linux_dsm_epyc7002/drivers/gpu/drm/i915/gvt/handlers.c

2991 lines
90 KiB
C
Raw Normal View History

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Kevin Tian <kevin.tian@intel.com>
* Eddie Dong <eddie.dong@intel.com>
* Zhiyuan Lv <zhiyuan.lv@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Pei Zhang <pei.zhang@intel.com>
* Niu Bing <bing.niu@intel.com>
* Ping Gao <ping.a.gao@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
#include "i915_pvinfo.h"
/* XXX FIXME i915 has changed PP_XXX definition */
#define PCH_PP_STATUS _MMIO(0xc7200)
#define PCH_PP_CONTROL _MMIO(0xc7204)
#define PCH_PP_ON_DELAYS _MMIO(0xc7208)
#define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
#define PCH_PP_DIVISOR _MMIO(0xc7210)
/* Register contains RO bits */
#define F_RO (1 << 0)
/* Register contains graphics address */
#define F_GMADR (1 << 1)
/* Mode mask registers with high 16 bits as the mask bits */
#define F_MODE_MASK (1 << 2)
/* This reg can be accessed by GPU commands */
#define F_CMD_ACCESS (1 << 3)
/* This reg has been accessed by a VM */
#define F_ACCESSED (1 << 4)
/* This reg has been accessed through GPU commands */
#define F_CMD_ACCESSED (1 << 5)
/* This reg could be accessed by unaligned address */
#define F_UNALIGN (1 << 6)
unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
{
if (IS_BROADWELL(gvt->dev_priv))
return D_BDW;
else if (IS_SKYLAKE(gvt->dev_priv))
return D_SKL;
return 0;
}
bool intel_gvt_match_device(struct intel_gvt *gvt,
unsigned long device)
{
return intel_gvt_get_device_type(gvt) & device;
}
static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
}
static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
}
static int new_mmio_info(struct intel_gvt *gvt,
u32 offset, u32 flags, u32 size,
u32 addr_mask, u32 ro_mask, u32 device,
int (*read)(struct intel_vgpu *, unsigned int, void *, unsigned int),
int (*write)(struct intel_vgpu *, unsigned int, void *, unsigned int))
{
struct intel_gvt_mmio_info *info, *p;
u32 start, end, i;
if (!intel_gvt_match_device(gvt, device))
return 0;
if (WARN_ON(!IS_ALIGNED(offset, 4)))
return -EINVAL;
start = offset;
end = offset + size;
for (i = start; i < end; i += 4) {
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->offset = i;
p = intel_gvt_find_mmio_info(gvt, info->offset);
if (p)
gvt_err("dup mmio definition offset %x\n",
info->offset);
info->size = size;
info->length = (i + 4) < end ? 4 : (end - i);
info->addr_mask = addr_mask;
info->ro_mask = ro_mask;
info->device = device;
info->read = read ? read : intel_vgpu_default_mmio_read;
info->write = write ? write : intel_vgpu_default_mmio_write;
gvt->mmio.mmio_attribute[info->offset / 4] = flags;
INIT_HLIST_NODE(&info->node);
hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
}
return 0;
}
static int render_mmio_to_ring_id(struct intel_gvt *gvt, unsigned int reg)
{
enum intel_engine_id id;
struct intel_engine_cs *engine;
reg &= ~GENMASK(11, 0);
for_each_engine(engine, gvt->dev_priv, id) {
if (engine->mmio_base == reg)
return id;
}
return -1;
}
#define offset_to_fence_num(offset) \
((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
#define fence_num_to_offset(num) \
(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
static void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
{
switch (reason) {
case GVT_FAILSAFE_UNSUPPORTED_GUEST:
pr_err("Detected your guest driver doesn't support GVT-g.\n");
break;
case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
pr_err("Graphics resource is not enough for the guest\n");
default:
break;
}
pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
vgpu->failsafe = true;
}
static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
unsigned int fence_num, void *p_data, unsigned int bytes)
{
if (fence_num >= vgpu_fence_sz(vgpu)) {
/* When guest access oob fence regs without access
* pv_info first, we treat guest not supporting GVT,
* and we will let vgpu enter failsafe mode.
*/
if (!vgpu->pv_notified)
enter_failsafe_mode(vgpu,
GVT_FAILSAFE_UNSUPPORTED_GUEST);
if (!vgpu->mmio.disable_warn_untrack) {
gvt_err("vgpu%d: found oob fence register access\n",
vgpu->id);
gvt_err("vgpu%d: total fence %d, access fence %d\n",
vgpu->id, vgpu_fence_sz(vgpu),
fence_num);
}
memset(p_data, 0, bytes);
return -EINVAL;
}
return 0;
}
static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
int ret;
ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
p_data, bytes);
if (ret)
return ret;
read_vreg(vgpu, off, p_data, bytes);
return 0;
}
static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
unsigned int fence_num = offset_to_fence_num(off);
int ret;
ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
if (ret)
return ret;
write_vreg(vgpu, off, p_data, bytes);
intel_vgpu_write_fence(vgpu, fence_num,
vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
return 0;
}
#define CALC_MODE_MASK_REG(old, new) \
(((new) & GENMASK(31, 16)) \
| ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
| ((new) & ((new) >> 16))))
static int mul_force_wake_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 old, new;
uint32_t ack_reg_offset;
old = vgpu_vreg(vgpu, offset);
new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
if (IS_SKYLAKE(vgpu->gvt->dev_priv)) {
switch (offset) {
case FORCEWAKE_RENDER_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
break;
case FORCEWAKE_BLITTER_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_BLITTER_GEN9_REG;
break;
case FORCEWAKE_MEDIA_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
break;
default:
/*should not hit here*/
gvt_err("invalid forcewake offset 0x%x\n", offset);
return -EINVAL;
}
} else {
ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
}
vgpu_vreg(vgpu, offset) = new;
vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
return 0;
}
static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
unsigned int engine_mask = 0;
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & GEN6_GRDOM_FULL) {
gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
engine_mask = ALL_ENGINES;
} else {
if (data & GEN6_GRDOM_RENDER) {
gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
engine_mask |= (1 << RCS);
}
if (data & GEN6_GRDOM_MEDIA) {
gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
engine_mask |= (1 << VCS);
}
if (data & GEN6_GRDOM_BLT) {
gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
engine_mask |= (1 << BCS);
}
if (data & GEN6_GRDOM_VECS) {
gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
engine_mask |= (1 << VECS);
}
if (data & GEN8_GRDOM_MEDIA2) {
gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
if (HAS_BSD2(vgpu->gvt->dev_priv))
engine_mask |= (1 << VCS2);
}
}
intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
return 0;
}
static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
}
static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
}
static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
vgpu_vreg(vgpu, PCH_PP_STATUS) |= PP_ON;
vgpu_vreg(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
vgpu_vreg(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
vgpu_vreg(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
} else
vgpu_vreg(vgpu, PCH_PP_STATUS) &=
~(PP_ON | PP_SEQUENCE_POWER_DOWN
| PP_CYCLE_DELAY_ACTIVE);
return 0;
}
static int transconf_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
else
vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
return 0;
}
static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
else
vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
else
vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
return 0;
}
static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
*(u32 *)p_data = (1 << 17);
return 0;
}
static int dpy_reg_mmio_read_2(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
*(u32 *)p_data = 3;
return 0;
}
static int dpy_reg_mmio_read_3(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
*(u32 *)p_data = (0x2f << 16);
return 0;
}
static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & PIPECONF_ENABLE)
vgpu_vreg(vgpu, offset) |= I965_PIPECONF_ACTIVE;
else
vgpu_vreg(vgpu, offset) &= ~I965_PIPECONF_ACTIVE;
intel_gvt_check_vblank_emulation(vgpu->gvt);
return 0;
}
/* ascendingly sorted */
static i915_reg_t force_nonpriv_white_list[] = {
GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
GEN8_CS_CHICKEN1,//_MMIO(0x2580)
_MMIO(0x2690),
_MMIO(0x2694),
_MMIO(0x2698),
_MMIO(0x4de0),
_MMIO(0x4de4),
_MMIO(0x4dfc),
GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
_MMIO(0x7014),
HDC_CHICKEN0,//_MMIO(0x7300)
GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
_MMIO(0x7700),
_MMIO(0x7704),
_MMIO(0x7708),
_MMIO(0x770c),
_MMIO(0xb110),
GEN8_L3SQCREG4,//_MMIO(0xb118)
_MMIO(0xe100),
_MMIO(0xe18c),
_MMIO(0xe48c),
_MMIO(0xe5f4),
};
/* a simple bsearch */
static inline bool in_whitelist(unsigned int reg)
{
int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
i915_reg_t *array = force_nonpriv_white_list;
while (left < right) {
int mid = (left + right)/2;
if (reg > array[mid].reg)
left = mid + 1;
else if (reg < array[mid].reg)
right = mid;
else
return true;
}
return false;
}
static int force_nonpriv_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 reg_nonpriv = *(u32 *)p_data;
int ret = -EINVAL;
if ((bytes != 4) || ((offset & (bytes - 1)) != 0)) {
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
vgpu->id, offset, bytes);
return ret;
}
if (in_whitelist(reg_nonpriv)) {
ret = intel_vgpu_default_mmio_write(vgpu, offset, p_data,
bytes);
} else {
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x\n",
vgpu->id, reg_nonpriv);
}
return ret;
}
static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
} else {
vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
vgpu_vreg(vgpu, DP_TP_STATUS(PORT_E))
&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
}
return 0;
}
static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
return 0;
}
#define FDI_LINK_TRAIN_PATTERN1 0
#define FDI_LINK_TRAIN_PATTERN2 1
static int fdi_auto_training_started(struct intel_vgpu *vgpu)
{
u32 ddi_buf_ctl = vgpu_vreg(vgpu, DDI_BUF_CTL(PORT_E));
u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
u32 tx_ctl = vgpu_vreg(vgpu, DP_TP_CTL(PORT_E));
if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
(rx_ctl & FDI_RX_ENABLE) &&
(rx_ctl & FDI_AUTO_TRAINING) &&
(tx_ctl & DP_TP_CTL_ENABLE) &&
(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
return 1;
else
return 0;
}
static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
enum pipe pipe, unsigned int train_pattern)
{
i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
unsigned int fdi_iir_check_bits;
fdi_rx_imr = FDI_RX_IMR(pipe);
fdi_tx_ctl = FDI_TX_CTL(pipe);
fdi_rx_ctl = FDI_RX_CTL(pipe);
if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
fdi_iir_check_bits = FDI_RX_BIT_LOCK;
} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
} else {
gvt_err("Invalid train pattern %d\n", train_pattern);
return -EINVAL;
}
fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
/* If imr bit has been masked */
if (vgpu_vreg(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
return 0;
if (((vgpu_vreg(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
== fdi_tx_check_bits)
&& ((vgpu_vreg(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
== fdi_rx_check_bits))
return 1;
else
return 0;
}
#define INVALID_INDEX (~0U)
static unsigned int calc_index(unsigned int offset, unsigned int start,
unsigned int next, unsigned int end, i915_reg_t i915_end)
{
unsigned int range = next - start;
if (!end)
end = i915_mmio_reg_offset(i915_end);
if (offset < start || offset > end)
return INVALID_INDEX;
offset -= start;
return offset / range;
}
#define FDI_RX_CTL_TO_PIPE(offset) \
calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
#define FDI_TX_CTL_TO_PIPE(offset) \
calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
#define FDI_RX_IMR_TO_PIPE(offset) \
calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
i915_reg_t fdi_rx_iir;
unsigned int index;
int ret;
if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_RX_CTL_TO_PIPE(offset);
else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_TX_CTL_TO_PIPE(offset);
else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_RX_IMR_TO_PIPE(offset);
else {
gvt_err("Unsupport registers %x\n", offset);
return -EINVAL;
}
write_vreg(vgpu, offset, p_data, bytes);
fdi_rx_iir = FDI_RX_IIR(index);
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
if (ret < 0)
return ret;
if (ret)
vgpu_vreg(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
if (ret < 0)
return ret;
if (ret)
vgpu_vreg(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
if (offset == _FDI_RXA_CTL)
if (fdi_auto_training_started(vgpu))
vgpu_vreg(vgpu, DP_TP_STATUS(PORT_E)) |=
DP_TP_STATUS_AUTOTRAIN_DONE;
return 0;
}
#define DP_TP_CTL_TO_PORT(offset) \
calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
i915_reg_t status_reg;
unsigned int index;
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
index = DP_TP_CTL_TO_PORT(offset);
data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
if (data == 0x2) {
status_reg = DP_TP_STATUS(index);
vgpu_vreg(vgpu, status_reg) |= (1 << 25);
}
return 0;
}
static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 reg_val;
u32 sticky_mask;
reg_val = *((u32 *)p_data);
sticky_mask = GENMASK(27, 26) | (1 << 24);
vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
(vgpu_vreg(vgpu, offset) & sticky_mask);
vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
return 0;
}
static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
return 0;
}
static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & FDI_MPHY_IOSFSB_RESET_CTL)
vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
else
vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
return 0;
}
#define DSPSURF_TO_PIPE(offset) \
calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
unsigned int index = DSPSURF_TO_PIPE(offset);
i915_reg_t surflive_reg = DSPSURFLIVE(index);
int flip_event[] = {
[PIPE_A] = PRIMARY_A_FLIP_DONE,
[PIPE_B] = PRIMARY_B_FLIP_DONE,
[PIPE_C] = PRIMARY_C_FLIP_DONE,
};
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg(vgpu, surflive_reg) = vgpu_vreg(vgpu, offset);
set_bit(flip_event[index], vgpu->irq.flip_done_event[index]);
return 0;
}
#define SPRSURF_TO_PIPE(offset) \
calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
unsigned int index = SPRSURF_TO_PIPE(offset);
i915_reg_t surflive_reg = SPRSURFLIVE(index);
int flip_event[] = {
[PIPE_A] = SPRITE_A_FLIP_DONE,
[PIPE_B] = SPRITE_B_FLIP_DONE,
[PIPE_C] = SPRITE_C_FLIP_DONE,
};
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg(vgpu, surflive_reg) = vgpu_vreg(vgpu, offset);
set_bit(flip_event[index], vgpu->irq.flip_done_event[index]);
return 0;
}
static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
unsigned int reg)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
enum intel_gvt_event_type event;
if (reg == _DPA_AUX_CH_CTL)
event = AUX_CHANNEL_A;
else if (reg == _PCH_DPB_AUX_CH_CTL || reg == _DPB_AUX_CH_CTL)
event = AUX_CHANNEL_B;
else if (reg == _PCH_DPC_AUX_CH_CTL || reg == _DPC_AUX_CH_CTL)
event = AUX_CHANNEL_C;
else if (reg == _PCH_DPD_AUX_CH_CTL || reg == _DPD_AUX_CH_CTL)
event = AUX_CHANNEL_D;
else {
WARN_ON(true);
return -EINVAL;
}
intel_vgpu_trigger_virtual_event(vgpu, event);
return 0;
}
static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
unsigned int reg, int len, bool data_valid)
{
/* mark transaction done */
value |= DP_AUX_CH_CTL_DONE;
value &= ~DP_AUX_CH_CTL_SEND_BUSY;
value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
if (data_valid)
value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
else
value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
/* message size */
value &= ~(0xf << 20);
value |= (len << 20);
vgpu_vreg(vgpu, reg) = value;
if (value & DP_AUX_CH_CTL_INTERRUPT)
return trigger_aux_channel_interrupt(vgpu, reg);
return 0;
}
static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
uint8_t t)
{
if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
/* training pattern 1 for CR */
/* set LANE0_CR_DONE, LANE1_CR_DONE */
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
/* set LANE2_CR_DONE, LANE3_CR_DONE */
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
DPCD_TRAINING_PATTERN_2) {
/* training pattern 2 for EQ */
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
/* set INTERLANE_ALIGN_DONE */
dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
DPCD_INTERLANE_ALIGN_DONE;
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
DPCD_LINK_TRAINING_DISABLED) {
/* finish link training */
/* set sink status as synchronized */
dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
}
}
#define _REG_HSW_DP_AUX_CH_CTL(dp) \
((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
#define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
#define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
#define dpy_is_valid_port(port) \
(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
struct intel_vgpu_display *display = &vgpu->display;
int msg, addr, ctrl, op, len;
int port_index = OFFSET_TO_DP_AUX_PORT(offset);
struct intel_vgpu_dpcd_data *dpcd = NULL;
struct intel_vgpu_port *port = NULL;
u32 data;
if (!dpy_is_valid_port(port_index)) {
gvt_err("GVT(%d): Unsupported DP port access!\n", vgpu->id);
return 0;
}
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (IS_SKYLAKE(vgpu->gvt->dev_priv) &&
offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
/* SKL DPB/C/D aux ctl register changed */
return 0;
} else if (IS_BROADWELL(vgpu->gvt->dev_priv) &&
offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
/* write to the data registers */
return 0;
}
if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
/* just want to clear the sticky bits */
vgpu_vreg(vgpu, offset) = 0;
return 0;
}
port = &display->ports[port_index];
dpcd = port->dpcd;
/* read out message from DATA1 register */
msg = vgpu_vreg(vgpu, offset + 4);
addr = (msg >> 8) & 0xffff;
ctrl = (msg >> 24) & 0xff;
len = msg & 0xff;
op = ctrl >> 4;
if (op == GVT_AUX_NATIVE_WRITE) {
int t;
uint8_t buf[16];
if ((addr + len + 1) >= DPCD_SIZE) {
/*
* Write request exceeds what we supported,
* DCPD spec: When a Source Device is writing a DPCD
* address not supported by the Sink Device, the Sink
* Device shall reply with AUX NACK and M equal to
* zero.
*/
/* NAK the write */
vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
return 0;
}
/*
* Write request format: (command + address) occupies
* 3 bytes, followed by (len + 1) bytes of data.
*/
if (WARN_ON((len + 4) > AUX_BURST_SIZE))
return -EINVAL;
/* unpack data from vreg to buf */
for (t = 0; t < 4; t++) {
u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
buf[t * 4] = (r >> 24) & 0xff;
buf[t * 4 + 1] = (r >> 16) & 0xff;
buf[t * 4 + 2] = (r >> 8) & 0xff;
buf[t * 4 + 3] = r & 0xff;
}
/* write to virtual DPCD */
if (dpcd && dpcd->data_valid) {
for (t = 0; t <= len; t++) {
int p = addr + t;
dpcd->data[p] = buf[t];
/* check for link training */
if (p == DPCD_TRAINING_PATTERN_SET)
dp_aux_ch_ctl_link_training(dpcd,
buf[t]);
}
}
/* ACK the write */
vgpu_vreg(vgpu, offset + 4) = 0;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
dpcd && dpcd->data_valid);
return 0;
}
if (op == GVT_AUX_NATIVE_READ) {
int idx, i, ret = 0;
if ((addr + len + 1) >= DPCD_SIZE) {
/*
* read request exceeds what we supported
* DPCD spec: A Sink Device receiving a Native AUX CH
* read request for an unsupported DPCD address must
* reply with an AUX ACK and read data set equal to
* zero instead of replying with AUX NACK.
*/
/* ACK the READ*/
vgpu_vreg(vgpu, offset + 4) = 0;
vgpu_vreg(vgpu, offset + 8) = 0;
vgpu_vreg(vgpu, offset + 12) = 0;
vgpu_vreg(vgpu, offset + 16) = 0;
vgpu_vreg(vgpu, offset + 20) = 0;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
true);
return 0;
}
for (idx = 1; idx <= 5; idx++) {
/* clear the data registers */
vgpu_vreg(vgpu, offset + 4 * idx) = 0;
}
/*
* Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
*/
if (WARN_ON((len + 2) > AUX_BURST_SIZE))
return -EINVAL;
/* read from virtual DPCD to vreg */
/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
if (dpcd && dpcd->data_valid) {
for (i = 1; i <= (len + 1); i++) {
int t;
t = dpcd->data[addr + i - 1];
t <<= (24 - 8 * (i % 4));
ret |= t;
if ((i % 4 == 3) || (i == (len + 1))) {
vgpu_vreg(vgpu, offset +
(i / 4 + 1) * 4) = ret;
ret = 0;
}
}
}
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
dpcd && dpcd->data_valid);
return 0;
}
/* i2c transaction starts */
intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
if (data & DP_AUX_CH_CTL_INTERRUPT)
trigger_aux_channel_interrupt(vgpu, offset);
return 0;
}
static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
bool vga_disable;
write_vreg(vgpu, offset, p_data, bytes);
vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
vga_disable ? "Disable" : "Enable");
return 0;
}
static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
unsigned int sbi_offset)
{
struct intel_vgpu_display *display = &vgpu->display;
int num = display->sbi.number;
int i;
for (i = 0; i < num; ++i)
if (display->sbi.registers[i].offset == sbi_offset)
break;
if (i == num)
return 0;
return display->sbi.registers[i].value;
}
static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
unsigned int offset, u32 value)
{
struct intel_vgpu_display *display = &vgpu->display;
int num = display->sbi.number;
int i;
for (i = 0; i < num; ++i) {
if (display->sbi.registers[i].offset == offset)
break;
}
if (i == num) {
if (num == SBI_REG_MAX) {
gvt_err("vgpu%d: SBI caching meets maximum limits\n",
vgpu->id);
return;
}
display->sbi.number++;
}
display->sbi.registers[i].offset = offset;
display->sbi.registers[i].value = value;
}
static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
if (((vgpu_vreg(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
unsigned int sbi_offset = (vgpu_vreg(vgpu, SBI_ADDR) &
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
sbi_offset);
}
read_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
data |= SBI_READY;
data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
data |= SBI_RESPONSE_SUCCESS;
vgpu_vreg(vgpu, offset) = data;
if (((vgpu_vreg(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
unsigned int sbi_offset = (vgpu_vreg(vgpu, SBI_ADDR) &
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
write_virtual_sbi_register(vgpu, sbi_offset,
vgpu_vreg(vgpu, SBI_DATA));
}
return 0;
}
#define _vgtif_reg(x) \
(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
bool invalid_read = false;
read_vreg(vgpu, offset, p_data, bytes);
switch (offset) {
case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
if (offset + bytes > _vgtif_reg(vgt_id) + 4)
invalid_read = true;
break;
case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
_vgtif_reg(avail_rs.fence_num):
if (offset + bytes >
_vgtif_reg(avail_rs.fence_num) + 4)
invalid_read = true;
break;
case 0x78010: /* vgt_caps */
case 0x7881c:
break;
default:
invalid_read = true;
break;
}
if (invalid_read)
gvt_err("invalid pvinfo read: [%x:%x] = %x\n",
offset, bytes, *(u32 *)p_data);
vgpu->pv_notified = true;
return 0;
}
static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
{
int ret = 0;
switch (notification) {
case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
ret = intel_vgpu_g2v_create_ppgtt_mm(vgpu, 3);
break;
case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
ret = intel_vgpu_g2v_destroy_ppgtt_mm(vgpu, 3);
break;
case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
ret = intel_vgpu_g2v_create_ppgtt_mm(vgpu, 4);
break;
case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
ret = intel_vgpu_g2v_destroy_ppgtt_mm(vgpu, 4);
break;
case VGT_G2V_EXECLIST_CONTEXT_CREATE:
case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
case 1: /* Remove this in guest driver. */
break;
default:
gvt_err("Invalid PV notification %d\n", notification);
}
return ret;
}
static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
char *env[3] = {NULL, NULL, NULL};
char vmid_str[20];
char display_ready_str[20];
drm/i915/gvt: Fix superfluous newline in GVT_DISPLAY_READY env var send_display_send_uevent() sends two environment variable, and the first one GVT_DISPLAY_READY is set including a new line at the end of the string; that is obviously superfluous and wrong -- at least, it *looks* so when you only read the code. However, it doesn't appear in the actual output by a (supposedly unexpected) trick. The code uses snprintf() and truncates the string in size 20 bytes. This makes the string as GVT_DISPLAY_READY=0 or ...=1 including the trailing NUL-letter. That is, the '\n' found in the format string is always cut off as a result. Although the code gives the correct result, it is confusing. This patch addresses it, just removing the superfluous '\n' from the format string for avoiding further confusion. If the argument "ready" were not a bool, the size 20 should be corrected as well. But it's a bool, so we can leave the magic number 20 as is for now. FWIW, the bug was spotted by a new GCC7 warning: drivers/gpu/drm/i915/gvt/handlers.c: In function 'pvinfo_mmio_write': drivers/gpu/drm/i915/gvt/handlers.c:1042:34: error: 'snprintf' output truncated before the last format character [-Werror=format-truncation=] snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d\n", ready); ^~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/i915/gvt/handlers.c:1042:2: note: 'snprintf' output 21 bytes into a destination of size 20 snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d\n", ready); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fixes: 04d348ae3f0a ("drm/i915/gvt: vGPU display virtualization") Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1025903 Reported-by: Richard Biener <rguenther@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
2017-02-20 20:58:25 +07:00
snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
env[0] = display_ready_str;
snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
env[1] = vmid_str;
return kobject_uevent_env(kobj, KOBJ_ADD, env);
}
static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data;
int ret;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
switch (offset) {
case _vgtif_reg(display_ready):
send_display_ready_uevent(vgpu, data ? 1 : 0);
break;
case _vgtif_reg(g2v_notify):
ret = handle_g2v_notification(vgpu, data);
break;
/* add xhot and yhot to handled list to avoid error log */
case 0x78830:
case 0x78834:
case _vgtif_reg(pdp[0].lo):
case _vgtif_reg(pdp[0].hi):
case _vgtif_reg(pdp[1].lo):
case _vgtif_reg(pdp[1].hi):
case _vgtif_reg(pdp[2].lo):
case _vgtif_reg(pdp[2].hi):
case _vgtif_reg(pdp[3].lo):
case _vgtif_reg(pdp[3].hi):
case _vgtif_reg(execlist_context_descriptor_lo):
case _vgtif_reg(execlist_context_descriptor_hi):
break;
case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
break;
default:
gvt_err("invalid pvinfo write offset %x bytes %x data %x\n",
offset, bytes, data);
break;
}
return 0;
}
static int pf_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 val = *(u32 *)p_data;
if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) {
WARN_ONCE(true, "VM(%d): guest is trying to scaling a plane\n",
vgpu->id);
return 0;
}
return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
}
static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & HSW_PWR_WELL_ENABLE_REQUEST)
vgpu_vreg(vgpu, offset) |= HSW_PWR_WELL_STATE_ENABLED;
else
vgpu_vreg(vgpu, offset) &= ~HSW_PWR_WELL_STATE_ENABLED;
return 0;
}
static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
return 0;
}
static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 mode;
write_vreg(vgpu, offset, p_data, bytes);
mode = vgpu_vreg(vgpu, offset);
if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
WARN_ONCE(1, "VM(%d): iGVT-g doesn't supporte GuC\n",
vgpu->id);
return 0;
}
return 0;
}
static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
u32 trtte = *(u32 *)p_data;
if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
WARN(1, "VM(%d): Use physical address for TRTT!\n",
vgpu->id);
return -EINVAL;
}
write_vreg(vgpu, offset, p_data, bytes);
/* TRTTE is not per-context */
I915_WRITE(_MMIO(offset), vgpu_vreg(vgpu, offset));
return 0;
}
static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
u32 val = *(u32 *)p_data;
if (val & 1) {
/* unblock hw logic */
I915_WRITE(_MMIO(offset), val);
}
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 v = 0;
if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
v |= (1 << 0);
if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
v |= (1 << 8);
if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
v |= (1 << 16);
if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
v |= (1 << 24);
vgpu_vreg(vgpu, offset) = v;
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
}
static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 value = *(u32 *)p_data;
u32 cmd = value & 0xff;
u32 *data0 = &vgpu_vreg(vgpu, GEN6_PCODE_DATA);
switch (cmd) {
case GEN9_PCODE_READ_MEM_LATENCY:
if (IS_SKYLAKE(vgpu->gvt->dev_priv)) {
/**
* "Read memory latency" command on gen9.
* Below memory latency values are read
* from skylake platform.
*/
if (!*data0)
*data0 = 0x1e1a1100;
else
*data0 = 0x61514b3d;
}
break;
case SKL_PCODE_CDCLK_CONTROL:
if (IS_SKYLAKE(vgpu->gvt->dev_priv))
*data0 = SKL_CDCLK_READY_FOR_CHANGE;
break;
case GEN6_PCODE_READ_RC6VIDS:
*data0 |= 0x1;
break;
}
gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
vgpu->id, value, *data0);
/**
* PCODE_READY clear means ready for pcode read/write,
* PCODE_ERROR_MASK clear means no error happened. In GVT-g we
* always emulate as pcode read/write success and ready for access
* anytime, since we don't touch real physical registers here.
*/
value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
}
static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
v &= (1 << 31) | (1 << 29) | (1 << 9) |
(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
v |= (v >> 1);
return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
}
static int skl_misc_ctl_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
i915_reg_t reg = {.reg = offset};
switch (offset) {
case 0x4ddc:
vgpu_vreg(vgpu, offset) = 0x8000003c;
/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl */
I915_WRITE(reg, vgpu_vreg(vgpu, offset));
break;
case 0x42080:
vgpu_vreg(vgpu, offset) = 0x8000;
/* WaCompressedResourceDisplayNewHashMode:skl */
I915_WRITE(reg, vgpu_vreg(vgpu, offset));
break;
default:
return -EINVAL;
}
return 0;
}
static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
/* other bits are MBZ. */
v &= (1 << 31) | (1 << 30);
v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int ring_timestamp_mmio_read(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
vgpu_vreg(vgpu, offset) = I915_READ(_MMIO(offset));
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
}
static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
int ring_id = render_mmio_to_ring_id(vgpu->gvt, offset);
struct intel_vgpu_execlist *execlist;
u32 data = *(u32 *)p_data;
int ret = 0;
if (WARN_ON(ring_id < 0 || ring_id > I915_NUM_ENGINES - 1))
return -EINVAL;
execlist = &vgpu->execlist[ring_id];
execlist->elsp_dwords.data[execlist->elsp_dwords.index] = data;
if (execlist->elsp_dwords.index == 3) {
ret = intel_vgpu_submit_execlist(vgpu, ring_id);
if(ret)
gvt_err("fail submit workload on ring %d\n", ring_id);
}
++execlist->elsp_dwords.index;
execlist->elsp_dwords.index &= 0x3;
return ret;
}
static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data = *(u32 *)p_data;
int ring_id = render_mmio_to_ring_id(vgpu->gvt, offset);
bool enable_execlist;
write_vreg(vgpu, offset, p_data, bytes);
/* when PPGTT mode enabled, we will check if guest has called
* pvinfo, if not, we will treat this guest as non-gvtg-aware
* guest, and stop emulating its cfg space, mmio, gtt, etc.
*/
if (((data & _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)) ||
(data & _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)))
&& !vgpu->pv_notified) {
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
return 0;
}
if ((data & _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE))
|| (data & _MASKED_BIT_DISABLE(GFX_RUN_LIST_ENABLE))) {
enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
gvt_dbg_core("EXECLIST %s on ring %d\n",
(enable_execlist ? "enabling" : "disabling"),
ring_id);
if (enable_execlist)
intel_vgpu_start_schedule(vgpu);
}
return 0;
}
static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
unsigned int id = 0;
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg(vgpu, offset) = 0;
switch (offset) {
case 0x4260:
id = RCS;
break;
case 0x4264:
id = VCS;
break;
case 0x4268:
id = VCS2;
break;
case 0x426c:
id = BCS;
break;
case 0x4270:
id = VECS;
break;
default:
return -EINVAL;
}
set_bit(id, (void *)vgpu->tlb_handle_pending);
return 0;
}
static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & _MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET))
data |= RESET_CTL_READY_TO_RESET;
else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
data &= ~RESET_CTL_READY_TO_RESET;
vgpu_vreg(vgpu, offset) = data;
return 0;
}
#define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
ret = new_mmio_info(gvt, INTEL_GVT_MMIO_OFFSET(reg), \
f, s, am, rm, d, r, w); \
if (ret) \
return ret; \
} while (0)
#define MMIO_D(reg, d) \
MMIO_F(reg, 4, 0, 0, 0, d, NULL, NULL)
#define MMIO_DH(reg, d, r, w) \
MMIO_F(reg, 4, 0, 0, 0, d, r, w)
#define MMIO_DFH(reg, d, f, r, w) \
MMIO_F(reg, 4, f, 0, 0, d, r, w)
#define MMIO_GM(reg, d, r, w) \
MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
#define MMIO_GM_RDR(reg, d, r, w) \
MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
#define MMIO_RO(reg, d, f, rm, r, w) \
MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
#define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
} while (0)
#define MMIO_RING_D(prefix, d) \
MMIO_RING_F(prefix, 4, 0, 0, 0, d, NULL, NULL)
#define MMIO_RING_DFH(prefix, d, f, r, w) \
MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
#define MMIO_RING_GM(prefix, d, r, w) \
MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
#define MMIO_RING_GM_RDR(prefix, d, r, w) \
MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
#define MMIO_RING_RO(prefix, d, f, rm, r, w) \
MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
static int init_generic_mmio_info(struct intel_gvt *gvt)
{
struct drm_i915_private *dev_priv = gvt->dev_priv;
int ret;
MMIO_RING_DFH(RING_IMR, D_ALL, F_CMD_ACCESS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(SDEISR, D_ALL);
MMIO_RING_DFH(RING_HWSTAM, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_GM_RDR(RENDER_HWS_PGA_GEN7, D_ALL, NULL, NULL);
MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
#define RING_REG(base) (base + 0x28)
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) (base + 0x134)
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
#undef RING_REG
MMIO_GM_RDR(0x2148, D_ALL, NULL, NULL);
MMIO_GM_RDR(CCID, D_ALL, NULL, NULL);
MMIO_GM_RDR(0x12198, D_ALL, NULL, NULL);
MMIO_D(GEN7_CXT_SIZE, D_ALL);
MMIO_RING_DFH(RING_TAIL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_HEAD, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_CTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_ACTHD, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_GM_RDR(RING_START, D_ALL, NULL, NULL);
/* RING MODE */
#define RING_REG(base) (base + 0x29c)
MMIO_RING_DFH(RING_REG, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL,
ring_mode_mmio_write);
#undef RING_REG
MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
ring_timestamp_mmio_read, NULL);
MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
ring_timestamp_mmio_read, NULL);
MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2124, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x20dc, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2088, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x20e4, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2470, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x9030, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x20a0, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2420, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2430, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2434, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2438, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x243c, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x7018, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
/* display */
MMIO_F(0x60220, 0x20, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(0x602a0, D_ALL);
MMIO_D(0x65050, D_ALL);
MMIO_D(0x650b4, D_ALL);
MMIO_D(0xc4040, D_ALL);
MMIO_D(DERRMR, D_ALL);
MMIO_D(PIPEDSL(PIPE_A), D_ALL);
MMIO_D(PIPEDSL(PIPE_B), D_ALL);
MMIO_D(PIPEDSL(PIPE_C), D_ALL);
MMIO_D(PIPEDSL(_PIPE_EDP), D_ALL);
MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write);
MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write);
MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write);
MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write);
MMIO_D(PIPESTAT(PIPE_A), D_ALL);
MMIO_D(PIPESTAT(PIPE_B), D_ALL);
MMIO_D(PIPESTAT(PIPE_C), D_ALL);
MMIO_D(PIPESTAT(_PIPE_EDP), D_ALL);
MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_A), D_ALL);
MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_B), D_ALL);
MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_C), D_ALL);
MMIO_D(PIPE_FLIPCOUNT_G4X(_PIPE_EDP), D_ALL);
MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_A), D_ALL);
MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_B), D_ALL);
MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_C), D_ALL);
MMIO_D(PIPE_FRMCOUNT_G4X(_PIPE_EDP), D_ALL);
MMIO_D(CURCNTR(PIPE_A), D_ALL);
MMIO_D(CURCNTR(PIPE_B), D_ALL);
MMIO_D(CURCNTR(PIPE_C), D_ALL);
MMIO_D(CURPOS(PIPE_A), D_ALL);
MMIO_D(CURPOS(PIPE_B), D_ALL);
MMIO_D(CURPOS(PIPE_C), D_ALL);
MMIO_D(CURBASE(PIPE_A), D_ALL);
MMIO_D(CURBASE(PIPE_B), D_ALL);
MMIO_D(CURBASE(PIPE_C), D_ALL);
MMIO_D(0x700ac, D_ALL);
MMIO_D(0x710ac, D_ALL);
MMIO_D(0x720ac, D_ALL);
MMIO_D(0x70090, D_ALL);
MMIO_D(0x70094, D_ALL);
MMIO_D(0x70098, D_ALL);
MMIO_D(0x7009c, D_ALL);
MMIO_D(DSPCNTR(PIPE_A), D_ALL);
MMIO_D(DSPADDR(PIPE_A), D_ALL);
MMIO_D(DSPSTRIDE(PIPE_A), D_ALL);
MMIO_D(DSPPOS(PIPE_A), D_ALL);
MMIO_D(DSPSIZE(PIPE_A), D_ALL);
MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
MMIO_D(DSPOFFSET(PIPE_A), D_ALL);
MMIO_D(DSPSURFLIVE(PIPE_A), D_ALL);
MMIO_D(DSPCNTR(PIPE_B), D_ALL);
MMIO_D(DSPADDR(PIPE_B), D_ALL);
MMIO_D(DSPSTRIDE(PIPE_B), D_ALL);
MMIO_D(DSPPOS(PIPE_B), D_ALL);
MMIO_D(DSPSIZE(PIPE_B), D_ALL);
MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
MMIO_D(DSPOFFSET(PIPE_B), D_ALL);
MMIO_D(DSPSURFLIVE(PIPE_B), D_ALL);
MMIO_D(DSPCNTR(PIPE_C), D_ALL);
MMIO_D(DSPADDR(PIPE_C), D_ALL);
MMIO_D(DSPSTRIDE(PIPE_C), D_ALL);
MMIO_D(DSPPOS(PIPE_C), D_ALL);
MMIO_D(DSPSIZE(PIPE_C), D_ALL);
MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
MMIO_D(DSPOFFSET(PIPE_C), D_ALL);
MMIO_D(DSPSURFLIVE(PIPE_C), D_ALL);
MMIO_D(SPRCTL(PIPE_A), D_ALL);
MMIO_D(SPRLINOFF(PIPE_A), D_ALL);
MMIO_D(SPRSTRIDE(PIPE_A), D_ALL);
MMIO_D(SPRPOS(PIPE_A), D_ALL);
MMIO_D(SPRSIZE(PIPE_A), D_ALL);
MMIO_D(SPRKEYVAL(PIPE_A), D_ALL);
MMIO_D(SPRKEYMSK(PIPE_A), D_ALL);
MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
MMIO_D(SPRKEYMAX(PIPE_A), D_ALL);
MMIO_D(SPROFFSET(PIPE_A), D_ALL);
MMIO_D(SPRSCALE(PIPE_A), D_ALL);
MMIO_D(SPRSURFLIVE(PIPE_A), D_ALL);
MMIO_D(SPRCTL(PIPE_B), D_ALL);
MMIO_D(SPRLINOFF(PIPE_B), D_ALL);
MMIO_D(SPRSTRIDE(PIPE_B), D_ALL);
MMIO_D(SPRPOS(PIPE_B), D_ALL);
MMIO_D(SPRSIZE(PIPE_B), D_ALL);
MMIO_D(SPRKEYVAL(PIPE_B), D_ALL);
MMIO_D(SPRKEYMSK(PIPE_B), D_ALL);
MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
MMIO_D(SPRKEYMAX(PIPE_B), D_ALL);
MMIO_D(SPROFFSET(PIPE_B), D_ALL);
MMIO_D(SPRSCALE(PIPE_B), D_ALL);
MMIO_D(SPRSURFLIVE(PIPE_B), D_ALL);
MMIO_D(SPRCTL(PIPE_C), D_ALL);
MMIO_D(SPRLINOFF(PIPE_C), D_ALL);
MMIO_D(SPRSTRIDE(PIPE_C), D_ALL);
MMIO_D(SPRPOS(PIPE_C), D_ALL);
MMIO_D(SPRSIZE(PIPE_C), D_ALL);
MMIO_D(SPRKEYVAL(PIPE_C), D_ALL);
MMIO_D(SPRKEYMSK(PIPE_C), D_ALL);
MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
MMIO_D(SPRKEYMAX(PIPE_C), D_ALL);
MMIO_D(SPROFFSET(PIPE_C), D_ALL);
MMIO_D(SPRSCALE(PIPE_C), D_ALL);
MMIO_D(SPRSURFLIVE(PIPE_C), D_ALL);
MMIO_F(LGC_PALETTE(PIPE_A, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(LGC_PALETTE(PIPE_B, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(LGC_PALETTE(PIPE_C, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(HTOTAL(TRANSCODER_A), D_ALL);
MMIO_D(HBLANK(TRANSCODER_A), D_ALL);
MMIO_D(HSYNC(TRANSCODER_A), D_ALL);
MMIO_D(VTOTAL(TRANSCODER_A), D_ALL);
MMIO_D(VBLANK(TRANSCODER_A), D_ALL);
MMIO_D(VSYNC(TRANSCODER_A), D_ALL);
MMIO_D(BCLRPAT(TRANSCODER_A), D_ALL);
MMIO_D(VSYNCSHIFT(TRANSCODER_A), D_ALL);
MMIO_D(PIPESRC(TRANSCODER_A), D_ALL);
MMIO_D(HTOTAL(TRANSCODER_B), D_ALL);
MMIO_D(HBLANK(TRANSCODER_B), D_ALL);
MMIO_D(HSYNC(TRANSCODER_B), D_ALL);
MMIO_D(VTOTAL(TRANSCODER_B), D_ALL);
MMIO_D(VBLANK(TRANSCODER_B), D_ALL);
MMIO_D(VSYNC(TRANSCODER_B), D_ALL);
MMIO_D(BCLRPAT(TRANSCODER_B), D_ALL);
MMIO_D(VSYNCSHIFT(TRANSCODER_B), D_ALL);
MMIO_D(PIPESRC(TRANSCODER_B), D_ALL);
MMIO_D(HTOTAL(TRANSCODER_C), D_ALL);
MMIO_D(HBLANK(TRANSCODER_C), D_ALL);
MMIO_D(HSYNC(TRANSCODER_C), D_ALL);
MMIO_D(VTOTAL(TRANSCODER_C), D_ALL);
MMIO_D(VBLANK(TRANSCODER_C), D_ALL);
MMIO_D(VSYNC(TRANSCODER_C), D_ALL);
MMIO_D(BCLRPAT(TRANSCODER_C), D_ALL);
MMIO_D(VSYNCSHIFT(TRANSCODER_C), D_ALL);
MMIO_D(PIPESRC(TRANSCODER_C), D_ALL);
MMIO_D(HTOTAL(TRANSCODER_EDP), D_ALL);
MMIO_D(HBLANK(TRANSCODER_EDP), D_ALL);
MMIO_D(HSYNC(TRANSCODER_EDP), D_ALL);
MMIO_D(VTOTAL(TRANSCODER_EDP), D_ALL);
MMIO_D(VBLANK(TRANSCODER_EDP), D_ALL);
MMIO_D(VSYNC(TRANSCODER_EDP), D_ALL);
MMIO_D(BCLRPAT(TRANSCODER_EDP), D_ALL);
MMIO_D(VSYNCSHIFT(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_DATA_M1(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_DATA_N1(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_DATA_M2(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_DATA_N2(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_LINK_M1(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_LINK_N1(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_LINK_M2(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_LINK_N2(TRANSCODER_A), D_ALL);
MMIO_D(PIPE_DATA_M1(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_DATA_N1(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_DATA_M2(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_DATA_N2(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_LINK_M1(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_LINK_N1(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_LINK_M2(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_LINK_N2(TRANSCODER_B), D_ALL);
MMIO_D(PIPE_DATA_M1(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_DATA_N1(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_DATA_M2(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_DATA_N2(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_LINK_M1(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_LINK_N1(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_LINK_M2(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_LINK_N2(TRANSCODER_C), D_ALL);
MMIO_D(PIPE_DATA_M1(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_DATA_N1(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_DATA_M2(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_DATA_N2(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_LINK_M1(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_LINK_N1(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_LINK_M2(TRANSCODER_EDP), D_ALL);
MMIO_D(PIPE_LINK_N2(TRANSCODER_EDP), D_ALL);
MMIO_D(PF_CTL(PIPE_A), D_ALL);
MMIO_D(PF_WIN_SZ(PIPE_A), D_ALL);
MMIO_D(PF_WIN_POS(PIPE_A), D_ALL);
MMIO_D(PF_VSCALE(PIPE_A), D_ALL);
MMIO_D(PF_HSCALE(PIPE_A), D_ALL);
MMIO_D(PF_CTL(PIPE_B), D_ALL);
MMIO_D(PF_WIN_SZ(PIPE_B), D_ALL);
MMIO_D(PF_WIN_POS(PIPE_B), D_ALL);
MMIO_D(PF_VSCALE(PIPE_B), D_ALL);
MMIO_D(PF_HSCALE(PIPE_B), D_ALL);
MMIO_D(PF_CTL(PIPE_C), D_ALL);
MMIO_D(PF_WIN_SZ(PIPE_C), D_ALL);
MMIO_D(PF_WIN_POS(PIPE_C), D_ALL);
MMIO_D(PF_VSCALE(PIPE_C), D_ALL);
MMIO_D(PF_HSCALE(PIPE_C), D_ALL);
MMIO_D(WM0_PIPEA_ILK, D_ALL);
MMIO_D(WM0_PIPEB_ILK, D_ALL);
MMIO_D(WM0_PIPEC_IVB, D_ALL);
MMIO_D(WM1_LP_ILK, D_ALL);
MMIO_D(WM2_LP_ILK, D_ALL);
MMIO_D(WM3_LP_ILK, D_ALL);
MMIO_D(WM1S_LP_ILK, D_ALL);
MMIO_D(WM2S_LP_IVB, D_ALL);
MMIO_D(WM3S_LP_IVB, D_ALL);
MMIO_D(BLC_PWM_CPU_CTL2, D_ALL);
MMIO_D(BLC_PWM_CPU_CTL, D_ALL);
MMIO_D(BLC_PWM_PCH_CTL1, D_ALL);
MMIO_D(BLC_PWM_PCH_CTL2, D_ALL);
MMIO_D(0x48268, D_ALL);
MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
gmbus_mmio_write);
MMIO_F(PCH_GPIOA, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0xe4f00, 0x28, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(_PCH_DPB_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(_PCH_DPC_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(_PCH_DPD_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_RO(PCH_ADPA, D_ALL, 0, ADPA_CRT_HOTPLUG_MONITOR_MASK, NULL, pch_adpa_mmio_write);
MMIO_DH(_PCH_TRANSACONF, D_ALL, NULL, transconf_mmio_write);
MMIO_DH(_PCH_TRANSBCONF, D_ALL, NULL, transconf_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_D(_PCH_TRANS_HTOTAL_A, D_ALL);
MMIO_D(_PCH_TRANS_HBLANK_A, D_ALL);
MMIO_D(_PCH_TRANS_HSYNC_A, D_ALL);
MMIO_D(_PCH_TRANS_VTOTAL_A, D_ALL);
MMIO_D(_PCH_TRANS_VBLANK_A, D_ALL);
MMIO_D(_PCH_TRANS_VSYNC_A, D_ALL);
MMIO_D(_PCH_TRANS_VSYNCSHIFT_A, D_ALL);
MMIO_D(_PCH_TRANS_HTOTAL_B, D_ALL);
MMIO_D(_PCH_TRANS_HBLANK_B, D_ALL);
MMIO_D(_PCH_TRANS_HSYNC_B, D_ALL);
MMIO_D(_PCH_TRANS_VTOTAL_B, D_ALL);
MMIO_D(_PCH_TRANS_VBLANK_B, D_ALL);
MMIO_D(_PCH_TRANS_VSYNC_B, D_ALL);
MMIO_D(_PCH_TRANS_VSYNCSHIFT_B, D_ALL);
MMIO_D(_PCH_TRANSA_DATA_M1, D_ALL);
MMIO_D(_PCH_TRANSA_DATA_N1, D_ALL);
MMIO_D(_PCH_TRANSA_DATA_M2, D_ALL);
MMIO_D(_PCH_TRANSA_DATA_N2, D_ALL);
MMIO_D(_PCH_TRANSA_LINK_M1, D_ALL);
MMIO_D(_PCH_TRANSA_LINK_N1, D_ALL);
MMIO_D(_PCH_TRANSA_LINK_M2, D_ALL);
MMIO_D(_PCH_TRANSA_LINK_N2, D_ALL);
MMIO_D(TRANS_DP_CTL(PIPE_A), D_ALL);
MMIO_D(TRANS_DP_CTL(PIPE_B), D_ALL);
MMIO_D(TRANS_DP_CTL(PIPE_C), D_ALL);
MMIO_D(TVIDEO_DIP_CTL(PIPE_A), D_ALL);
MMIO_D(TVIDEO_DIP_DATA(PIPE_A), D_ALL);
MMIO_D(TVIDEO_DIP_GCP(PIPE_A), D_ALL);
MMIO_D(TVIDEO_DIP_CTL(PIPE_B), D_ALL);
MMIO_D(TVIDEO_DIP_DATA(PIPE_B), D_ALL);
MMIO_D(TVIDEO_DIP_GCP(PIPE_B), D_ALL);
MMIO_D(TVIDEO_DIP_CTL(PIPE_C), D_ALL);
MMIO_D(TVIDEO_DIP_DATA(PIPE_C), D_ALL);
MMIO_D(TVIDEO_DIP_GCP(PIPE_C), D_ALL);
MMIO_D(_FDI_RXA_MISC, D_ALL);
MMIO_D(_FDI_RXB_MISC, D_ALL);
MMIO_D(_FDI_RXA_TUSIZE1, D_ALL);
MMIO_D(_FDI_RXA_TUSIZE2, D_ALL);
MMIO_D(_FDI_RXB_TUSIZE1, D_ALL);
MMIO_D(_FDI_RXB_TUSIZE2, D_ALL);
MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
MMIO_D(PCH_PP_DIVISOR, D_ALL);
MMIO_D(PCH_PP_STATUS, D_ALL);
MMIO_D(PCH_LVDS, D_ALL);
MMIO_D(_PCH_DPLL_A, D_ALL);
MMIO_D(_PCH_DPLL_B, D_ALL);
MMIO_D(_PCH_FPA0, D_ALL);
MMIO_D(_PCH_FPA1, D_ALL);
MMIO_D(_PCH_FPB0, D_ALL);
MMIO_D(_PCH_FPB1, D_ALL);
MMIO_D(PCH_DREF_CONTROL, D_ALL);
MMIO_D(PCH_RAWCLK_FREQ, D_ALL);
MMIO_D(PCH_DPLL_SEL, D_ALL);
MMIO_D(0x61208, D_ALL);
MMIO_D(0x6120c, D_ALL);
MMIO_D(PCH_PP_ON_DELAYS, D_ALL);
MMIO_D(PCH_PP_OFF_DELAYS, D_ALL);
MMIO_DH(0xe651c, D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(0xe661c, D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(0xe671c, D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(0xe681c, D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(0xe6c04, D_ALL, dpy_reg_mmio_read_2, NULL);
MMIO_DH(0xe6e1c, D_ALL, dpy_reg_mmio_read_3, NULL);
MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
PORTA_HOTPLUG_STATUS_MASK
| PORTB_HOTPLUG_STATUS_MASK
| PORTC_HOTPLUG_STATUS_MASK
| PORTD_HOTPLUG_STATUS_MASK,
NULL, NULL);
MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
MMIO_D(FUSE_STRAP, D_ALL);
MMIO_D(DIGITAL_PORT_HOTPLUG_CNTRL, D_ALL);
MMIO_D(DISP_ARB_CTL, D_ALL);
MMIO_D(DISP_ARB_CTL2, D_ALL);
MMIO_D(ILK_DISPLAY_CHICKEN1, D_ALL);
MMIO_D(ILK_DISPLAY_CHICKEN2, D_ALL);
MMIO_D(ILK_DSPCLK_GATE_D, D_ALL);
MMIO_D(SOUTH_CHICKEN1, D_ALL);
MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
MMIO_D(_TRANSA_CHICKEN1, D_ALL);
MMIO_D(_TRANSB_CHICKEN1, D_ALL);
MMIO_D(SOUTH_DSPCLK_GATE_D, D_ALL);
MMIO_D(_TRANSA_CHICKEN2, D_ALL);
MMIO_D(_TRANSB_CHICKEN2, D_ALL);
MMIO_D(ILK_DPFC_CB_BASE, D_ALL);
MMIO_D(ILK_DPFC_CONTROL, D_ALL);
MMIO_D(ILK_DPFC_RECOMP_CTL, D_ALL);
MMIO_D(ILK_DPFC_STATUS, D_ALL);
MMIO_D(ILK_DPFC_FENCE_YOFF, D_ALL);
MMIO_D(ILK_DPFC_CHICKEN, D_ALL);
MMIO_D(ILK_FBC_RT_BASE, D_ALL);
MMIO_D(IPS_CTL, D_ALL);
MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BY(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BU(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BV(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_MODE(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_A), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BY(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BU(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BV(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_MODE(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_B), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BY(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BU(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_COEFF_BV(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_MODE(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_C), D_ALL);
MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_C), D_ALL);
MMIO_D(PREC_PAL_INDEX(PIPE_A), D_ALL);
MMIO_D(PREC_PAL_DATA(PIPE_A), D_ALL);
MMIO_F(PREC_PAL_GC_MAX(PIPE_A, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(PREC_PAL_INDEX(PIPE_B), D_ALL);
MMIO_D(PREC_PAL_DATA(PIPE_B), D_ALL);
MMIO_F(PREC_PAL_GC_MAX(PIPE_B, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(PREC_PAL_INDEX(PIPE_C), D_ALL);
MMIO_D(PREC_PAL_DATA(PIPE_C), D_ALL);
MMIO_F(PREC_PAL_GC_MAX(PIPE_C, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(0x60110, D_ALL);
MMIO_D(0x61110, D_ALL);
MMIO_F(0x70400, 0x40, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x71400, 0x40, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x72400, 0x40, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x70440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_F(0x71440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_F(0x72440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_F(0x7044c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_F(0x7144c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_F(0x7244c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL);
MMIO_D(PIPE_WM_LINETIME(PIPE_A), D_ALL);
MMIO_D(PIPE_WM_LINETIME(PIPE_B), D_ALL);
MMIO_D(PIPE_WM_LINETIME(PIPE_C), D_ALL);
MMIO_D(SPLL_CTL, D_ALL);
MMIO_D(_WRPLL_CTL1, D_ALL);
MMIO_D(_WRPLL_CTL2, D_ALL);
MMIO_D(PORT_CLK_SEL(PORT_A), D_ALL);
MMIO_D(PORT_CLK_SEL(PORT_B), D_ALL);
MMIO_D(PORT_CLK_SEL(PORT_C), D_ALL);
MMIO_D(PORT_CLK_SEL(PORT_D), D_ALL);
MMIO_D(PORT_CLK_SEL(PORT_E), D_ALL);
MMIO_D(TRANS_CLK_SEL(TRANSCODER_A), D_ALL);
MMIO_D(TRANS_CLK_SEL(TRANSCODER_B), D_ALL);
MMIO_D(TRANS_CLK_SEL(TRANSCODER_C), D_ALL);
MMIO_D(HSW_NDE_RSTWRN_OPT, D_ALL);
MMIO_D(0x46508, D_ALL);
MMIO_D(0x49080, D_ALL);
MMIO_D(0x49180, D_ALL);
MMIO_D(0x49280, D_ALL);
MMIO_F(0x49090, 0x14, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x49190, 0x14, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x49290, 0x14, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(GAMMA_MODE(PIPE_A), D_ALL);
MMIO_D(GAMMA_MODE(PIPE_B), D_ALL);
MMIO_D(GAMMA_MODE(PIPE_C), D_ALL);
MMIO_D(PIPE_MULT(PIPE_A), D_ALL);
MMIO_D(PIPE_MULT(PIPE_B), D_ALL);
MMIO_D(PIPE_MULT(PIPE_C), D_ALL);
MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_A), D_ALL);
MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_B), D_ALL);
MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_C), D_ALL);
MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
MMIO_D(SBI_ADDR, D_ALL);
MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
MMIO_D(PIXCLK_GATE, D_ALL);
MMIO_F(_DPA_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_ALL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
MMIO_F(_DDI_BUF_TRANS_A, 0x50, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x64e60, 0x50, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x64eC0, 0x50, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x64f20, 0x50, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x64f80, 0x50, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(HSW_AUD_CFG(PIPE_A), D_ALL);
MMIO_D(HSW_AUD_PIN_ELD_CP_VLD, D_ALL);
MMIO_DH(_TRANS_DDI_FUNC_CTL_A, D_ALL, NULL, NULL);
MMIO_DH(_TRANS_DDI_FUNC_CTL_B, D_ALL, NULL, NULL);
MMIO_DH(_TRANS_DDI_FUNC_CTL_C, D_ALL, NULL, NULL);
MMIO_DH(_TRANS_DDI_FUNC_CTL_EDP, D_ALL, NULL, NULL);
MMIO_D(_TRANSA_MSA_MISC, D_ALL);
MMIO_D(_TRANSB_MSA_MISC, D_ALL);
MMIO_D(_TRANSC_MSA_MISC, D_ALL);
MMIO_D(_TRANS_EDP_MSA_MISC, D_ALL);
MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
MMIO_D(FORCEWAKE_ACK, D_ALL);
MMIO_D(GEN6_GT_CORE_STATUS, D_ALL);
MMIO_D(GEN6_GT_THREAD_STATUS_REG, D_ALL);
MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_HSW, D_HSW | D_BDW, NULL, NULL);
MMIO_D(ECOBUS, D_ALL);
MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
MMIO_D(GEN6_RPNSWREQ, D_ALL);
MMIO_D(GEN6_RC_VIDEO_FREQ, D_ALL);
MMIO_D(GEN6_RP_DOWN_TIMEOUT, D_ALL);
MMIO_D(GEN6_RP_INTERRUPT_LIMITS, D_ALL);
MMIO_D(GEN6_RPSTAT1, D_ALL);
MMIO_D(GEN6_RP_CONTROL, D_ALL);
MMIO_D(GEN6_RP_UP_THRESHOLD, D_ALL);
MMIO_D(GEN6_RP_DOWN_THRESHOLD, D_ALL);
MMIO_D(GEN6_RP_CUR_UP_EI, D_ALL);
MMIO_D(GEN6_RP_CUR_UP, D_ALL);
MMIO_D(GEN6_RP_PREV_UP, D_ALL);
MMIO_D(GEN6_RP_CUR_DOWN_EI, D_ALL);
MMIO_D(GEN6_RP_CUR_DOWN, D_ALL);
MMIO_D(GEN6_RP_PREV_DOWN, D_ALL);
MMIO_D(GEN6_RP_UP_EI, D_ALL);
MMIO_D(GEN6_RP_DOWN_EI, D_ALL);
MMIO_D(GEN6_RP_IDLE_HYSTERSIS, D_ALL);
MMIO_D(GEN6_RC1_WAKE_RATE_LIMIT, D_ALL);
MMIO_D(GEN6_RC6_WAKE_RATE_LIMIT, D_ALL);
MMIO_D(GEN6_RC6pp_WAKE_RATE_LIMIT, D_ALL);
MMIO_D(GEN6_RC_EVALUATION_INTERVAL, D_ALL);
MMIO_D(GEN6_RC_IDLE_HYSTERSIS, D_ALL);
MMIO_D(GEN6_RC_SLEEP, D_ALL);
MMIO_D(GEN6_RC1e_THRESHOLD, D_ALL);
MMIO_D(GEN6_RC6_THRESHOLD, D_ALL);
MMIO_D(GEN6_RC6p_THRESHOLD, D_ALL);
MMIO_D(GEN6_RC6pp_THRESHOLD, D_ALL);
MMIO_D(GEN6_PMINTRMSK, D_ALL);
MMIO_DH(HSW_PWR_WELL_BIOS, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_DRIVER, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_KVMR, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_DEBUG, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL5, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL6, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_D(RSTDBYCTL, D_ALL);
MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
MMIO_F(VGT_PVINFO_PAGE, VGT_PVINFO_SIZE, F_UNALIGN, 0, 0, D_ALL, pvinfo_mmio_read, pvinfo_mmio_write);
MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
MMIO_F(MCHBAR_MIRROR_BASE_SNB, 0x40000, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(TILECTL, D_ALL);
MMIO_D(GEN6_UCGCTL1, D_ALL);
MMIO_D(GEN6_UCGCTL2, D_ALL);
MMIO_F(0x4f000, 0x90, 0, 0, 0, D_ALL, NULL, NULL);
MMIO_D(GEN6_PCODE_MAILBOX, D_PRE_BDW);
MMIO_D(GEN6_PCODE_DATA, D_ALL);
MMIO_D(0x13812c, D_ALL);
MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
MMIO_D(HSW_EDRAM_CAP, D_ALL);
MMIO_D(HSW_IDICR, D_ALL);
MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
MMIO_D(0x3c, D_ALL);
MMIO_D(0x860, D_ALL);
MMIO_D(ECOSKPD, D_ALL);
MMIO_D(0x121d0, D_ALL);
MMIO_D(GEN6_BLITTER_ECOSKPD, D_ALL);
MMIO_D(0x41d0, D_ALL);
MMIO_D(GAC_ECO_BITS, D_ALL);
MMIO_D(0x6200, D_ALL);
MMIO_D(0x6204, D_ALL);
MMIO_D(0x6208, D_ALL);
MMIO_D(0x7118, D_ALL);
MMIO_D(0x7180, D_ALL);
MMIO_D(0x7408, D_ALL);
MMIO_D(0x7c00, D_ALL);
MMIO_D(GEN6_MBCTL, D_ALL);
MMIO_D(0x911c, D_ALL);
MMIO_D(0x9120, D_ALL);
MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_D(GAB_CTL, D_ALL);
MMIO_D(0x48800, D_ALL);
MMIO_D(0xce044, D_ALL);
MMIO_D(0xe6500, D_ALL);
MMIO_D(0xe6504, D_ALL);
MMIO_D(0xe6600, D_ALL);
MMIO_D(0xe6604, D_ALL);
MMIO_D(0xe6700, D_ALL);
MMIO_D(0xe6704, D_ALL);
MMIO_D(0xe6800, D_ALL);
MMIO_D(0xe6804, D_ALL);
MMIO_D(PCH_GMBUS4, D_ALL);
MMIO_D(PCH_GMBUS5, D_ALL);
MMIO_D(0x902c, D_ALL);
MMIO_D(0xec008, D_ALL);
MMIO_D(0xec00c, D_ALL);
MMIO_D(0xec008 + 0x18, D_ALL);
MMIO_D(0xec00c + 0x18, D_ALL);
MMIO_D(0xec008 + 0x18 * 2, D_ALL);
MMIO_D(0xec00c + 0x18 * 2, D_ALL);
MMIO_D(0xec008 + 0x18 * 3, D_ALL);
MMIO_D(0xec00c + 0x18 * 3, D_ALL);
MMIO_D(0xec408, D_ALL);
MMIO_D(0xec40c, D_ALL);
MMIO_D(0xec408 + 0x18, D_ALL);
MMIO_D(0xec40c + 0x18, D_ALL);
MMIO_D(0xec408 + 0x18 * 2, D_ALL);
MMIO_D(0xec40c + 0x18 * 2, D_ALL);
MMIO_D(0xec408 + 0x18 * 3, D_ALL);
MMIO_D(0xec40c + 0x18 * 3, D_ALL);
MMIO_D(0xfc810, D_ALL);
MMIO_D(0xfc81c, D_ALL);
MMIO_D(0xfc828, D_ALL);
MMIO_D(0xfc834, D_ALL);
MMIO_D(0xfcc00, D_ALL);
MMIO_D(0xfcc0c, D_ALL);
MMIO_D(0xfcc18, D_ALL);
MMIO_D(0xfcc24, D_ALL);
MMIO_D(0xfd000, D_ALL);
MMIO_D(0xfd00c, D_ALL);
MMIO_D(0xfd018, D_ALL);
MMIO_D(0xfd024, D_ALL);
MMIO_D(0xfd034, D_ALL);
MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
MMIO_D(0x2054, D_ALL);
MMIO_D(0x12054, D_ALL);
MMIO_D(0x22054, D_ALL);
MMIO_D(0x1a054, D_ALL);
MMIO_D(0x44070, D_ALL);
MMIO_DFH(0x215c, D_HSW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2178, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x217c, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x12178, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1217c, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_F(0x2290, 8, F_CMD_ACCESS, 0, 0, D_HSW_PLUS, NULL, NULL);
MMIO_DFH(GEN7_OACONTROL, D_HSW, F_CMD_ACCESS, NULL, NULL);
MMIO_D(0x2b00, D_BDW_PLUS);
MMIO_D(0x2360, D_BDW_PLUS);
MMIO_F(0x5200, 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x5240, 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(0x5280, 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_DFH(0x1c17c, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1c178, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_DH(0x4260, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(0x4264, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(0x4268, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(0x426c, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(0x4270, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DFH(0x4094, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_RING_GM_RDR(RING_BBADDR, D_ALL, NULL, NULL);
MMIO_DFH(0x2220, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x12220, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x22220, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x22178, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1a178, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1a17c, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2217c, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
return 0;
}
static int init_broadwell_mmio_info(struct intel_gvt *gvt)
{
struct drm_i915_private *dev_priv = gvt->dev_priv;
int ret;
MMIO_DFH(RING_IMR(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_GT_ISR(0), D_BDW_PLUS);
MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_GT_ISR(1), D_BDW_PLUS);
MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_GT_ISR(2), D_BDW_PLUS);
MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_GT_ISR(3), D_BDW_PLUS);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_DE_PIPE_ISR(PIPE_A), D_BDW_PLUS);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_DE_PIPE_ISR(PIPE_B), D_BDW_PLUS);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_DE_PIPE_ISR(PIPE_C), D_BDW_PLUS);
MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_DE_PORT_ISR, D_BDW_PLUS);
MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_DE_MISC_ISR, D_BDW_PLUS);
MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_D(GEN8_PCU_ISR, D_BDW_PLUS);
MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
intel_vgpu_reg_master_irq_handler);
MMIO_DFH(RING_HWSTAM(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1c134, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(RING_TAIL(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(RING_HEAD(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_CMD_ACCESS, NULL, NULL);
MMIO_GM_RDR(RING_START(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, NULL);
MMIO_DFH(RING_CTL(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(RING_ACTHD(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(RING_ACTHD_UDW(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x1c29c, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL,
ring_mode_mmio_write);
MMIO_DFH(RING_MI_MODE(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(RING_INSTPM(GEN8_BSD2_RING_BASE), D_BDW_PLUS,
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(RING_TIMESTAMP(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS,
ring_timestamp_mmio_read, NULL);
MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
#define RING_REG(base) (base + 0xd0)
MMIO_RING_F(RING_REG, 4, F_RO, 0,
~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
ring_reset_ctl_write);
MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 4, F_RO, 0,
~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
ring_reset_ctl_write);
#undef RING_REG
#define RING_REG(base) (base + 0x230)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
MMIO_DH(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, elsp_mmio_write);
#undef RING_REG
#define RING_REG(base) (base + 0x234)
MMIO_RING_F(RING_REG, 8, F_RO | F_CMD_ACCESS, 0, ~0, D_BDW_PLUS,
NULL, NULL);
MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 4, F_RO | F_CMD_ACCESS, 0,
~0LL, D_BDW_PLUS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) (base + 0x244)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS,
NULL, NULL);
#undef RING_REG
#define RING_REG(base) (base + 0x370)
MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 48, F_RO, 0, ~0, D_BDW_PLUS,
NULL, NULL);
#undef RING_REG
#define RING_REG(base) (base + 0x3a0)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
MMIO_DFH(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
#undef RING_REG
MMIO_D(PIPEMISC(PIPE_A), D_BDW_PLUS);
MMIO_D(PIPEMISC(PIPE_B), D_BDW_PLUS);
MMIO_D(PIPEMISC(PIPE_C), D_BDW_PLUS);
MMIO_D(0x1c1d0, D_BDW_PLUS);
MMIO_D(GEN6_MBCUNIT_SNPCR, D_BDW_PLUS);
MMIO_D(GEN7_MISCCPCTL, D_BDW_PLUS);
MMIO_D(0x1c054, D_BDW_PLUS);
MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
MMIO_D(GEN8_PRIVATE_PAT_LO, D_BDW_PLUS);
MMIO_D(GEN8_PRIVATE_PAT_HI, D_BDW_PLUS);
MMIO_D(GAMTARBMODE, D_BDW_PLUS);
#define RING_REG(base) (base + 0x270)
MMIO_RING_F(RING_REG, 32, 0, 0, 0, D_BDW_PLUS, NULL, NULL);
MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 32, 0, 0, 0, D_BDW_PLUS, NULL, NULL);
#undef RING_REG
MMIO_RING_GM_RDR(RING_HWS_PGA, D_BDW_PLUS, NULL, NULL);
MMIO_GM_RDR(RING_HWS_PGA(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, NULL);
MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_D(CHICKEN_PIPESL_1(PIPE_A), D_BDW_PLUS);
MMIO_D(CHICKEN_PIPESL_1(PIPE_B), D_BDW_PLUS);
MMIO_D(CHICKEN_PIPESL_1(PIPE_C), D_BDW_PLUS);
MMIO_D(WM_MISC, D_BDW);
MMIO_D(BDW_EDP_PSR_BASE, D_BDW);
MMIO_D(0x66c00, D_BDW_PLUS);
MMIO_D(0x66c04, D_BDW_PLUS);
MMIO_D(HSW_GTT_CACHE_EN, D_BDW_PLUS);
MMIO_D(GEN8_EU_DISABLE0, D_BDW_PLUS);
MMIO_D(GEN8_EU_DISABLE1, D_BDW_PLUS);
MMIO_D(GEN8_EU_DISABLE2, D_BDW_PLUS);
MMIO_D(0xfdc, D_BDW_PLUS);
MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xb1f0, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xb1c0, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xb100, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xb10c, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_D(0xb110, D_BDW);
MMIO_F(0x24d0, 48, F_CMD_ACCESS, 0, 0, D_BDW_PLUS,
NULL, force_nonpriv_write);
MMIO_D(0x22040, D_BDW_PLUS);
MMIO_D(0x44484, D_BDW_PLUS);
MMIO_D(0x4448c, D_BDW_PLUS);
MMIO_DFH(0x83a4, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_D(GEN8_L3_LRA_1_GPGPU, D_BDW_PLUS);
MMIO_DFH(0x8430, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_D(0x110000, D_BDW_PLUS);
MMIO_D(0x48400, D_BDW_PLUS);
MMIO_D(0x6e570, D_BDW_PLUS);
MMIO_D(0x65f10, D_BDW_PLUS);
MMIO_DFH(0xe194, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe188, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2580, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x2248, D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe220, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe230, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe240, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe260, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe270, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe280, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe2a0, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe2b0, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0xe2c0, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
return 0;
}
static int init_skl_mmio_info(struct intel_gvt *gvt)
{
struct drm_i915_private *dev_priv = gvt->dev_priv;
int ret;
MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_DH(FORCEWAKE_BLITTER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_BLITTER_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_F(_DPB_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write);
MMIO_F(_DPC_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write);
MMIO_F(_DPD_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write);
MMIO_D(HSW_PWR_WELL_BIOS, D_SKL);
MMIO_DH(HSW_PWR_WELL_DRIVER, D_SKL, NULL, skl_power_well_ctl_write);
MMIO_D(0xa210, D_SKL_PLUS);
MMIO_D(GEN9_MEDIA_PG_IDLE_HYSTERESIS, D_SKL_PLUS);
MMIO_D(GEN9_RENDER_PG_IDLE_HYSTERESIS, D_SKL_PLUS);
MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(0x4ddc, D_SKL, NULL, skl_misc_ctl_write);
MMIO_DH(0x42080, D_SKL, NULL, skl_misc_ctl_write);
MMIO_D(0x45504, D_SKL);
MMIO_D(0x45520, D_SKL);
MMIO_D(0x46000, D_SKL);
MMIO_DH(0x46010, D_SKL, NULL, skl_lcpll_write);
MMIO_DH(0x46014, D_SKL, NULL, skl_lcpll_write);
MMIO_D(0x6C040, D_SKL);
MMIO_D(0x6C048, D_SKL);
MMIO_D(0x6C050, D_SKL);
MMIO_D(0x6C044, D_SKL);
MMIO_D(0x6C04C, D_SKL);
MMIO_D(0x6C054, D_SKL);
MMIO_D(0x6c058, D_SKL);
MMIO_D(0x6c05c, D_SKL);
MMIO_DH(0X6c060, D_SKL, dpll_status_read, NULL);
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL, NULL, pf_write);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_A, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_A, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_A, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_B, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_B, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_B, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_C, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_C, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(PLANE_WM(PIPE_C, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(CUR_WM(PIPE_A, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(CUR_WM(PIPE_B, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_F(CUR_WM(PIPE_C, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_A, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_A, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_A, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_A, 4), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_B, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_B, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_B, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_B, 4), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_C, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_C, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_C, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C0(PIPE_C, 4), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_A, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_A, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_A, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_A, 4), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_B, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_B, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_B, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_B, 4), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_C, 1), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_C, 2), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_C, 3), D_SKL, NULL, NULL);
MMIO_DH(_REG_701C4(PIPE_C, 4), D_SKL, NULL, NULL);
MMIO_D(0x70380, D_SKL);
MMIO_D(0x71380, D_SKL);
MMIO_D(0x72380, D_SKL);
MMIO_D(0x7039c, D_SKL);
MMIO_F(0x80000, 0x3000, 0, 0, 0, D_SKL, NULL, NULL);
MMIO_D(0x8f074, D_SKL);
MMIO_D(0x8f004, D_SKL);
MMIO_D(0x8f034, D_SKL);
MMIO_D(0xb11c, D_SKL);
MMIO_D(0x51000, D_SKL);
MMIO_D(0x6c00c, D_SKL);
MMIO_F(0xc800, 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL, NULL, NULL);
MMIO_F(0xb020, 0x80, F_CMD_ACCESS, 0, 0, D_SKL, NULL, NULL);
MMIO_D(0xd08, D_SKL);
MMIO_DFH(0x20e0, D_SKL, F_MODE_MASK, NULL, NULL);
MMIO_DFH(0x20ec, D_SKL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
/* TRTT */
MMIO_DFH(0x4de0, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x4de4, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x4de8, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x4dec, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x4df0, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(0x4df4, D_SKL, F_CMD_ACCESS, NULL, gen9_trtte_write);
MMIO_DH(0x4dfc, D_SKL, NULL, gen9_trtt_chicken_write);
MMIO_D(0x45008, D_SKL);
MMIO_D(0x46430, D_SKL);
MMIO_D(0x46520, D_SKL);
MMIO_D(0xc403c, D_SKL);
MMIO_D(0xb004, D_SKL);
MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
MMIO_D(0x65900, D_SKL);
MMIO_D(0x1082c0, D_SKL);
MMIO_D(0x4068, D_SKL);
MMIO_D(0x67054, D_SKL);
MMIO_D(0x6e560, D_SKL);
MMIO_D(0x6e554, D_SKL);
MMIO_D(0x2b20, D_SKL);
MMIO_D(0x65f00, D_SKL);
MMIO_D(0x65f08, D_SKL);
MMIO_D(0x320f0, D_SKL);
MMIO_DFH(_REG_VCS2_EXCC, D_SKL, F_CMD_ACCESS, NULL, NULL);
MMIO_D(0x70034, D_SKL);
MMIO_D(0x71034, D_SKL);
MMIO_D(0x72034, D_SKL);
MMIO_D(_PLANE_KEYVAL_1(PIPE_A), D_SKL);
MMIO_D(_PLANE_KEYVAL_1(PIPE_B), D_SKL);
MMIO_D(_PLANE_KEYVAL_1(PIPE_C), D_SKL);
MMIO_D(_PLANE_KEYMSK_1(PIPE_A), D_SKL);
MMIO_D(_PLANE_KEYMSK_1(PIPE_B), D_SKL);
MMIO_D(_PLANE_KEYMSK_1(PIPE_C), D_SKL);
MMIO_D(0x44500, D_SKL);
MMIO_DFH(GEN9_CSFE_CHICKEN1_RCS, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
return 0;
}
/**
* intel_gvt_find_mmio_info - find MMIO information entry by aligned offset
* @gvt: GVT device
* @offset: register offset
*
* This function is used to find the MMIO information entry from hash table
*
* Returns:
* pointer to MMIO information entry, NULL if not exists
*/
struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
unsigned int offset)
{
struct intel_gvt_mmio_info *e;
WARN_ON(!IS_ALIGNED(offset, 4));
hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
if (e->offset == offset)
return e;
}
return NULL;
}
/**
* intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
* @gvt: GVT device
*
* This function is called at the driver unloading stage, to clean up the MMIO
* information table of GVT device
*
*/
void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
{
struct hlist_node *tmp;
struct intel_gvt_mmio_info *e;
int i;
hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
kfree(e);
vfree(gvt->mmio.mmio_attribute);
gvt->mmio.mmio_attribute = NULL;
}
/**
* intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
* @gvt: GVT device
*
* This function is called at the initialization stage, to setup the MMIO
* information table for GVT device
*
* Returns:
* zero on success, negative if failed.
*/
int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
{
struct intel_gvt_device_info *info = &gvt->device_info;
struct drm_i915_private *dev_priv = gvt->dev_priv;
int ret;
gvt->mmio.mmio_attribute = vzalloc(info->mmio_size);
if (!gvt->mmio.mmio_attribute)
return -ENOMEM;
ret = init_generic_mmio_info(gvt);
if (ret)
goto err;
if (IS_BROADWELL(dev_priv)) {
ret = init_broadwell_mmio_info(gvt);
if (ret)
goto err;
} else if (IS_SKYLAKE(dev_priv)) {
ret = init_broadwell_mmio_info(gvt);
if (ret)
goto err;
ret = init_skl_mmio_info(gvt);
if (ret)
goto err;
}
return 0;
err:
intel_gvt_clean_mmio_info(gvt);
return ret;
}
/**
* intel_gvt_mmio_set_accessed - mark a MMIO has been accessed
* @gvt: a GVT device
* @offset: register offset
*
*/
void intel_gvt_mmio_set_accessed(struct intel_gvt *gvt, unsigned int offset)
{
gvt->mmio.mmio_attribute[offset >> 2] |=
F_ACCESSED;
}
/**
* intel_gvt_mmio_is_cmd_accessed - mark a MMIO could be accessed by command
* @gvt: a GVT device
* @offset: register offset
*
*/
bool intel_gvt_mmio_is_cmd_access(struct intel_gvt *gvt,
unsigned int offset)
{
return gvt->mmio.mmio_attribute[offset >> 2] &
F_CMD_ACCESS;
}
/**
* intel_gvt_mmio_is_unalign - mark a MMIO could be accessed unaligned
* @gvt: a GVT device
* @offset: register offset
*
*/
bool intel_gvt_mmio_is_unalign(struct intel_gvt *gvt,
unsigned int offset)
{
return gvt->mmio.mmio_attribute[offset >> 2] &
F_UNALIGN;
}
/**
* intel_gvt_mmio_set_cmd_accessed - mark a MMIO has been accessed by command
* @gvt: a GVT device
* @offset: register offset
*
*/
void intel_gvt_mmio_set_cmd_accessed(struct intel_gvt *gvt,
unsigned int offset)
{
gvt->mmio.mmio_attribute[offset >> 2] |=
F_CMD_ACCESSED;
}
/**
* intel_gvt_mmio_has_mode_mask - if a MMIO has a mode mask
* @gvt: a GVT device
* @offset: register offset
*
* Returns:
* True if a MMIO has a mode mask in its higher 16 bits, false if it isn't.
*
*/
bool intel_gvt_mmio_has_mode_mask(struct intel_gvt *gvt, unsigned int offset)
{
return gvt->mmio.mmio_attribute[offset >> 2] &
F_MODE_MASK;
}
/**
* intel_vgpu_default_mmio_read - default MMIO read handler
* @vgpu: a vGPU
* @offset: access offset
* @p_data: data return buffer
* @bytes: access data length
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
read_vreg(vgpu, offset, p_data, bytes);
return 0;
}
/**
* intel_t_default_mmio_write - default MMIO write handler
* @vgpu: a vGPU
* @offset: access offset
* @p_data: write data buffer
* @bytes: access data length
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}