *inode)
{
return inode->i_wb;
}
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
/**
* inode_to_wb - determine the wb of an inode
* @inode: inode of interest
*
2015-05-29 01:50:55 +07:00
* Returns the wb @inode is currently associated with. The caller must be
* holding either @inode->i_lock, the i_pages lock, or the
2015-05-29 01:50:55 +07:00
* associated wb's list_lock.
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
*/
static inline struct bdi_writeback *inode_to_wb(const struct inode *inode)
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
{
2015-05-29 01:50:55 +07:00
#ifdef CONFIG_LOCKDEP
WARN_ON_ONCE(debug_locks &&
(!lockdep_is_held(&inode->i_lock) &&
!lockdep_is_held(&inode->i_mapping->i_pages.xa_lock) &&
2015-05-29 01:50:55 +07:00
!lockdep_is_held(&inode->i_wb->list_lock)));
#endif
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
return inode->i_wb;
}
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
/**
* unlocked_inode_to_wb_begin - begin unlocked inode wb access transaction
* @inode: target inode
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
* @cookie: output param, to be passed to the end function
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
*
* The caller wants to access the wb associated with @inode but isn't
* holding inode->i_lock, the i_pages lock or wb->list_lock. This
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
* function determines the wb associated with @inode and ensures that the
* association doesn't change until the transaction is finished with
* unlocked_inode_to_wb_end().
*
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
* The caller must call unlocked_inode_to_wb_end() with *@cookie afterwards and
* can't sleep during the transaction. IRQs may or may not be disabled on
* return.
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
*/
static inline struct bdi_writeback *
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie)
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
{
rcu_read_lock();
/*
* Paired with store_release in inode_switch_wbs_work_fn() and
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
* ensures that we see the new wb if we see cleared I_WB_SWITCH.
*/
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
cookie->locked = smp_load_acquire(&inode->i_state) & I_WB_SWITCH;
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
if (unlikely(cookie->locked))
xa_lock_irqsave(&inode->i_mapping->i_pages, cookie->flags);
2015-05-29 01:50:55 +07:00
/*
* Protected by either !I_WB_SWITCH + rcu_read_lock() or the i_pages
* lock. inode_to_wb() will bark. Deref directly.
2015-05-29 01:50:55 +07:00
*/
return inode->i_wb;
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
}
/**
* unlocked_inode_to_wb_end - end inode wb access transaction
* @inode: target inode
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
* @cookie: @cookie from unlocked_inode_to_wb_begin()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
*/
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
static inline void unlocked_inode_to_wb_end(struct inode *inode,
struct wb_lock_cookie *cookie)
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
{
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
if (unlikely(cookie->locked))
xa_unlock_irqrestore(&inode->i_mapping->i_pages, cookie->flags);
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
rcu_read_unlock();
}
#else /* CONFIG_CGROUP_WRITEBACK */
static inline bool inode_cgwb_enabled(struct inode *inode)
{
return false;
}
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
static inline struct bdi_writeback_congested *
wb_congested_get_create(struct backing_dev_info *bdi, int blkcg_id, gfp_t gfp)
{
refcount_inc(&bdi->wb_congested->refcnt);
writeback: don't embed root bdi_writeback_congested in bdi_writeback 52ebea749aae ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's (bdi_writeback's). As the congested state needs to be per-wb and referenced from blkcg side and multiple wbs, the patch made all non-root cong's (bdi_writeback_congested's) reference counted and indexed on bdi. When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all non-root cong's; however, this can hang indefinitely because wb's can also be referenced from blkcg_gq's which are destroyed after bdi destruction is complete. To fix the bug, bdi destruction will be updated to not wait for cong's to drain, which naturally means that cong's may outlive the associated bdi. This is fine for non-root cong's but is problematic for the root cong's which are embedded in their bdi's as they may end up getting dereferenced after the containing bdi's are freed. This patch makes root cong's behave the same as non-root cong's. They are no longer embedded in their bdi's but allocated separately during bdi initialization, indexed and reference counted the same way. * As cong handling is the same for all wb's, wb->congested initialization is moved into wb_init(). * When !CONFIG_CGROUP_WRITEBACK, there was no indexing or refcnting. bdi->wb_congested is now a pointer pointing to the root cong allocated during bdi init and minimal refcnting operations are implemented. * The above makes root wb init paths diverge depending on CONFIG_CGROUP_WRITEBACK. root wb init is moved to cgwb_bdi_init(). This patch in itself shouldn't cause any consequential behavior differences but prepares for the actual fix. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jon Christopherson <jon@jons.org> Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681 Tested-by: Jon Christopherson <jon@jons.org> Added <linux/slab.h> include to backing-dev.h for kfree() definition. Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-02 21:44:34 +07:00
return bdi->wb_congested;
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
}
static inline void wb_congested_put(struct bdi_writeback_congested *congested)
{
if (refcount_dec_and_test(&congested->refcnt))
writeback: don't embed root bdi_writeback_congested in bdi_writeback 52ebea749aae ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's (bdi_writeback's). As the congested state needs to be per-wb and referenced from blkcg side and multiple wbs, the patch made all non-root cong's (bdi_writeback_congested's) reference counted and indexed on bdi. When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all non-root cong's; however, this can hang indefinitely because wb's can also be referenced from blkcg_gq's which are destroyed after bdi destruction is complete. To fix the bug, bdi destruction will be updated to not wait for cong's to drain, which naturally means that cong's may outlive the associated bdi. This is fine for non-root cong's but is problematic for the root cong's which are embedded in their bdi's as they may end up getting dereferenced after the containing bdi's are freed. This patch makes root cong's behave the same as non-root cong's. They are no longer embedded in their bdi's but allocated separately during bdi initialization, indexed and reference counted the same way. * As cong handling is the same for all wb's, wb->congested initialization is moved into wb_init(). * When !CONFIG_CGROUP_WRITEBACK, there was no indexing or refcnting. bdi->wb_congested is now a pointer pointing to the root cong allocated during bdi init and minimal refcnting operations are implemented. * The above makes root wb init paths diverge depending on CONFIG_CGROUP_WRITEBACK. root wb init is moved to cgwb_bdi_init(). This patch in itself shouldn't cause any consequential behavior differences but prepares for the actual fix. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jon Christopherson <jon@jons.org> Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681 Tested-by: Jon Christopherson <jon@jons.org> Added <linux/slab.h> include to backing-dev.h for kfree() definition. Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-02 21:44:34 +07:00
kfree(congested);
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
}
static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi)
{
return &bdi->wb;
}
static inline struct bdi_writeback *
wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp)
{
return &bdi->wb;
}
2015-05-29 01:50:55 +07:00
static inline bool inode_to_wb_is_valid(struct inode *inode)
{
return true;
}
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
static inline struct bdi_writeback *inode_to_wb(struct inode *inode)
{
return &inode_to_bdi(inode)->wb;
}
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
static inline struct bdi_writeback *
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie)
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
{
return inode_to_wb(inode);
}
writeback: safer lock nesting lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if the page's memcg is undergoing move accounting, which occurs when a process leaves its memcg for a new one that has memory.move_charge_at_immigrate set. unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if the given inode is switching writeback domains. Switches occur when enough writes are issued from a new domain. This existing pattern is thus suspicious: lock_page_memcg(page); unlocked_inode_to_wb_begin(inode, &locked); ... unlocked_inode_to_wb_end(inode, locked); unlock_page_memcg(page); If both inode switch and process memcg migration are both in-flight then unlocked_inode_to_wb_end() will unconditionally enable interrupts while still holding the lock_page_memcg() irq spinlock. This suggests the possibility of deadlock if an interrupt occurs before unlock_page_memcg(). truncate __cancel_dirty_page lock_page_memcg unlocked_inode_to_wb_begin unlocked_inode_to_wb_end <interrupts mistakenly enabled> <interrupt> end_page_writeback test_clear_page_writeback lock_page_memcg <deadlock> unlock_page_memcg Due to configuration limitations this deadlock is not currently possible because we don't mix cgroup writeback (a cgroupv2 feature) and memory.move_charge_at_immigrate (a cgroupv1 feature). If the kernel is hacked to always claim inode switching and memcg moving_account, then this script triggers lockup in less than a minute: cd /mnt/cgroup/memory mkdir a b echo 1 > a/memory.move_charge_at_immigrate echo 1 > b/memory.move_charge_at_immigrate ( echo $BASHPID > a/cgroup.procs while true; do dd if=/dev/zero of=/mnt/big bs=1M count=256 done ) & while true; do sync done & sleep 1h & SLEEP=$! while true; do echo $SLEEP > a/cgroup.procs echo $SLEEP > b/cgroup.procs done The deadlock does not seem possible, so it's debatable if there's any reason to modify the kernel. I suggest we should to prevent future surprises. And Wang Long said "this deadlock occurs three times in our environment", so there's more reason to apply this, even to stable. Stable 4.4 has minor conflicts applying this patch. For a clean 4.4 patch see "[PATCH for-4.4] writeback: safer lock nesting" https://lkml.org/lkml/2018/4/11/146 Wang Long said "this deadlock occurs three times in our environment" [gthelen@google.com: v4] Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com [akpm@linux-foundation.org: comment tweaks, struct initialization simplification] Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613 Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com Fixes: 682aa8e1a6a1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Wang Long <wanglong19@meituan.com> Acked-by: Wang Long <wanglong19@meituan.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> [v4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-21 04:55:42 +07:00
static inline void unlocked_inode_to_wb_end(struct inode *inode,
struct wb_lock_cookie *cookie)
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-29 01:50:53 +07:00
{
}
writeback: make backing_dev_info host cgroup-specific bdi_writebacks For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 04:13:37 +07:00
static inline void wb_memcg_offline(struct mem_cgroup *memcg)
{
}
static inline void wb_blkcg_offline(struct blkcg *blkcg)
{
}
static inline int inode_congested(struct inode *inode, int cong_bits)
{
return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
#endif /* CONFIG_CGROUP_WRITEBACK */
static inline int inode_read_congested(struct inode *inode)
{
return inode_congested(inode, 1 << WB_sync_congested);
}
static inline int inode_write_congested(struct inode *inode)
{
return inode_congested(inode, 1 << WB_async_congested);
}
static inline int inode_rw_congested(struct inode *inode)
{
return inode_congested(inode, (1 << WB_sync_congested) |
(1 << WB_async_congested));
}
static inline int bdi_congested(struct backing_dev_info *bdi, int cong_bits)
{
return wb_congested(&bdi->wb, cong_bits);
}
static inline int bdi_read_congested(struct backing_dev_info *bdi)
{
return bdi_congested(bdi, 1 << WB_sync_congested);
}
static inline int bdi_write_congested(struct backing_dev_info *bdi)
{
return bdi_congested(bdi, 1 << WB_async_congested);
}
static inline int bdi_rw_congested(struct backing_dev_info *bdi)
{
return bdi_congested(bdi, (1 << WB_sync_congested) |
(1 << WB_async_congested));
}
const char *bdi_dev_name(struct backing_dev_info *bdi);
memcg: fix a crash in wb_workfn when a device disappears Without memcg, there is a one-to-one mapping between the bdi and bdi_writeback structures. In this world, things are fairly straightforward; the first thing bdi_unregister() does is to shutdown the bdi_writeback structure (or wb), and part of that writeback ensures that no other work queued against the wb, and that the wb is fully drained. With memcg, however, there is a one-to-many relationship between the bdi and bdi_writeback structures; that is, there are multiple wb objects which can all point to a single bdi. There is a refcount which prevents the bdi object from being released (and hence, unregistered). So in theory, the bdi_unregister() *should* only get called once its refcount goes to zero (bdi_put will drop the refcount, and when it is zero, release_bdi gets called, which calls bdi_unregister). Unfortunately, del_gendisk() in block/gen_hd.c never got the memo about the Brave New memcg World, and calls bdi_unregister directly. It does this without informing the file system, or the memcg code, or anything else. This causes the root wb associated with the bdi to be unregistered, but none of the memcg-specific wb's are shutdown. So when one of these wb's are woken up to do delayed work, they try to dereference their wb->bdi->dev to fetch the device name, but unfortunately bdi->dev is now NULL, thanks to the bdi_unregister() called by del_gendisk(). As a result, *boom*. Fortunately, it looks like the rest of the writeback path is perfectly happy with bdi->dev and bdi->owner being NULL, so the simplest fix is to create a bdi_dev_name() function which can handle bdi->dev being NULL. This also allows us to bulletproof the writeback tracepoints to prevent them from dereferencing a NULL pointer and crashing the kernel if one is tracing with memcg's enabled, and an iSCSI device dies or a USB storage stick is pulled. The most common way of triggering this will be hotremoval of a device while writeback with memcg enabled is going on. It was triggering several times a day in a heavily loaded production environment. Google Bug Id: 145475544 Link: https://lore.kernel.org/r/20191227194829.150110-1-tytso@mit.edu Link: http://lkml.kernel.org/r/20191228005211.163952-1-tytso@mit.edu Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 13:11:04 +07:00
#endif /* _LINUX_BACKING_DEV_H */