linux_dsm_epyc7002/drivers/gpu/drm/radeon/radeon_object.h

198 lines
6.4 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 19:42:42 +07:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#ifndef __RADEON_OBJECT_H__
#define __RADEON_OBJECT_H__
#include <drm/radeon_drm.h>
#include "radeon.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 19:42:42 +07:00
/**
* radeon_mem_type_to_domain - return domain corresponding to mem_type
* @mem_type: ttm memory type
*
* Returns corresponding domain of the ttm mem_type
*/
static inline unsigned radeon_mem_type_to_domain(u32 mem_type)
{
switch (mem_type) {
case TTM_PL_VRAM:
return RADEON_GEM_DOMAIN_VRAM;
case TTM_PL_TT:
return RADEON_GEM_DOMAIN_GTT;
case TTM_PL_SYSTEM:
return RADEON_GEM_DOMAIN_CPU;
default:
break;
}
return 0;
}
/**
* radeon_bo_reserve - reserve bo
* @bo: bo structure
* @no_intr: don't return -ERESTARTSYS on pending signal
*
* Returns:
* -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by
* a signal. Release all buffer reservations and return to user-space.
*/
static inline int radeon_bo_reserve(struct radeon_bo *bo, bool no_intr)
{
int r;
r = ttm_bo_reserve(&bo->tbo, !no_intr, false, NULL);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
dev_err(bo->rdev->dev, "%p reserve failed\n", bo);
return r;
}
return 0;
}
static inline void radeon_bo_unreserve(struct radeon_bo *bo)
{
ttm_bo_unreserve(&bo->tbo);
}
/**
* radeon_bo_gpu_offset - return GPU offset of bo
* @bo: radeon object for which we query the offset
*
* Returns current GPU offset of the object.
*
* Note: object should either be pinned or reserved when calling this
* function, it might be useful to add check for this for debugging.
*/
static inline u64 radeon_bo_gpu_offset(struct radeon_bo *bo)
{
return bo->tbo.offset;
}
static inline unsigned long radeon_bo_size(struct radeon_bo *bo)
{
return bo->tbo.num_pages << PAGE_SHIFT;
}
drm/radeon: GPU virtual memory support v22 Virtual address space are per drm client (opener of /dev/drm). Client are in charge of virtual address space, they need to map bo into it by calling DRM_RADEON_GEM_VA ioctl. First 16M of virtual address space is reserved by the kernel. Once using 2 level page table we should be able to have a small vram memory footprint for each pt (there would be one pt for all gart, one for all vram and then one first level for each virtual address space). Plan include using the sub allocator for a common vm page table area and using memcpy to copy vm page table in & out. Or use a gart object and copy things in & out using dma. v2: agd5f fixes: - Add vram base offset for vram pages. The GPU physical address of a vram page is FB_OFFSET + page offset. FB_OFFSET is 0 on discrete cards and the physical bus address of the stolen memory on integrated chips. - VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR covers all vmid's >= 1 v3: agd5f: - integrate with the semaphore/multi-ring stuff v4: - rebase on top ttm dma & multi-ring stuff - userspace is now in charge of the address space - no more specific cs vm ioctl, instead cs ioctl has a new chunk v5: - properly handle mem == NULL case from move_notify callback - fix the vm cleanup path v6: - fix update of page table to only happen on valid mem placement v7: - add tlb flush for each vm context - add flags to define mapping property (readable, writeable, snooped) - make ring id implicit from ib->fence->ring, up to each asic callback to then do ring specific scheduling if vm ib scheduling function v8: - add query for ib limit and kernel reserved virtual space - rename vm->size to max_pfn (maximum number of page) - update gem_va ioctl to also allow unmap operation - bump kernel version to allow userspace to query for vm support v9: - rebuild page table only when bind and incrementaly depending on bo referenced by cs and that have been moved - allow virtual address space to grow - use sa allocator for vram page table - return invalid when querying vm limit on non cayman GPU - dump vm fault register on lockup v10: agd5f: - Move the vm schedule_ib callback to a standalone function, remove the callback and use the existing ib_execute callback for VM IBs. v11: - rebase on top of lastest Linus v12: agd5f: - remove spurious backslash - set IB vm_id to 0 in radeon_ib_get() v13: agd5f: - fix handling of RADEON_CHUNK_ID_FLAGS v14: - fix va destruction - fix suspend resume - forbid bo to have several different va in same vm v15: - rebase v16: - cleanup left over of vm init/fini v17: agd5f: - cs checker v18: agd5f: - reworks the CS ioctl to better support multiple rings and VM. Rather than adding a new chunk id for VM, just re-use the IB chunk id and add a new flags for VM mode. Also define additional dwords for the flags chunk id to define the what ring we want to use (gfx, compute, uvd, etc.) and the priority. v19: - fix cs fini in weird case of no ib - semi working flush fix for ni - rebase on top of sa allocator changes v20: agd5f: - further CS ioctl cleanups from Christian's comments v21: agd5f: - integrate CS checker improvements v22: agd5f: - final cleanups for release, only allow VM CS on cayman Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-01-06 10:11:05 +07:00
static inline unsigned radeon_bo_ngpu_pages(struct radeon_bo *bo)
{
return (bo->tbo.num_pages << PAGE_SHIFT) / RADEON_GPU_PAGE_SIZE;
}
static inline unsigned radeon_bo_gpu_page_alignment(struct radeon_bo *bo)
{
return (bo->tbo.mem.page_alignment << PAGE_SHIFT) / RADEON_GPU_PAGE_SIZE;
}
/**
* radeon_bo_mmap_offset - return mmap offset of bo
* @bo: radeon object for which we query the offset
*
* Returns mmap offset of the object.
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 19:42:42 +07:00
*/
static inline u64 radeon_bo_mmap_offset(struct radeon_bo *bo)
{
return drm_vma_node_offset_addr(&bo->tbo.base.vma_node);
}
extern int radeon_bo_wait(struct radeon_bo *bo, u32 *mem_type,
bool no_wait);
extern int radeon_bo_create(struct radeon_device *rdev,
unsigned long size, int byte_align,
bool kernel, u32 domain, u32 flags,
struct sg_table *sg,
struct dma_resv *resv,
struct radeon_bo **bo_ptr);
extern int radeon_bo_kmap(struct radeon_bo *bo, void **ptr);
extern void radeon_bo_kunmap(struct radeon_bo *bo);
extern struct radeon_bo *radeon_bo_ref(struct radeon_bo *bo);
extern void radeon_bo_unref(struct radeon_bo **bo);
extern int radeon_bo_pin(struct radeon_bo *bo, u32 domain, u64 *gpu_addr);
extern int radeon_bo_pin_restricted(struct radeon_bo *bo, u32 domain,
u64 max_offset, u64 *gpu_addr);
extern int radeon_bo_unpin(struct radeon_bo *bo);
extern int radeon_bo_evict_vram(struct radeon_device *rdev);
extern void radeon_bo_force_delete(struct radeon_device *rdev);
extern int radeon_bo_init(struct radeon_device *rdev);
extern void radeon_bo_fini(struct radeon_device *rdev);
extern int radeon_bo_list_validate(struct radeon_device *rdev,
struct ww_acquire_ctx *ticket,
struct list_head *head, int ring);
extern int radeon_bo_set_tiling_flags(struct radeon_bo *bo,
u32 tiling_flags, u32 pitch);
extern void radeon_bo_get_tiling_flags(struct radeon_bo *bo,
u32 *tiling_flags, u32 *pitch);
extern int radeon_bo_check_tiling(struct radeon_bo *bo, bool has_moved,
bool force_drop);
extern void radeon_bo_move_notify(struct ttm_buffer_object *bo,
bool evict,
struct ttm_mem_reg *new_mem);
extern int radeon_bo_fault_reserve_notify(struct ttm_buffer_object *bo);
extern int radeon_bo_get_surface_reg(struct radeon_bo *bo);
extern void radeon_bo_fence(struct radeon_bo *bo, struct radeon_fence *fence,
bool shared);
/*
* sub allocation
*/
static inline uint64_t radeon_sa_bo_gpu_addr(struct radeon_sa_bo *sa_bo)
{
return sa_bo->manager->gpu_addr + sa_bo->soffset;
}
static inline void * radeon_sa_bo_cpu_addr(struct radeon_sa_bo *sa_bo)
{
return sa_bo->manager->cpu_ptr + sa_bo->soffset;
}
extern int radeon_sa_bo_manager_init(struct radeon_device *rdev,
struct radeon_sa_manager *sa_manager,
unsigned size, u32 align, u32 domain,
u32 flags);
extern void radeon_sa_bo_manager_fini(struct radeon_device *rdev,
struct radeon_sa_manager *sa_manager);
extern int radeon_sa_bo_manager_start(struct radeon_device *rdev,
struct radeon_sa_manager *sa_manager);
extern int radeon_sa_bo_manager_suspend(struct radeon_device *rdev,
struct radeon_sa_manager *sa_manager);
extern int radeon_sa_bo_new(struct radeon_device *rdev,
struct radeon_sa_manager *sa_manager,
struct radeon_sa_bo **sa_bo,
unsigned size, unsigned align);
extern void radeon_sa_bo_free(struct radeon_device *rdev,
struct radeon_sa_bo **sa_bo,
struct radeon_fence *fence);
#if defined(CONFIG_DEBUG_FS)
extern void radeon_sa_bo_dump_debug_info(struct radeon_sa_manager *sa_manager,
struct seq_file *m);
#endif
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 19:42:42 +07:00
#endif