linux_dsm_epyc7002/sound/usb/mixer.c

3602 lines
95 KiB
C
Raw Normal View History

/*
* (Tentative) USB Audio Driver for ALSA
*
* Mixer control part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* TODOs, for both the mixer and the streaming interfaces:
*
* - support for UAC2 effect units
* - support for graphical equalizers
* - RANGE and MEM set commands (UAC2)
* - RANGE and MEM interrupt dispatchers (UAC2)
* - audio channel clustering (UAC2)
* - audio sample rate converter units (UAC2)
* - proper handling of clock multipliers (UAC2)
* - dispatch clock change notifications (UAC2)
* - stop PCM streams which use a clock that became invalid
* - stop PCM streams which use a clock selector that has changed
* - parse available sample rates again when clock sources changed
*/
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include "usbaudio.h"
#include "mixer.h"
#include "helper.h"
#include "mixer_quirks.h"
#include "power.h"
#define MAX_ID_ELEMS 256
struct usb_audio_term {
int id;
int type;
int channels;
unsigned int chconfig;
int name;
};
struct usbmix_name_map;
struct mixer_build {
struct snd_usb_audio *chip;
struct usb_mixer_interface *mixer;
unsigned char *buffer;
unsigned int buflen;
DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
struct usb_audio_term oterm;
const struct usbmix_name_map *map;
const struct usbmix_selector_map *selector_map;
};
/*E-mu 0202/0404/0204 eXtension Unit(XU) control*/
enum {
USB_XU_CLOCK_RATE = 0xe301,
USB_XU_CLOCK_SOURCE = 0xe302,
USB_XU_DIGITAL_IO_STATUS = 0xe303,
USB_XU_DEVICE_OPTIONS = 0xe304,
USB_XU_DIRECT_MONITORING = 0xe305,
USB_XU_METERING = 0xe306
};
enum {
USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
};
/*
* manual mapping of mixer names
* if the mixer topology is too complicated and the parsed names are
* ambiguous, add the entries in usbmixer_maps.c.
*/
#include "mixer_maps.c"
static const struct usbmix_name_map *
find_map(const struct usbmix_name_map *p, int unitid, int control)
{
if (!p)
return NULL;
for (; p->id; p++) {
if (p->id == unitid &&
(!control || !p->control || control == p->control))
return p;
}
return NULL;
}
/* get the mapped name if the unit matches */
static int
check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
{
if (!p || !p->name)
return 0;
buflen--;
return strlcpy(buf, p->name, buflen);
}
/* ignore the error value if ignore_ctl_error flag is set */
#define filter_error(cval, err) \
((cval)->head.mixer->ignore_ctl_error ? 0 : (err))
/* check whether the control should be ignored */
static inline int
check_ignored_ctl(const struct usbmix_name_map *p)
{
if (!p || p->name || p->dB)
return 0;
return 1;
}
/* dB mapping */
static inline void check_mapped_dB(const struct usbmix_name_map *p,
struct usb_mixer_elem_info *cval)
{
if (p && p->dB) {
cval->dBmin = p->dB->min;
cval->dBmax = p->dB->max;
cval->initialized = 1;
}
}
/* get the mapped selector source name */
static int check_mapped_selector_name(struct mixer_build *state, int unitid,
int index, char *buf, int buflen)
{
const struct usbmix_selector_map *p;
if (!state->selector_map)
return 0;
for (p = state->selector_map; p->id; p++) {
if (p->id == unitid && index < p->count)
return strlcpy(buf, p->names[index], buflen);
}
return 0;
}
/*
* find an audio control unit with the given unit id
*/
static void *find_audio_control_unit(struct mixer_build *state,
unsigned char unit)
{
/* we just parse the header */
struct uac_feature_unit_descriptor *hdr = NULL;
while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
USB_DT_CS_INTERFACE)) != NULL) {
if (hdr->bLength >= 4 &&
hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
hdr->bDescriptorSubtype <= UAC3_SAMPLE_RATE_CONVERTER &&
hdr->bUnitID == unit)
return hdr;
}
return NULL;
}
/*
* copy a string with the given id
*/
static int snd_usb_copy_string_desc(struct snd_usb_audio *chip,
int index, char *buf, int maxlen)
{
int len = usb_string(chip->dev, index, buf, maxlen - 1);
ALSA: usb-audio: Fix out-of-bound error The snd_usb_copy_string_desc() retrieves the usb string corresponding to the index number through the usb_string(). The problem is that the usb_string() returns the length of the string (>= 0) when successful, but it can also return a negative value about the error case or status of usb_control_msg(). If iClockSource is '0' as shown below, usb_string() will returns -EINVAL. This will result in '0' being inserted into buf[-22], and the following KASAN out-of-bound error message will be output. AudioControl Interface Descriptor: bLength 8 bDescriptorType 36 bDescriptorSubtype 10 (CLOCK_SOURCE) bClockID 1 bmAttributes 0x07 Internal programmable Clock (synced to SOF) bmControls 0x07 Clock Frequency Control (read/write) Clock Validity Control (read-only) bAssocTerminal 0 iClockSource 0 To fix it, check usb_string()'return value and bail out. ================================================================== BUG: KASAN: stack-out-of-bounds in parse_audio_unit+0x1327/0x1960 [snd_usb_audio] Write of size 1 at addr ffff88007e66735a by task systemd-udevd/18376 CPU: 0 PID: 18376 Comm: systemd-udevd Not tainted 4.13.0+ #3 Hardware name: LG Electronics 15N540-RFLGL/White Tip Mountain, BIOS 15N5 Call Trace: dump_stack+0x63/0x8d print_address_description+0x70/0x290 ? parse_audio_unit+0x1327/0x1960 [snd_usb_audio] kasan_report+0x265/0x350 __asan_store1+0x4a/0x50 parse_audio_unit+0x1327/0x1960 [snd_usb_audio] ? save_stack+0xb5/0xd0 ? save_stack_trace+0x1b/0x20 ? save_stack+0x46/0xd0 ? kasan_kmalloc+0xad/0xe0 ? kmem_cache_alloc_trace+0xff/0x230 ? snd_usb_create_mixer+0xb0/0x4b0 [snd_usb_audio] ? usb_audio_probe+0x4de/0xf40 [snd_usb_audio] ? usb_probe_interface+0x1f5/0x440 ? driver_probe_device+0x3ed/0x660 ? build_feature_ctl+0xb10/0xb10 [snd_usb_audio] ? save_stack_trace+0x1b/0x20 ? init_object+0x69/0xa0 ? snd_usb_find_csint_desc+0xa8/0xf0 [snd_usb_audio] snd_usb_mixer_controls+0x1dc/0x370 [snd_usb_audio] ? build_audio_procunit+0x890/0x890 [snd_usb_audio] ? snd_usb_create_mixer+0xb0/0x4b0 [snd_usb_audio] ? kmem_cache_alloc_trace+0xff/0x230 ? usb_ifnum_to_if+0xbd/0xf0 snd_usb_create_mixer+0x25b/0x4b0 [snd_usb_audio] ? snd_usb_create_stream+0x255/0x2c0 [snd_usb_audio] usb_audio_probe+0x4de/0xf40 [snd_usb_audio] ? snd_usb_autosuspend.part.7+0x30/0x30 [snd_usb_audio] ? __pm_runtime_idle+0x90/0x90 ? kernfs_activate+0xa6/0xc0 ? usb_match_one_id_intf+0xdc/0x130 ? __pm_runtime_set_status+0x2d4/0x450 usb_probe_interface+0x1f5/0x440 Cc: <stable@vger.kernel.org> Signed-off-by: Jaejoong Kim <climbbb.kim@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-12-04 13:31:48 +07:00
if (len < 0)
return 0;
buf[len] = 0;
return len;
}
/*
* convert from the byte/word on usb descriptor to the zero-based integer
*/
static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_U8:
val &= 0xff;
break;
case USB_MIXER_S8:
val &= 0xff;
if (val >= 0x80)
val -= 0x100;
break;
case USB_MIXER_U16:
val &= 0xffff;
break;
case USB_MIXER_S16:
val &= 0xffff;
if (val >= 0x8000)
val -= 0x10000;
break;
}
return val;
}
/*
* convert from the zero-based int to the byte/word for usb descriptor
*/
static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_S8:
case USB_MIXER_U8:
return val & 0xff;
case USB_MIXER_S16:
case USB_MIXER_U16:
return val & 0xffff;
}
return 0; /* not reached */
}
static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
{
if (!cval->res)
cval->res = 1;
if (val < cval->min)
return 0;
else if (val >= cval->max)
return (cval->max - cval->min + cval->res - 1) / cval->res;
else
return (val - cval->min) / cval->res;
}
static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
{
if (val < 0)
return cval->min;
if (!cval->res)
cval->res = 1;
val *= cval->res;
val += cval->min;
if (val > cval->max)
return cval->max;
return val;
}
static int uac2_ctl_value_size(int val_type)
{
switch (val_type) {
case USB_MIXER_S32:
case USB_MIXER_U32:
return 4;
case USB_MIXER_S16:
case USB_MIXER_U16:
return 2;
default:
return 1;
}
return 0; /* unreachable */
}
/*
* retrieve a mixer value
*/
static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
unsigned char buf[2];
int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
int timeout = 10;
int idx = 0, err;
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return -EIO;
while (timeout-- > 0) {
idx = snd_usb_ctrl_intf(chip) | (cval->head.id << 8);
ALSA: usb-audio: don't retry snd_usb_ctl_msg after timeout A few calls to snd_usb_ctl_msg wrap the function in a retry loop. In the worst case, the timeout for snd_usb_ctl_msg is 5 seconds, which when retried 10 times (for example, if a device is removed) could cause a probe to hang for ~50 seconds. Example stack trace from 3.14 which triggered a hung task timeout: Call Trace: [<ffffffffa2c1f720>] ? inet6_set_link_af.part.35+0x12/0x12 [<ffffffffa2c20309>] schedule+0x6e/0x70 [<ffffffffa2c1f81c>] schedule_timeout+0xfc/0x13c [<ffffffffa2667bbc>] ? rcu_read_unlock_sched_notrace+0x17/0x17 [<ffffffffa2c20d68>] __wait_for_common+0x153/0x190 [<ffffffffa2c20d68>] ? __wait_for_common+0x153/0x190 [<ffffffffa26890e5>] ? wake_up_state+0x12/0x12 [<ffffffffa2c20e0e>] wait_for_completion_timeout+0x1d/0x1f [<ffffffffa2a07c70>] usb_start_wait_urb+0x93/0xf1 [<ffffffffa2a07daf>] usb_control_msg+0xe1/0x11d [<ffffffffc02cd254>] snd_usb_ctl_msg+0x9c/0xf1 [snd_usb_audio] [<ffffffffc02ce191>] snd_usb_mixer_set_ctl_value+0x124/0xab1 [snd_usb_audio] [<ffffffffc02ce230>] snd_usb_mixer_set_ctl_value+0x1c3/0xab1 [snd_usb_audio] [<ffffffffc02ce58e>] snd_usb_mixer_set_ctl_value+0x521/0xab1 [snd_usb_audio] [<ffffffffc02cee88>] snd_usb_mixer_add_control+0x36a/0x1264 [snd_usb_audio] [<ffffffffc02cf323>] snd_usb_mixer_add_control+0x805/0x1264 [snd_usb_audio] [<ffffffffa2a06e11>] ? usb_free_urb+0x1a/0x1c [<ffffffffc02cfcf7>] snd_usb_mixer_add_control+0x11d9/0x1264 [snd_usb_audio] [<ffffffffc02d000f>] snd_usb_create_mixer+0xbc/0x286 [snd_usb_audio] [<ffffffffc02cac18>] 0xffffffffc02cac17 [<ffffffffa2a0aaf1>] usb_probe_interface+0x17c/0x21c [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa2a09355>] usb_set_configuration+0x624/0x674 [<ffffffffa2a11949>] generic_probe+0x45/0x77 [<ffffffffa2a0a962>] usb_probe_device+0x2d/0x40 [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa29030bc>] ? add_device_randomness+0x111/0x130 [<ffffffffa2a00967>] usb_new_device+0x2a2/0x3c0 [<ffffffffa2a02ddc>] hub_thread+0xa3d/0xeed [<ffffffffa2c2010d>] ? __schedule+0x41e/0x5ac [<ffffffffa26957ce>] ? finish_wait+0x62/0x62 [<ffffffffa2a0239f>] ? usb_reset_device+0x16a/0x16a [<ffffffffa267b255>] kthread+0x108/0x110 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 [<ffffffffa2c23b2c>] ret_from_fork+0x7c/0xb0 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 Signed-off-by: Stephen Barber <smbarber@chromium.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-08-18 05:17:46 +07:00
err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, buf, val_len);
if (err >= val_len) {
*value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
err = 0;
goto out;
ALSA: usb-audio: don't retry snd_usb_ctl_msg after timeout A few calls to snd_usb_ctl_msg wrap the function in a retry loop. In the worst case, the timeout for snd_usb_ctl_msg is 5 seconds, which when retried 10 times (for example, if a device is removed) could cause a probe to hang for ~50 seconds. Example stack trace from 3.14 which triggered a hung task timeout: Call Trace: [<ffffffffa2c1f720>] ? inet6_set_link_af.part.35+0x12/0x12 [<ffffffffa2c20309>] schedule+0x6e/0x70 [<ffffffffa2c1f81c>] schedule_timeout+0xfc/0x13c [<ffffffffa2667bbc>] ? rcu_read_unlock_sched_notrace+0x17/0x17 [<ffffffffa2c20d68>] __wait_for_common+0x153/0x190 [<ffffffffa2c20d68>] ? __wait_for_common+0x153/0x190 [<ffffffffa26890e5>] ? wake_up_state+0x12/0x12 [<ffffffffa2c20e0e>] wait_for_completion_timeout+0x1d/0x1f [<ffffffffa2a07c70>] usb_start_wait_urb+0x93/0xf1 [<ffffffffa2a07daf>] usb_control_msg+0xe1/0x11d [<ffffffffc02cd254>] snd_usb_ctl_msg+0x9c/0xf1 [snd_usb_audio] [<ffffffffc02ce191>] snd_usb_mixer_set_ctl_value+0x124/0xab1 [snd_usb_audio] [<ffffffffc02ce230>] snd_usb_mixer_set_ctl_value+0x1c3/0xab1 [snd_usb_audio] [<ffffffffc02ce58e>] snd_usb_mixer_set_ctl_value+0x521/0xab1 [snd_usb_audio] [<ffffffffc02cee88>] snd_usb_mixer_add_control+0x36a/0x1264 [snd_usb_audio] [<ffffffffc02cf323>] snd_usb_mixer_add_control+0x805/0x1264 [snd_usb_audio] [<ffffffffa2a06e11>] ? usb_free_urb+0x1a/0x1c [<ffffffffc02cfcf7>] snd_usb_mixer_add_control+0x11d9/0x1264 [snd_usb_audio] [<ffffffffc02d000f>] snd_usb_create_mixer+0xbc/0x286 [snd_usb_audio] [<ffffffffc02cac18>] 0xffffffffc02cac17 [<ffffffffa2a0aaf1>] usb_probe_interface+0x17c/0x21c [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa2a09355>] usb_set_configuration+0x624/0x674 [<ffffffffa2a11949>] generic_probe+0x45/0x77 [<ffffffffa2a0a962>] usb_probe_device+0x2d/0x40 [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa29030bc>] ? add_device_randomness+0x111/0x130 [<ffffffffa2a00967>] usb_new_device+0x2a2/0x3c0 [<ffffffffa2a02ddc>] hub_thread+0xa3d/0xeed [<ffffffffa2c2010d>] ? __schedule+0x41e/0x5ac [<ffffffffa26957ce>] ? finish_wait+0x62/0x62 [<ffffffffa2a0239f>] ? usb_reset_device+0x16a/0x16a [<ffffffffa267b255>] kthread+0x108/0x110 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 [<ffffffffa2c23b2c>] ret_from_fork+0x7c/0xb0 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 Signed-off-by: Stephen Barber <smbarber@chromium.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-08-18 05:17:46 +07:00
} else if (err == -ETIMEDOUT) {
goto out;
}
}
usb_audio_dbg(chip,
"cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, idx, cval->val_type);
err = -EINVAL;
out:
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
snd_usb_unlock_shutdown(chip);
return err;
}
static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
/* enough space for one range */
unsigned char buf[sizeof(__u16) + 3 * sizeof(__u32)];
unsigned char *val;
int idx = 0, ret, val_size, size;
__u8 bRequest;
val_size = uac2_ctl_value_size(cval->val_type);
if (request == UAC_GET_CUR) {
bRequest = UAC2_CS_CUR;
size = val_size;
} else {
bRequest = UAC2_CS_RANGE;
size = sizeof(__u16) + 3 * val_size;
}
memset(buf, 0, sizeof(buf));
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
ret = snd_usb_lock_shutdown(chip) ? -EIO : 0;
if (ret)
goto error;
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
idx = snd_usb_ctrl_intf(chip) | (cval->head.id << 8);
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, buf, size);
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
snd_usb_unlock_shutdown(chip);
if (ret < 0) {
error:
usb_audio_err(chip,
"cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, idx, cval->val_type);
return ret;
}
/* FIXME: how should we handle multiple triplets here? */
switch (request) {
case UAC_GET_CUR:
val = buf;
break;
case UAC_GET_MIN:
val = buf + sizeof(__u16);
break;
case UAC_GET_MAX:
val = buf + sizeof(__u16) + val_size;
break;
case UAC_GET_RES:
val = buf + sizeof(__u16) + val_size * 2;
break;
default:
return -EINVAL;
}
*value_ret = convert_signed_value(cval,
snd_usb_combine_bytes(val, val_size));
return 0;
}
static int get_ctl_value(struct usb_mixer_elem_info *cval, int request,
int validx, int *value_ret)
{
validx += cval->idx_off;
return (cval->head.mixer->protocol == UAC_VERSION_1) ?
get_ctl_value_v1(cval, request, validx, value_ret) :
get_ctl_value_v2(cval, request, validx, value_ret);
}
static int get_cur_ctl_value(struct usb_mixer_elem_info *cval,
int validx, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR, validx, value);
}
/* channel = 0: master, 1 = first channel */
static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
int channel, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR,
(cval->control << 8) | channel,
value);
}
int snd_usb_get_cur_mix_value(struct usb_mixer_elem_info *cval,
int channel, int index, int *value)
{
int err;
if (cval->cached & (1 << channel)) {
*value = cval->cache_val[index];
return 0;
}
err = get_cur_mix_raw(cval, channel, value);
if (err < 0) {
if (!cval->head.mixer->ignore_ctl_error)
usb_audio_dbg(cval->head.mixer->chip,
"cannot get current value for control %d ch %d: err = %d\n",
cval->control, channel, err);
return err;
}
cval->cached |= 1 << channel;
cval->cache_val[index] = *value;
return 0;
}
/*
* set a mixer value
*/
int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
int request, int validx, int value_set)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
unsigned char buf[4];
int idx = 0, val_len, err, timeout = 10;
validx += cval->idx_off;
if (cval->head.mixer->protocol == UAC_VERSION_1) {
val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
} else { /* UAC_VERSION_2/3 */
val_len = uac2_ctl_value_size(cval->val_type);
/* FIXME */
if (request != UAC_SET_CUR) {
usb_audio_dbg(chip, "RANGE setting not yet supported\n");
return -EINVAL;
}
request = UAC2_CS_CUR;
}
value_set = convert_bytes_value(cval, value_set);
buf[0] = value_set & 0xff;
buf[1] = (value_set >> 8) & 0xff;
buf[2] = (value_set >> 16) & 0xff;
buf[3] = (value_set >> 24) & 0xff;
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return -EIO;
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
while (timeout-- > 0) {
idx = snd_usb_ctrl_intf(chip) | (cval->head.id << 8);
ALSA: usb-audio: don't retry snd_usb_ctl_msg after timeout A few calls to snd_usb_ctl_msg wrap the function in a retry loop. In the worst case, the timeout for snd_usb_ctl_msg is 5 seconds, which when retried 10 times (for example, if a device is removed) could cause a probe to hang for ~50 seconds. Example stack trace from 3.14 which triggered a hung task timeout: Call Trace: [<ffffffffa2c1f720>] ? inet6_set_link_af.part.35+0x12/0x12 [<ffffffffa2c20309>] schedule+0x6e/0x70 [<ffffffffa2c1f81c>] schedule_timeout+0xfc/0x13c [<ffffffffa2667bbc>] ? rcu_read_unlock_sched_notrace+0x17/0x17 [<ffffffffa2c20d68>] __wait_for_common+0x153/0x190 [<ffffffffa2c20d68>] ? __wait_for_common+0x153/0x190 [<ffffffffa26890e5>] ? wake_up_state+0x12/0x12 [<ffffffffa2c20e0e>] wait_for_completion_timeout+0x1d/0x1f [<ffffffffa2a07c70>] usb_start_wait_urb+0x93/0xf1 [<ffffffffa2a07daf>] usb_control_msg+0xe1/0x11d [<ffffffffc02cd254>] snd_usb_ctl_msg+0x9c/0xf1 [snd_usb_audio] [<ffffffffc02ce191>] snd_usb_mixer_set_ctl_value+0x124/0xab1 [snd_usb_audio] [<ffffffffc02ce230>] snd_usb_mixer_set_ctl_value+0x1c3/0xab1 [snd_usb_audio] [<ffffffffc02ce58e>] snd_usb_mixer_set_ctl_value+0x521/0xab1 [snd_usb_audio] [<ffffffffc02cee88>] snd_usb_mixer_add_control+0x36a/0x1264 [snd_usb_audio] [<ffffffffc02cf323>] snd_usb_mixer_add_control+0x805/0x1264 [snd_usb_audio] [<ffffffffa2a06e11>] ? usb_free_urb+0x1a/0x1c [<ffffffffc02cfcf7>] snd_usb_mixer_add_control+0x11d9/0x1264 [snd_usb_audio] [<ffffffffc02d000f>] snd_usb_create_mixer+0xbc/0x286 [snd_usb_audio] [<ffffffffc02cac18>] 0xffffffffc02cac17 [<ffffffffa2a0aaf1>] usb_probe_interface+0x17c/0x21c [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa2a09355>] usb_set_configuration+0x624/0x674 [<ffffffffa2a11949>] generic_probe+0x45/0x77 [<ffffffffa2a0a962>] usb_probe_device+0x2d/0x40 [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa29030bc>] ? add_device_randomness+0x111/0x130 [<ffffffffa2a00967>] usb_new_device+0x2a2/0x3c0 [<ffffffffa2a02ddc>] hub_thread+0xa3d/0xeed [<ffffffffa2c2010d>] ? __schedule+0x41e/0x5ac [<ffffffffa26957ce>] ? finish_wait+0x62/0x62 [<ffffffffa2a0239f>] ? usb_reset_device+0x16a/0x16a [<ffffffffa267b255>] kthread+0x108/0x110 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 [<ffffffffa2c23b2c>] ret_from_fork+0x7c/0xb0 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 Signed-off-by: Stephen Barber <smbarber@chromium.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-08-18 05:17:46 +07:00
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
validx, idx, buf, val_len);
if (err >= 0) {
err = 0;
goto out;
ALSA: usb-audio: don't retry snd_usb_ctl_msg after timeout A few calls to snd_usb_ctl_msg wrap the function in a retry loop. In the worst case, the timeout for snd_usb_ctl_msg is 5 seconds, which when retried 10 times (for example, if a device is removed) could cause a probe to hang for ~50 seconds. Example stack trace from 3.14 which triggered a hung task timeout: Call Trace: [<ffffffffa2c1f720>] ? inet6_set_link_af.part.35+0x12/0x12 [<ffffffffa2c20309>] schedule+0x6e/0x70 [<ffffffffa2c1f81c>] schedule_timeout+0xfc/0x13c [<ffffffffa2667bbc>] ? rcu_read_unlock_sched_notrace+0x17/0x17 [<ffffffffa2c20d68>] __wait_for_common+0x153/0x190 [<ffffffffa2c20d68>] ? __wait_for_common+0x153/0x190 [<ffffffffa26890e5>] ? wake_up_state+0x12/0x12 [<ffffffffa2c20e0e>] wait_for_completion_timeout+0x1d/0x1f [<ffffffffa2a07c70>] usb_start_wait_urb+0x93/0xf1 [<ffffffffa2a07daf>] usb_control_msg+0xe1/0x11d [<ffffffffc02cd254>] snd_usb_ctl_msg+0x9c/0xf1 [snd_usb_audio] [<ffffffffc02ce191>] snd_usb_mixer_set_ctl_value+0x124/0xab1 [snd_usb_audio] [<ffffffffc02ce230>] snd_usb_mixer_set_ctl_value+0x1c3/0xab1 [snd_usb_audio] [<ffffffffc02ce58e>] snd_usb_mixer_set_ctl_value+0x521/0xab1 [snd_usb_audio] [<ffffffffc02cee88>] snd_usb_mixer_add_control+0x36a/0x1264 [snd_usb_audio] [<ffffffffc02cf323>] snd_usb_mixer_add_control+0x805/0x1264 [snd_usb_audio] [<ffffffffa2a06e11>] ? usb_free_urb+0x1a/0x1c [<ffffffffc02cfcf7>] snd_usb_mixer_add_control+0x11d9/0x1264 [snd_usb_audio] [<ffffffffc02d000f>] snd_usb_create_mixer+0xbc/0x286 [snd_usb_audio] [<ffffffffc02cac18>] 0xffffffffc02cac17 [<ffffffffa2a0aaf1>] usb_probe_interface+0x17c/0x21c [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa2a09355>] usb_set_configuration+0x624/0x674 [<ffffffffa2a11949>] generic_probe+0x45/0x77 [<ffffffffa2a0a962>] usb_probe_device+0x2d/0x40 [<ffffffffa29a65bc>] driver_probe_device+0xae/0x1fa [<ffffffffa29a6767>] __device_attach_driver+0x5f/0x66 [<ffffffffa29a6708>] ? driver_probe_device+0x1fa/0x1fa [<ffffffffa29a4a60>] bus_for_each_drv+0x87/0xaa [<ffffffffa29a688a>] __device_attach+0x9d/0x101 [<ffffffffa29a6913>] device_initial_probe+0x13/0x15 [<ffffffffa29a5ae6>] bus_probe_device+0x33/0x96 [<ffffffffa29a3d19>] device_add+0x328/0x547 [<ffffffffa29030bc>] ? add_device_randomness+0x111/0x130 [<ffffffffa2a00967>] usb_new_device+0x2a2/0x3c0 [<ffffffffa2a02ddc>] hub_thread+0xa3d/0xeed [<ffffffffa2c2010d>] ? __schedule+0x41e/0x5ac [<ffffffffa26957ce>] ? finish_wait+0x62/0x62 [<ffffffffa2a0239f>] ? usb_reset_device+0x16a/0x16a [<ffffffffa267b255>] kthread+0x108/0x110 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 [<ffffffffa2c23b2c>] ret_from_fork+0x7c/0xb0 [<ffffffffa267b14d>] ? __kthread_parkme+0x67/0x67 Signed-off-by: Stephen Barber <smbarber@chromium.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-08-18 05:17:46 +07:00
} else if (err == -ETIMEDOUT) {
goto out;
}
}
usb_audio_dbg(chip, "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
request, validx, idx, cval->val_type, buf[0], buf[1]);
err = -EINVAL;
out:
ALSA: usb-audio: Avoid nested autoresume calls After the recent fix of runtime PM for USB-audio driver, we got a lockdep warning like: ============================================= [ INFO: possible recursive locking detected ] 4.2.0-rc8+ #61 Not tainted --------------------------------------------- pulseaudio/980 is trying to acquire lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] but task is already holding lock: (&chip->shutdown_rwsem){.+.+.+}, at: [<ffffffffa0355dac>] snd_usb_autoresume+0x1d/0x52 [snd_usb_audio] This comes from snd_usb_autoresume() invoking down_read() and it's used in a nested way. Although it's basically safe, per se (as these are read locks), it's better to reduce such spurious warnings. The read lock is needed to guarantee the execution of "shutdown" (cleanup at disconnection) task after all concurrent tasks are finished. This can be implemented in another better way. Also, the current check of chip->in_pm isn't good enough for protecting the racy execution of multiple auto-resumes. This patch rewrites the logic of snd_usb_autoresume() & co; namely, - The recursive call of autopm is avoided by the new refcount, chip->active. The chip->in_pm flag is removed accordingly. - Instead of rwsem, another refcount, chip->usage_count, is introduced for tracking the period to delay the shutdown procedure. At the last clear of this refcount, wake_up() to the shutdown waiter is called. - The shutdown flag is replaced with shutdown atomic count; this is for reducing the lock. - Two new helpers are introduced to simplify the management of these refcounts; snd_usb_lock_shutdown() increases the usage_count, checks the shutdown state, and does autoresume. snd_usb_unlock_shutdown() does the opposite. Most of mixer and other codes just need this, and simply returns an error if it receives an error from lock. Fixes: 9003ebb13f61 ('ALSA: usb-audio: Fix runtime PM unbalance') Reported-and-tested-by: Alexnader Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-25 21:09:00 +07:00
snd_usb_unlock_shutdown(chip);
return err;
}
static int set_cur_ctl_value(struct usb_mixer_elem_info *cval,
int validx, int value)
{
return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
}
int snd_usb_set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
int index, int value)
{
int err;
unsigned int read_only = (channel == 0) ?
cval->master_readonly :
cval->ch_readonly & (1 << (channel - 1));
if (read_only) {
usb_audio_dbg(cval->head.mixer->chip,
"%s(): channel %d of control %d is read_only\n",
__func__, channel, cval->control);
return 0;
}
err = snd_usb_mixer_set_ctl_value(cval,
UAC_SET_CUR, (cval->control << 8) | channel,
value);
if (err < 0)
return err;
cval->cached |= 1 << channel;
cval->cache_val[index] = value;
return 0;
}
/*
* TLV callback for mixer volume controls
*/
int snd_usb_mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
DECLARE_TLV_DB_MINMAX(scale, 0, 0);
if (size < sizeof(scale))
return -ENOMEM;
if (cval->min_mute)
scale[0] = SNDRV_CTL_TLVT_DB_MINMAX_MUTE;
scale[2] = cval->dBmin;
scale[3] = cval->dBmax;
if (copy_to_user(_tlv, scale, sizeof(scale)))
return -EFAULT;
return 0;
}
/*
* parser routines begin here...
*/
static int parse_audio_unit(struct mixer_build *state, int unitid);
/*
* check if the input/output channel routing is enabled on the given bitmap.
* used for mixer unit parser
*/
static int check_matrix_bitmap(unsigned char *bmap,
int ich, int och, int num_outs)
{
int idx = ich * num_outs + och;
return bmap[idx >> 3] & (0x80 >> (idx & 7));
}
/*
* add an alsa control element
* search and increment the index until an empty slot is found.
*
* if failed, give up and free the control instance.
*/
int snd_usb_mixer_add_control(struct usb_mixer_elem_list *list,
struct snd_kcontrol *kctl)
{
struct usb_mixer_interface *mixer = list->mixer;
int err;
while (snd_ctl_find_id(mixer->chip->card, &kctl->id))
kctl->id.index++;
err = snd_ctl_add(mixer->chip->card, kctl);
if (err < 0) {
usb_audio_dbg(mixer->chip, "cannot add control (err = %d)\n",
err);
return err;
}
list->kctl = kctl;
list->next_id_elem = mixer->id_elems[list->id];
mixer->id_elems[list->id] = list;
return 0;
}
/*
* get a terminal name string
*/
static struct iterm_name_combo {
int type;
char *name;
} iterm_names[] = {
{ 0x0300, "Output" },
{ 0x0301, "Speaker" },
{ 0x0302, "Headphone" },
{ 0x0303, "HMD Audio" },
{ 0x0304, "Desktop Speaker" },
{ 0x0305, "Room Speaker" },
{ 0x0306, "Com Speaker" },
{ 0x0307, "LFE" },
{ 0x0600, "External In" },
{ 0x0601, "Analog In" },
{ 0x0602, "Digital In" },
{ 0x0603, "Line" },
{ 0x0604, "Legacy In" },
{ 0x0605, "IEC958 In" },
{ 0x0606, "1394 DA Stream" },
{ 0x0607, "1394 DV Stream" },
{ 0x0700, "Embedded" },
{ 0x0701, "Noise Source" },
{ 0x0702, "Equalization Noise" },
{ 0x0703, "CD" },
{ 0x0704, "DAT" },
{ 0x0705, "DCC" },
{ 0x0706, "MiniDisk" },
{ 0x0707, "Analog Tape" },
{ 0x0708, "Phonograph" },
{ 0x0709, "VCR Audio" },
{ 0x070a, "Video Disk Audio" },
{ 0x070b, "DVD Audio" },
{ 0x070c, "TV Tuner Audio" },
{ 0x070d, "Satellite Rec Audio" },
{ 0x070e, "Cable Tuner Audio" },
{ 0x070f, "DSS Audio" },
{ 0x0710, "Radio Receiver" },
{ 0x0711, "Radio Transmitter" },
{ 0x0712, "Multi-Track Recorder" },
{ 0x0713, "Synthesizer" },
{ 0 },
};
static int get_term_name(struct snd_usb_audio *chip, struct usb_audio_term *iterm,
unsigned char *name, int maxlen, int term_only)
{
struct iterm_name_combo *names;
int len;
if (iterm->name) {
len = snd_usb_copy_string_desc(chip, iterm->name,
name, maxlen);
if (len)
return len;
}
/* virtual type - not a real terminal */
if (iterm->type >> 16) {
if (term_only)
return 0;
switch (iterm->type >> 16) {
case UAC3_SELECTOR_UNIT:
strcpy(name, "Selector");
return 8;
case UAC3_PROCESSING_UNIT:
strcpy(name, "Process Unit");
return 12;
case UAC3_EXTENSION_UNIT:
strcpy(name, "Ext Unit");
return 8;
case UAC3_MIXER_UNIT:
strcpy(name, "Mixer");
return 5;
default:
return sprintf(name, "Unit %d", iterm->id);
}
}
switch (iterm->type & 0xff00) {
case 0x0100:
strcpy(name, "PCM");
return 3;
case 0x0200:
strcpy(name, "Mic");
return 3;
case 0x0400:
strcpy(name, "Headset");
return 7;
case 0x0500:
strcpy(name, "Phone");
return 5;
}
for (names = iterm_names; names->type; names++) {
if (names->type == iterm->type) {
strcpy(name, names->name);
return strlen(names->name);
}
}
return 0;
}
/*
* Get logical cluster information for UAC3 devices.
*/
static int get_cluster_channels_v3(struct mixer_build *state, unsigned int cluster_id)
{
struct uac3_cluster_header_descriptor c_header;
int err;
err = snd_usb_ctl_msg(state->chip->dev,
usb_rcvctrlpipe(state->chip->dev, 0),
UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
cluster_id,
snd_usb_ctrl_intf(state->chip),
&c_header, sizeof(c_header));
if (err < 0)
goto error;
if (err != sizeof(c_header)) {
err = -EIO;
goto error;
}
return c_header.bNrChannels;
error:
usb_audio_err(state->chip, "cannot request logical cluster ID: %d (err: %d)\n", cluster_id, err);
return err;
}
/*
* Get number of channels for a Mixer Unit.
*/
static int uac_mixer_unit_get_channels(struct mixer_build *state,
struct uac_mixer_unit_descriptor *desc)
{
int mu_channels;
if (desc->bLength < 11)
return -EINVAL;
if (!desc->bNrInPins)
return -EINVAL;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
mu_channels = uac_mixer_unit_bNrChannels(desc);
break;
case UAC_VERSION_3:
mu_channels = get_cluster_channels_v3(state,
uac3_mixer_unit_wClusterDescrID(desc));
break;
}
if (!mu_channels)
return -EINVAL;
return mu_channels;
}
/*
* parse the source unit recursively until it reaches to a terminal
* or a branched unit.
*/
static int check_input_term(struct mixer_build *state, int id,
struct usb_audio_term *term)
{
int protocol = state->mixer->protocol;
int err;
void *p1;
memset(term, 0, sizeof(*term));
while ((p1 = find_audio_control_unit(state, id)) != NULL) {
unsigned char *hdr = p1;
term->id = id;
if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
switch (hdr[2]) {
case UAC_INPUT_TERMINAL:
if (protocol == UAC_VERSION_1) {
struct uac_input_terminal_descriptor *d = p1;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le16_to_cpu(d->wChannelConfig);
term->name = d->iTerminal;
} else { /* UAC_VERSION_2 */
struct uac2_input_terminal_descriptor *d = p1;
/* call recursively to verify that the
* referenced clock entity is valid */
err = check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
/* save input term properties after recursion,
* to ensure they are not overriden by the
* recursion calls */
term->id = id;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le32_to_cpu(d->bmChannelConfig);
term->name = d->iTerminal;
}
return 0;
case UAC_FEATURE_UNIT: {
/* the header is the same for v1 and v2 */
struct uac_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case UAC_MIXER_UNIT: {
struct uac_mixer_unit_descriptor *d = p1;
term->type = UAC3_MIXER_UNIT << 16; /* virtual type */
term->channels = uac_mixer_unit_bNrChannels(d);
term->chconfig = uac_mixer_unit_wChannelConfig(d, protocol);
term->name = uac_mixer_unit_iMixer(d);
return 0;
}
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR: {
struct uac_selector_unit_descriptor *d = p1;
/* call recursively to retrieve the channel info */
err = check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = UAC3_SELECTOR_UNIT << 16; /* virtual type */
term->id = id;
term->name = uac_selector_unit_iSelector(d);
return 0;
}
case UAC1_PROCESSING_UNIT:
/* UAC2_EFFECT_UNIT */
if (protocol == UAC_VERSION_1)
term->type = UAC3_PROCESSING_UNIT << 16; /* virtual type */
else /* UAC_VERSION_2 */
term->type = UAC3_EFFECT_UNIT << 16; /* virtual type */
/* fall through */
case UAC1_EXTENSION_UNIT:
/* UAC2_PROCESSING_UNIT_V2 */
if (protocol == UAC_VERSION_1 && !term->type)
term->type = UAC3_EXTENSION_UNIT << 16; /* virtual type */
else if (protocol == UAC_VERSION_2 && !term->type)
term->type = UAC3_PROCESSING_UNIT << 16; /* virtual type */
/* fall through */
case UAC2_EXTENSION_UNIT_V2: {
struct uac_processing_unit_descriptor *d = p1;
if (protocol == UAC_VERSION_2 &&
hdr[2] == UAC2_EFFECT_UNIT) {
/* UAC2/UAC1 unit IDs overlap here in an
* uncompatible way. Ignore this unit for now.
*/
return 0;
}
if (d->bNrInPins) {
id = d->baSourceID[0];
break; /* continue to parse */
}
if (!term->type)
term->type = UAC3_EXTENSION_UNIT << 16; /* virtual type */
term->channels = uac_processing_unit_bNrChannels(d);
term->chconfig = uac_processing_unit_wChannelConfig(d, protocol);
term->name = uac_processing_unit_iProcessing(d, protocol);
return 0;
}
case UAC2_CLOCK_SOURCE: {
struct uac_clock_source_descriptor *d = p1;
term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */
term->id = id;
term->name = d->iClockSource;
return 0;
}
default:
return -ENODEV;
}
} else { /* UAC_VERSION_3 */
switch (hdr[2]) {
case UAC_INPUT_TERMINAL: {
struct uac3_input_terminal_descriptor *d = p1;
/* call recursively to verify that the
* referenced clock entity is valid */
err = check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
/* save input term properties after recursion,
* to ensure they are not overriden by the
* recursion calls */
term->id = id;
term->type = le16_to_cpu(d->wTerminalType);
err = get_cluster_channels_v3(state, le16_to_cpu(d->wClusterDescrID));
if (err < 0)
return err;
term->channels = err;
/* REVISIT: UAC3 IT doesn't have channels cfg */
term->chconfig = 0;
term->name = le16_to_cpu(d->wTerminalDescrStr);
return 0;
}
case UAC3_FEATURE_UNIT: {
struct uac3_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case UAC3_CLOCK_SOURCE: {
struct uac3_clock_source_descriptor *d = p1;
term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */
term->id = id;
term->name = le16_to_cpu(d->wClockSourceStr);
return 0;
}
case UAC3_MIXER_UNIT: {
struct uac_mixer_unit_descriptor *d = p1;
err = uac_mixer_unit_get_channels(state, d);
if (err < 0)
return err;
term->channels = err;
term->type = UAC3_MIXER_UNIT << 16; /* virtual type */
return 0;
}
case UAC3_SELECTOR_UNIT:
case UAC3_CLOCK_SELECTOR: {
struct uac_selector_unit_descriptor *d = p1;
/* call recursively to retrieve the channel info */
err = check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = UAC3_SELECTOR_UNIT << 16; /* virtual type */
term->id = id;
term->name = 0; /* TODO: UAC3 Class-specific strings */
return 0;
}
case UAC3_PROCESSING_UNIT: {
struct uac_processing_unit_descriptor *d = p1;
if (!d->bNrInPins)
return -EINVAL;
/* call recursively to retrieve the channel info */
err = check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = UAC3_PROCESSING_UNIT << 16; /* virtual type */
term->id = id;
term->name = 0; /* TODO: UAC3 Class-specific strings */
return 0;
}
default:
return -ENODEV;
}
}
}
return -ENODEV;
}
/*
* Feature Unit
*/
/* feature unit control information */
struct usb_feature_control_info {
int control;
const char *name;
int type; /* data type for uac1 */
int type_uac2; /* data type for uac2 if different from uac1, else -1 */
};
static struct usb_feature_control_info audio_feature_info[] = {
{ UAC_FU_MUTE, "Mute", USB_MIXER_INV_BOOLEAN, -1 },
{ UAC_FU_VOLUME, "Volume", USB_MIXER_S16, -1 },
{ UAC_FU_BASS, "Tone Control - Bass", USB_MIXER_S8, -1 },
{ UAC_FU_MID, "Tone Control - Mid", USB_MIXER_S8, -1 },
{ UAC_FU_TREBLE, "Tone Control - Treble", USB_MIXER_S8, -1 },
{ UAC_FU_GRAPHIC_EQUALIZER, "Graphic Equalizer", USB_MIXER_S8, -1 }, /* FIXME: not implemented yet */
{ UAC_FU_AUTOMATIC_GAIN, "Auto Gain Control", USB_MIXER_BOOLEAN, -1 },
{ UAC_FU_DELAY, "Delay Control", USB_MIXER_U16, USB_MIXER_U32 },
{ UAC_FU_BASS_BOOST, "Bass Boost", USB_MIXER_BOOLEAN, -1 },
{ UAC_FU_LOUDNESS, "Loudness", USB_MIXER_BOOLEAN, -1 },
/* UAC2 specific */
{ UAC2_FU_INPUT_GAIN, "Input Gain Control", USB_MIXER_S16, -1 },
{ UAC2_FU_INPUT_GAIN_PAD, "Input Gain Pad Control", USB_MIXER_S16, -1 },
{ UAC2_FU_PHASE_INVERTER, "Phase Inverter Control", USB_MIXER_BOOLEAN, -1 },
};
/* private_free callback */
void snd_usb_mixer_elem_free(struct snd_kcontrol *kctl)
{
kfree(kctl->private_data);
kctl->private_data = NULL;
}
/*
* interface to ALSA control for feature/mixer units
*/
/* volume control quirks */
static void volume_control_quirks(struct usb_mixer_elem_info *cval,
struct snd_kcontrol *kctl)
{
struct snd_usb_audio *chip = cval->head.mixer->chip;
switch (chip->usb_id) {
case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C600 */
if (strcmp(kctl->id.name, "Effect Duration") == 0) {
cval->min = 0x0000;
cval->max = 0xffff;
cval->res = 0x00e6;
break;
}
if (strcmp(kctl->id.name, "Effect Volume") == 0 ||
strcmp(kctl->id.name, "Effect Feedback Volume") == 0) {
cval->min = 0x00;
cval->max = 0xff;
break;
}
if (strstr(kctl->id.name, "Effect Return") != NULL) {
cval->min = 0xb706;
cval->max = 0xff7b;
cval->res = 0x0073;
break;
}
if ((strstr(kctl->id.name, "Playback Volume") != NULL) ||
(strstr(kctl->id.name, "Effect Send") != NULL)) {
cval->min = 0xb5fb; /* -73 dB = 0xb6ff */
cval->max = 0xfcfe;
cval->res = 0x0073;
}
break;
case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
if (strcmp(kctl->id.name, "Effect Duration") == 0) {
usb_audio_info(chip,
"set quirk for FTU Effect Duration\n");
cval->min = 0x0000;
cval->max = 0x7f00;
cval->res = 0x0100;
break;
}
if (strcmp(kctl->id.name, "Effect Volume") == 0 ||
strcmp(kctl->id.name, "Effect Feedback Volume") == 0) {
usb_audio_info(chip,
"set quirks for FTU Effect Feedback/Volume\n");
cval->min = 0x00;
cval->max = 0x7f;
break;
}
break;
case USB_ID(0x0d8c, 0x0103):
if (!strcmp(kctl->id.name, "PCM Playback Volume")) {
usb_audio_info(chip,
"set volume quirk for CM102-A+/102S+\n");
cval->min = -256;
}
break;
case USB_ID(0x0471, 0x0101):
case USB_ID(0x0471, 0x0104):
case USB_ID(0x0471, 0x0105):
case USB_ID(0x0672, 0x1041):
/* quirk for UDA1321/N101.
* note that detection between firmware 2.1.1.7 (N101)
* and later 2.1.1.21 is not very clear from datasheets.
* I hope that the min value is -15360 for newer firmware --jk
*/
if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
cval->min == -15616) {
usb_audio_info(chip,
"set volume quirk for UDA1321/N101 chip\n");
cval->max = -256;
}
break;
case USB_ID(0x046d, 0x09a4):
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set volume quirk for QuickCam E3500\n");
cval->min = 6080;
cval->max = 8768;
cval->res = 192;
}
break;
case USB_ID(0x046d, 0x0807): /* Logitech Webcam C500 */
case USB_ID(0x046d, 0x0808):
case USB_ID(0x046d, 0x0809):
case USB_ID(0x046d, 0x0819): /* Logitech Webcam C210 */
case USB_ID(0x046d, 0x081b): /* HD Webcam c310 */
case USB_ID(0x046d, 0x081d): /* HD Webcam c510 */
case USB_ID(0x046d, 0x0825): /* HD Webcam c270 */
case USB_ID(0x046d, 0x0826): /* HD Webcam c525 */
case USB_ID(0x046d, 0x08ca): /* Logitech Quickcam Fusion */
case USB_ID(0x046d, 0x0991):
case USB_ID(0x046d, 0x09a2): /* QuickCam Communicate Deluxe/S7500 */
/* Most audio usb devices lie about volume resolution.
* Most Logitech webcams have res = 384.
* Probably there is some logitech magic behind this number --fishor
*/
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
usb_audio_info(chip,
"set resolution quirk: cval->res = 384\n");
cval->res = 384;
}
break;
}
}
/*
* retrieve the minimum and maximum values for the specified control
*/
static int get_min_max_with_quirks(struct usb_mixer_elem_info *cval,
int default_min, struct snd_kcontrol *kctl)
{
/* for failsafe */
cval->min = default_min;
cval->max = cval->min + 1;
cval->res = 1;
cval->dBmin = cval->dBmax = 0;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
cval->initialized = 1;
} else {
int minchn = 0;
if (cval->cmask) {
int i;
for (i = 0; i < MAX_CHANNELS; i++)
if (cval->cmask & (1 << i)) {
minchn = i + 1;
break;
}
}
if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
usb_audio_err(cval->head.mixer->chip,
"%d:%d: cannot get min/max values for control %d (id %d)\n",
cval->head.id, snd_usb_ctrl_intf(cval->head.mixer->chip),
cval->control, cval->head.id);
return -EINVAL;
}
if (get_ctl_value(cval, UAC_GET_RES,
(cval->control << 8) | minchn,
&cval->res) < 0) {
cval->res = 1;
} else {
int last_valid_res = cval->res;
while (cval->res > 1) {
if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
(cval->control << 8) | minchn,
cval->res / 2) < 0)
break;
cval->res /= 2;
}
if (get_ctl_value(cval, UAC_GET_RES,
(cval->control << 8) | minchn, &cval->res) < 0)
cval->res = last_valid_res;
}
if (cval->res == 0)
cval->res = 1;
/* Additional checks for the proper resolution
*
* Some devices report smaller resolutions than actually
* reacting. They don't return errors but simply clip
* to the lower aligned value.
*/
if (cval->min + cval->res < cval->max) {
int last_valid_res = cval->res;
int saved, test, check;
get_cur_mix_raw(cval, minchn, &saved);
for (;;) {
test = saved;
if (test < cval->max)
test += cval->res;
else
test -= cval->res;
if (test < cval->min || test > cval->max ||
snd_usb_set_cur_mix_value(cval, minchn, 0, test) ||
get_cur_mix_raw(cval, minchn, &check)) {
cval->res = last_valid_res;
break;
}
if (test == check)
break;
cval->res *= 2;
}
snd_usb_set_cur_mix_value(cval, minchn, 0, saved);
}
cval->initialized = 1;
}
if (kctl)
volume_control_quirks(cval, kctl);
/* USB descriptions contain the dB scale in 1/256 dB unit
* while ALSA TLV contains in 1/100 dB unit
*/
cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
if (cval->dBmin > cval->dBmax) {
/* something is wrong; assume it's either from/to 0dB */
if (cval->dBmin < 0)
cval->dBmax = 0;
else if (cval->dBmin > 0)
cval->dBmin = 0;
if (cval->dBmin > cval->dBmax) {
/* totally crap, return an error */
return -EINVAL;
}
}
return 0;
}
#define get_min_max(cval, def) get_min_max_with_quirks(cval, def, NULL)
/* get a feature/mixer unit info */
static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN)
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
else
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = cval->channels;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
} else {
if (!cval->initialized) {
get_min_max_with_quirks(cval, 0, kcontrol);
if (cval->initialized && cval->dBmin >= cval->dBmax) {
kcontrol->vd[0].access &=
~(SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK);
snd_ctl_notify(cval->head.mixer->chip->card,
SNDRV_CTL_EVENT_MASK_INFO,
&kcontrol->id);
}
}
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
(cval->max - cval->min + cval->res - 1) / cval->res;
}
return 0;
}
/* get the current value from feature/mixer unit */
static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, err;
ucontrol->value.integer.value[0] = cval->min;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & (1 << c)))
continue;
err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &val);
if (err < 0)
return filter_error(cval, err);
val = get_relative_value(cval, val);
ucontrol->value.integer.value[cnt] = val;
cnt++;
}
return 0;
} else {
/* master channel */
err = snd_usb_get_cur_mix_value(cval, 0, 0, &val);
if (err < 0)
return filter_error(cval, err);
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
}
return 0;
}
/* put the current value to feature/mixer unit */
static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, oval, err;
int changed = 0;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & (1 << c)))
continue;
err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[cnt];
val = get_abs_value(cval, val);
if (oval != val) {
snd_usb_set_cur_mix_value(cval, c + 1, cnt, val);
changed = 1;
}
cnt++;
}
} else {
/* master channel */
err = snd_usb_get_cur_mix_value(cval, 0, 0, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
snd_usb_set_cur_mix_value(cval, 0, 0, val);
changed = 1;
}
}
return changed;
}
/* get the boolean value from the master channel of a UAC control */
static int mixer_ctl_master_bool_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, err;
err = snd_usb_get_cur_mix_value(cval, 0, 0, &val);
if (err < 0)
return filter_error(cval, err);
val = (val != 0);
ucontrol->value.integer.value[0] = val;
return 0;
}
/* get the connectors status and report it as boolean type */
static int mixer_ctl_connector_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
struct snd_usb_audio *chip = cval->head.mixer->chip;
int idx = 0, validx, ret, val;
validx = cval->control << 8 | 0;
ret = snd_usb_lock_shutdown(chip) ? -EIO : 0;
if (ret)
goto error;
idx = snd_usb_ctrl_intf(chip) | (cval->head.id << 8);
if (cval->head.mixer->protocol == UAC_VERSION_2) {
struct uac2_connectors_ctl_blk uac2_conn;
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, &uac2_conn, sizeof(uac2_conn));
val = !!uac2_conn.bNrChannels;
} else { /* UAC_VERSION_3 */
struct uac3_insertion_ctl_blk uac3_conn;
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, idx, &uac3_conn, sizeof(uac3_conn));
val = !!uac3_conn.bmConInserted;
}
snd_usb_unlock_shutdown(chip);
if (ret < 0) {
error:
usb_audio_err(chip,
"cannot get connectors status: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
UAC_GET_CUR, validx, idx, cval->val_type);
return ret;
}
ucontrol->value.integer.value[0] = val;
return 0;
}
static struct snd_kcontrol_new usb_feature_unit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = mixer_ctl_feature_put,
};
/* the read-only variant */
static const struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = NULL,
};
/*
* A control which shows the boolean value from reading a UAC control on
* the master channel.
*/
static struct snd_kcontrol_new usb_bool_master_control_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "", /* will be filled later manually */
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ctl_boolean_mono_info,
.get = mixer_ctl_master_bool_get,
.put = NULL,
};
static const struct snd_kcontrol_new usb_connector_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "", /* will be filled later manually */
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ctl_boolean_mono_info,
.get = mixer_ctl_connector_get,
.put = NULL,
};
/*
* This symbol is exported in order to allow the mixer quirks to
* hook up to the standard feature unit control mechanism
*/
struct snd_kcontrol_new *snd_usb_feature_unit_ctl = &usb_feature_unit_ctl;
/*
* build a feature control
*/
static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
{
return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
}
/*
* A lot of headsets/headphones have a "Speaker" mixer. Make sure we
* rename it to "Headphone". We determine if something is a headphone
* similar to how udev determines form factor.
*/
static void check_no_speaker_on_headset(struct snd_kcontrol *kctl,
struct snd_card *card)
{
const char *names_to_check[] = {
"Headset", "headset", "Headphone", "headphone", NULL};
const char **s;
bool found = false;
if (strcmp("Speaker", kctl->id.name))
return;
for (s = names_to_check; *s; s++)
if (strstr(card->shortname, *s)) {
found = true;
break;
}
if (!found)
return;
strlcpy(kctl->id.name, "Headphone", sizeof(kctl->id.name));
}
static struct usb_feature_control_info *get_feature_control_info(int control)
{
int i;
for (i = 0; i < ARRAY_SIZE(audio_feature_info); ++i) {
if (audio_feature_info[i].control == control)
return &audio_feature_info[i];
}
return NULL;
}
static void __build_feature_ctl(struct usb_mixer_interface *mixer,
const struct usbmix_name_map *imap,
unsigned int ctl_mask, int control,
struct usb_audio_term *iterm,
struct usb_audio_term *oterm,
int unitid, int nameid, int readonly_mask)
{
struct usb_feature_control_info *ctl_info;
unsigned int len = 0;
int mapped_name = 0;
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *cval;
const struct usbmix_name_map *map;
unsigned int range;
if (control == UAC_FU_GRAPHIC_EQUALIZER) {
/* FIXME: not supported yet */
return;
}
map = find_map(imap, unitid, control);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
cval->control = control;
cval->cmask = ctl_mask;
ctl_info = get_feature_control_info(control);
if (!ctl_info) {
kfree(cval);
return;
}
if (mixer->protocol == UAC_VERSION_1)
cval->val_type = ctl_info->type;
else /* UAC_VERSION_2 */
cval->val_type = ctl_info->type_uac2 >= 0 ?
ctl_info->type_uac2 : ctl_info->type;
if (ctl_mask == 0) {
cval->channels = 1; /* master channel */
cval->master_readonly = readonly_mask;
} else {
int i, c = 0;
for (i = 0; i < 16; i++)
if (ctl_mask & (1 << i))
c++;
cval->channels = c;
cval->ch_readonly = readonly_mask;
}
/*
* If all channels in the mask are marked read-only, make the control
* read-only. snd_usb_set_cur_mix_value() will check the mask again and won't
* issue write commands to read-only channels.
*/
if (cval->channels == readonly_mask)
kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
else
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (!kctl) {
usb_audio_err(mixer->chip, "cannot malloc kcontrol\n");
kfree(cval);
return;
}
kctl->private_free = snd_usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
mapped_name = len != 0;
if (!len && nameid)
len = snd_usb_copy_string_desc(mixer->chip, nameid,
kctl->id.name, sizeof(kctl->id.name));
switch (control) {
case UAC_FU_MUTE:
case UAC_FU_VOLUME:
/*
* determine the control name. the rule is:
* - if a name id is given in descriptor, use it.
* - if the connected input can be determined, then use the name
* of terminal type.
* - if the connected output can be determined, use it.
* - otherwise, anonymous name.
*/
if (!len) {
if (iterm)
len = get_term_name(mixer->chip, iterm,
kctl->id.name,
sizeof(kctl->id.name), 1);
if (!len && oterm)
len = get_term_name(mixer->chip, oterm,
kctl->id.name,
sizeof(kctl->id.name), 1);
if (!len)
snprintf(kctl->id.name, sizeof(kctl->id.name),
"Feature %d", unitid);
}
if (!mapped_name)
check_no_speaker_on_headset(kctl, mixer->chip->card);
/*
* determine the stream direction:
* if the connected output is USB stream, then it's likely a
* capture stream. otherwise it should be playback (hopefully :)
*/
if (!mapped_name && oterm && !(oterm->type >> 16)) {
if ((oterm->type & 0xff00) == 0x0100)
append_ctl_name(kctl, " Capture");
else
append_ctl_name(kctl, " Playback");
}
append_ctl_name(kctl, control == UAC_FU_MUTE ?
" Switch" : " Volume");
break;
default:
if (!len)
strlcpy(kctl->id.name, audio_feature_info[control-1].name,
sizeof(kctl->id.name));
break;
}
/* get min/max values */
get_min_max_with_quirks(cval, 0, kctl);
if (control == UAC_FU_VOLUME) {
check_mapped_dB(map, cval);
if (cval->dBmin < cval->dBmax || !cval->initialized) {
kctl->tlv.c = snd_usb_mixer_vol_tlv;
kctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
}
}
snd_usb_mixer_fu_apply_quirk(mixer, cval, unitid, kctl);
range = (cval->max - cval->min) / cval->res;
/*
* Are there devices with volume range more than 255? I use a bit more
* to be sure. 384 is a resolution magic number found on Logitech
* devices. It will definitively catch all buggy Logitech devices.
*/
if (range > 384) {
usb_audio_warn(mixer->chip,
"Warning! Unlikely big volume range (=%u), cval->res is probably wrong.",
range);
usb_audio_warn(mixer->chip,
"[%d] FU [%s] ch = %d, val = %d/%d/%d",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max, cval->res);
}
usb_audio_dbg(mixer->chip, "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max, cval->res);
snd_usb_mixer_add_control(&cval->head, kctl);
}
static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
unsigned int ctl_mask, int control,
struct usb_audio_term *iterm, int unitid,
int readonly_mask)
{
struct uac_feature_unit_descriptor *desc = raw_desc;
int nameid = uac_feature_unit_iFeature(desc);
__build_feature_ctl(state->mixer, state->map, ctl_mask, control,
iterm, &state->oterm, unitid, nameid, readonly_mask);
}
static void build_feature_ctl_badd(struct usb_mixer_interface *mixer,
unsigned int ctl_mask, int control, int unitid,
const struct usbmix_name_map *badd_map)
{
__build_feature_ctl(mixer, badd_map, ctl_mask, control,
NULL, NULL, unitid, 0, 0);
}
static void get_connector_control_name(struct usb_mixer_interface *mixer,
struct usb_audio_term *term,
bool is_input, char *name, int name_size)
{
int name_len = get_term_name(mixer->chip, term, name, name_size, 0);
if (name_len == 0)
strlcpy(name, "Unknown", name_size);
/*
* sound/core/ctljack.c has a convention of naming jack controls
* by ending in " Jack". Make it slightly more useful by
* indicating Input or Output after the terminal name.
*/
if (is_input)
strlcat(name, " - Input Jack", name_size);
else
strlcat(name, " - Output Jack", name_size);
}
/* Build a mixer control for a UAC connector control (jack-detect) */
static void build_connector_control(struct usb_mixer_interface *mixer,
struct usb_audio_term *term, bool is_input)
{
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *cval;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, mixer, term->id);
/*
* UAC2: The first byte from reading the UAC2_TE_CONNECTOR control returns the
* number of channels connected.
*
* UAC3: The first byte specifies size of bitmap for the inserted controls. The
* following byte(s) specifies which connectors are inserted.
*
* This boolean ctl will simply report if any channels are connected
* or not.
*/
if (mixer->protocol == UAC_VERSION_2)
cval->control = UAC2_TE_CONNECTOR;
else /* UAC_VERSION_3 */
cval->control = UAC3_TE_INSERTION;
cval->val_type = USB_MIXER_BOOLEAN;
cval->channels = 1; /* report true if any channel is connected */
cval->min = 0;
cval->max = 1;
kctl = snd_ctl_new1(&usb_connector_ctl_ro, cval);
if (!kctl) {
usb_audio_err(mixer->chip, "cannot malloc kcontrol\n");
kfree(cval);
return;
}
get_connector_control_name(mixer, term, is_input, kctl->id.name,
sizeof(kctl->id.name));
kctl->private_free = snd_usb_mixer_elem_free;
snd_usb_mixer_add_control(&cval->head, kctl);
}
static int parse_clock_source_unit(struct mixer_build *state, int unitid,
void *_ftr)
{
struct uac_clock_source_descriptor *hdr = _ftr;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
int ret;
if (state->mixer->protocol != UAC_VERSION_2)
return -EINVAL;
if (hdr->bLength != sizeof(*hdr)) {
usb_audio_dbg(state->chip,
"Bogus clock source descriptor length of %d, ignoring.\n",
hdr->bLength);
return 0;
}
/*
* The only property of this unit we are interested in is the
* clock source validity. If that isn't readable, just bail out.
*/
if (!uac_v2v3_control_is_readable(hdr->bmControls,
UAC2_CS_CONTROL_CLOCK_VALID))
return 0;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, hdr->bClockID);
cval->min = 0;
cval->max = 1;
cval->channels = 1;
cval->val_type = USB_MIXER_BOOLEAN;
cval->control = UAC2_CS_CONTROL_CLOCK_VALID;
cval->master_readonly = 1;
/* From UAC2 5.2.5.1.2 "Only the get request is supported." */
kctl = snd_ctl_new1(&usb_bool_master_control_ctl_ro, cval);
if (!kctl) {
kfree(cval);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
ret = snd_usb_copy_string_desc(state->chip, hdr->iClockSource,
name, sizeof(name));
if (ret > 0)
snprintf(kctl->id.name, sizeof(kctl->id.name),
"%s Validity", name);
else
snprintf(kctl->id.name, sizeof(kctl->id.name),
"Clock Source %d Validity", hdr->bClockID);
return snd_usb_mixer_add_control(&cval->head, kctl);
}
/*
* parse a feature unit
*
* most of controls are defined here.
*/
static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
void *_ftr)
{
int channels, i, j;
struct usb_audio_term iterm;
unsigned int master_bits, first_ch_bits;
int err, csize;
struct uac_feature_unit_descriptor *hdr = _ftr;
__u8 *bmaControls;
if (state->mixer->protocol == UAC_VERSION_1) {
if (hdr->bLength < 7) {
usb_audio_err(state->chip,
"unit %u: invalid UAC_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
csize = hdr->bControlSize;
if (!csize) {
usb_audio_dbg(state->chip,
"unit %u: invalid bControlSize == 0\n",
unitid);
return -EINVAL;
}
channels = (hdr->bLength - 7) / csize - 1;
bmaControls = hdr->bmaControls;
if (hdr->bLength < 7 + csize) {
usb_audio_err(state->chip,
"unit %u: invalid UAC_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
} else if (state->mixer->protocol == UAC_VERSION_2) {
struct uac2_feature_unit_descriptor *ftr = _ftr;
if (hdr->bLength < 6) {
usb_audio_err(state->chip,
"unit %u: invalid UAC_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
csize = 4;
channels = (hdr->bLength - 6) / 4 - 1;
bmaControls = ftr->bmaControls;
if (hdr->bLength < 6 + csize) {
usb_audio_err(state->chip,
"unit %u: invalid UAC_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
} else { /* UAC_VERSION_3 */
struct uac3_feature_unit_descriptor *ftr = _ftr;
if (hdr->bLength < 7) {
usb_audio_err(state->chip,
"unit %u: invalid UAC3_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
csize = 4;
channels = (ftr->bLength - 7) / 4 - 1;
bmaControls = ftr->bmaControls;
if (hdr->bLength < 7 + csize) {
usb_audio_err(state->chip,
"unit %u: invalid UAC3_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
}
/* parse the source unit */
err = parse_audio_unit(state, hdr->bSourceID);
if (err < 0)
return err;
/* determine the input source type and name */
err = check_input_term(state, hdr->bSourceID, &iterm);
if (err < 0)
return err;
master_bits = snd_usb_combine_bytes(bmaControls, csize);
/* master configuration quirks */
switch (state->chip->usb_id) {
case USB_ID(0x08bb, 0x2702):
usb_audio_info(state->chip,
"usbmixer: master volume quirk for PCM2702 chip\n");
/* disable non-functional volume control */
master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
break;
case USB_ID(0x1130, 0xf211):
usb_audio_info(state->chip,
"usbmixer: volume control quirk for Tenx TP6911 Audio Headset\n");
/* disable non-functional volume control */
channels = 0;
break;
}
if (channels > 0)
first_ch_bits = snd_usb_combine_bytes(bmaControls + csize, csize);
else
first_ch_bits = 0;
if (state->mixer->protocol == UAC_VERSION_1) {
/* check all control types */
for (i = 0; i < 10; i++) {
unsigned int ch_bits = 0;
int control = audio_feature_info[i].control;
for (j = 0; j < channels; j++) {
unsigned int mask;
mask = snd_usb_combine_bytes(bmaControls +
csize * (j+1), csize);
if (mask & (1 << i))
ch_bits |= (1 << j);
}
/* audio class v1 controls are never read-only */
/*
* The first channel must be set
* (for ease of programming).
*/
if (ch_bits & 1)
build_feature_ctl(state, _ftr, ch_bits, control,
&iterm, unitid, 0);
if (master_bits & (1 << i))
build_feature_ctl(state, _ftr, 0, control,
&iterm, unitid, 0);
}
} else { /* UAC_VERSION_2/3 */
for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) {
unsigned int ch_bits = 0;
unsigned int ch_read_only = 0;
int control = audio_feature_info[i].control;
for (j = 0; j < channels; j++) {
unsigned int mask;
mask = snd_usb_combine_bytes(bmaControls +
csize * (j+1), csize);
if (uac_v2v3_control_is_readable(mask, control)) {
ch_bits |= (1 << j);
if (!uac_v2v3_control_is_writeable(mask, control))
ch_read_only |= (1 << j);
}
}
/*
* NOTE: build_feature_ctl() will mark the control
* read-only if all channels are marked read-only in
* the descriptors. Otherwise, the control will be
* reported as writeable, but the driver will not
* actually issue a write command for read-only
* channels.
*/
/*
* The first channel must be set
* (for ease of programming).
*/
if (ch_bits & 1)
build_feature_ctl(state, _ftr, ch_bits, control,
&iterm, unitid, ch_read_only);
if (uac_v2v3_control_is_readable(master_bits, control))
build_feature_ctl(state, _ftr, 0, control,
&iterm, unitid,
!uac_v2v3_control_is_writeable(master_bits,
control));
}
}
return 0;
}
/*
* Mixer Unit
*/
/*
* build a mixer unit control
*
* the callbacks are identical with feature unit.
* input channel number (zero based) is given in control field instead.
*/
static void build_mixer_unit_ctl(struct mixer_build *state,
struct uac_mixer_unit_descriptor *desc,
int in_pin, int in_ch, int num_outs,
int unitid, struct usb_audio_term *iterm)
{
struct usb_mixer_elem_info *cval;
unsigned int i, len;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
map = find_map(state->map, unitid, 0);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->control = in_ch + 1; /* based on 1 */
cval->val_type = USB_MIXER_S16;
for (i = 0; i < num_outs; i++) {
__u8 *c = uac_mixer_unit_bmControls(desc, state->mixer->protocol);
if (check_matrix_bitmap(c, in_ch, i, num_outs)) {
cval->cmask |= (1 << i);
cval->channels++;
}
}
/* get min/max values */
get_min_max(cval, 0);
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (!kctl) {
usb_audio_err(state->chip, "cannot malloc kcontrol\n");
kfree(cval);
return;
}
kctl->private_free = snd_usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (!len)
len = get_term_name(state->chip, iterm, kctl->id.name,
sizeof(kctl->id.name), 0);
if (!len)
len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
append_ctl_name(kctl, " Volume");
usb_audio_dbg(state->chip, "[%d] MU [%s] ch = %d, val = %d/%d\n",
cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max);
snd_usb_mixer_add_control(&cval->head, kctl);
}
static int parse_audio_input_terminal(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct usb_audio_term iterm;
unsigned int control, bmctls, term_id;
if (state->mixer->protocol == UAC_VERSION_2) {
struct uac2_input_terminal_descriptor *d_v2 = raw_desc;
control = UAC2_TE_CONNECTOR;
term_id = d_v2->bTerminalID;
bmctls = le16_to_cpu(d_v2->bmControls);
} else if (state->mixer->protocol == UAC_VERSION_3) {
struct uac3_input_terminal_descriptor *d_v3 = raw_desc;
control = UAC3_TE_INSERTION;
term_id = d_v3->bTerminalID;
bmctls = le32_to_cpu(d_v3->bmControls);
} else {
return 0; /* UAC1. No Insertion control */
}
check_input_term(state, term_id, &iterm);
/* Check for jack detection. */
if (uac_v2v3_control_is_readable(bmctls, control))
build_connector_control(state->mixer, &iterm, true);
return 0;
}
/*
* parse a mixer unit
*/
static int parse_audio_mixer_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct uac_mixer_unit_descriptor *desc = raw_desc;
struct usb_audio_term iterm;
int input_pins, num_ins, num_outs;
int pin, ich, err;
err = uac_mixer_unit_get_channels(state, desc);
if (err < 0) {
usb_audio_err(state->chip,
"invalid MIXER UNIT descriptor %d\n",
unitid);
return err;
}
num_outs = err;
input_pins = desc->bNrInPins;
num_ins = 0;
ich = 0;
for (pin = 0; pin < input_pins; pin++) {
err = parse_audio_unit(state, desc->baSourceID[pin]);
if (err < 0)
continue;
/* no bmControls field (e.g. Maya44) -> ignore */
if (desc->bLength <= 10 + input_pins)
continue;
err = check_input_term(state, desc->baSourceID[pin], &iterm);
if (err < 0)
return err;
num_ins += iterm.channels;
for (; ich < num_ins; ich++) {
int och, ich_has_controls = 0;
for (och = 0; och < num_outs; och++) {
__u8 *c = uac_mixer_unit_bmControls(desc,
state->mixer->protocol);
if (check_matrix_bitmap(c, ich, och, num_outs)) {
ich_has_controls = 1;
break;
}
}
if (ich_has_controls)
build_mixer_unit_ctl(state, desc, pin, ich, num_outs,
unitid, &iterm);
}
}
return 0;
}
/*
* Processing Unit / Extension Unit
*/
/* get callback for processing/extension unit */
static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int err, val;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
ucontrol->value.integer.value[0] = cval->min;
return filter_error(cval, err);
}
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
return 0;
}
/* put callback for processing/extension unit */
static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for processing/extension unit */
static const struct snd_kcontrol_new mixer_procunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_procunit_get,
.put = mixer_ctl_procunit_put,
};
/*
* predefined data for processing units
*/
struct procunit_value_info {
int control;
char *suffix;
int val_type;
int min_value;
};
struct procunit_info {
int type;
char *name;
struct procunit_value_info *values;
};
static struct procunit_value_info undefined_proc_info[] = {
{ 0x00, "Control Undefined", 0 },
{ 0 }
};
static struct procunit_value_info updown_proc_info[] = {
{ UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static struct procunit_value_info prologic_proc_info[] = {
{ UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static struct procunit_value_info threed_enh_proc_info[] = {
{ UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
{ 0 }
};
static struct procunit_value_info reverb_proc_info[] = {
{ UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
{ UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
{ 0 }
};
static struct procunit_value_info chorus_proc_info[] = {
{ UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
{ UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
{ 0 }
};
static struct procunit_value_info dcr_proc_info[] = {
{ UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
{ UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
{ UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
{ UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
{ UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
{ 0 }
};
static struct procunit_info procunits[] = {
{ UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
{ UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
{ UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
{ UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
{ UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
{ UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
{ 0 },
};
static struct procunit_value_info uac3_updown_proc_info[] = {
{ UAC3_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static struct procunit_value_info uac3_stereo_ext_proc_info[] = {
{ UAC3_EXT_WIDTH_CONTROL, "Width Control", USB_MIXER_U8 },
{ 0 }
};
static struct procunit_info uac3_procunits[] = {
{ UAC3_PROCESS_UP_DOWNMIX, "Up Down", uac3_updown_proc_info },
{ UAC3_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", uac3_stereo_ext_proc_info },
{ UAC3_PROCESS_MULTI_FUNCTION, "Multi-Function", undefined_proc_info },
{ 0 },
};
/*
* predefined data for extension units
*/
static struct procunit_value_info clock_rate_xu_info[] = {
{ USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
{ 0 }
};
static struct procunit_value_info clock_source_xu_info[] = {
{ USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_value_info spdif_format_xu_info[] = {
{ USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_value_info soft_limit_xu_info[] = {
{ USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_info extunits[] = {
{ USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
{ USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
{ USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
{ USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
{ 0 }
};
/*
* build a processing/extension unit
*/
static int build_audio_procunit(struct mixer_build *state, int unitid,
void *raw_desc, struct procunit_info *list,
char *name)
{
struct uac_processing_unit_descriptor *desc = raw_desc;
int num_ins = desc->bNrInPins;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
int i, err, nameid, type, len;
struct procunit_info *info;
struct procunit_value_info *valinfo;
const struct usbmix_name_map *map;
static struct procunit_value_info default_value_info[] = {
{ 0x01, "Switch", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_info default_info = {
0, NULL, default_value_info
};
if (desc->bLength < 13 || desc->bLength < 13 + num_ins ||
desc->bLength < num_ins + uac_processing_unit_bControlSize(desc, state->mixer->protocol)) {
usb_audio_err(state->chip, "invalid %s descriptor (id %d)\n", name, unitid);
return -EINVAL;
}
for (i = 0; i < num_ins; i++) {
err = parse_audio_unit(state, desc->baSourceID[i]);
if (err < 0)
return err;
}
type = le16_to_cpu(desc->wProcessType);
for (info = list; info && info->type; info++)
if (info->type == type)
break;
if (!info || !info->type)
info = &default_info;
for (valinfo = info->values; valinfo->control; valinfo++) {
__u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
if (state->mixer->protocol == UAC_VERSION_1) {
if (!(controls[valinfo->control / 8] &
(1 << ((valinfo->control % 8) - 1))))
continue;
} else { /* UAC_VERSION_2/3 */
if (!uac_v2v3_control_is_readable(controls[valinfo->control / 8],
valinfo->control))
continue;
}
map = find_map(state->map, unitid, valinfo->control);
if (check_ignored_ctl(map))
continue;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->control = valinfo->control;
cval->val_type = valinfo->val_type;
cval->channels = 1;
if (state->mixer->protocol > UAC_VERSION_1 &&
!uac_v2v3_control_is_writeable(controls[valinfo->control / 8],
valinfo->control))
cval->master_readonly = 1;
/* get min/max values */
switch (type) {
case UAC_PROCESS_UP_DOWNMIX: {
bool mode_sel = false;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
if (cval->control == UAC_UD_MODE_SELECT)
mode_sel = true;
break;
case UAC_VERSION_3:
if (cval->control == UAC3_UD_MODE_SELECT)
mode_sel = true;
break;
}
if (mode_sel) {
__u8 *control_spec = uac_processing_unit_specific(desc,
state->mixer->protocol);
cval->min = 1;
cval->max = control_spec[0];
cval->res = 1;
cval->initialized = 1;
break;
}
get_min_max(cval, valinfo->min_value);
break;
}
case USB_XU_CLOCK_RATE:
/*
* E-Mu USB 0404/0202/TrackerPre/0204
* samplerate control quirk
*/
cval->min = 0;
cval->max = 5;
cval->res = 1;
cval->initialized = 1;
break;
default:
get_min_max(cval, valinfo->min_value);
break;
}
kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
if (!kctl) {
kfree(cval);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
if (check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name))) {
/* nothing */ ;
} else if (info->name) {
strlcpy(kctl->id.name, info->name, sizeof(kctl->id.name));
} else {
nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
len = 0;
if (nameid)
len = snd_usb_copy_string_desc(state->chip,
nameid,
kctl->id.name,
sizeof(kctl->id.name));
if (!len)
strlcpy(kctl->id.name, name, sizeof(kctl->id.name));
}
append_ctl_name(kctl, " ");
append_ctl_name(kctl, valinfo->suffix);
usb_audio_dbg(state->chip,
"[%d] PU [%s] ch = %d, val = %d/%d\n",
cval->head.id, kctl->id.name, cval->channels,
cval->min, cval->max);
err = snd_usb_mixer_add_control(&cval->head, kctl);
if (err < 0)
return err;
}
return 0;
}
static int parse_audio_processing_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
return build_audio_procunit(state, unitid, raw_desc,
procunits, "Processing Unit");
case UAC_VERSION_3:
return build_audio_procunit(state, unitid, raw_desc,
uac3_procunits, "Processing Unit");
}
}
static int parse_audio_extension_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
/*
* Note that we parse extension units with processing unit descriptors.
* That's ok as the layout is the same.
*/
return build_audio_procunit(state, unitid, raw_desc,
extunits, "Extension Unit");
}
/*
* Selector Unit
*/
/*
* info callback for selector unit
* use an enumerator type for routing
*/
static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
const char **itemlist = (const char **)kcontrol->private_value;
if (snd_BUG_ON(!itemlist))
return -EINVAL;
return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist);
}
/* get callback for selector unit */
static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, err;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
ucontrol->value.enumerated.item[0] = 0;
return filter_error(cval, err);
}
val = get_relative_value(cval, val);
ucontrol->value.enumerated.item[0] = val;
return 0;
}
/* put callback for selector unit */
static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0)
return filter_error(cval, err);
val = ucontrol->value.enumerated.item[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for selector unit */
static const struct snd_kcontrol_new mixer_selectunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_selector_info,
.get = mixer_ctl_selector_get,
.put = mixer_ctl_selector_put,
};
/*
* private free callback.
* free both private_data and private_value
*/
static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
{
int i, num_ins = 0;
if (kctl->private_data) {
struct usb_mixer_elem_info *cval = kctl->private_data;
num_ins = cval->max;
kfree(cval);
kctl->private_data = NULL;
}
if (kctl->private_value) {
char **itemlist = (char **)kctl->private_value;
for (i = 0; i < num_ins; i++)
kfree(itemlist[i]);
kfree(itemlist);
kctl->private_value = 0;
}
}
/*
* parse a selector unit
*/
static int parse_audio_selector_unit(struct mixer_build *state, int unitid,
void *raw_desc)
{
struct uac_selector_unit_descriptor *desc = raw_desc;
unsigned int i, nameid, len;
int err;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
char **namelist;
if (desc->bLength < 5 || !desc->bNrInPins ||
desc->bLength < 5 + desc->bNrInPins) {
usb_audio_err(state->chip,
"invalid SELECTOR UNIT descriptor %d\n", unitid);
return -EINVAL;
}
for (i = 0; i < desc->bNrInPins; i++) {
err = parse_audio_unit(state, desc->baSourceID[i]);
if (err < 0)
return err;
}
if (desc->bNrInPins == 1) /* only one ? nonsense! */
return 0;
map = find_map(state->map, unitid, 0);
if (check_ignored_ctl(map))
return 0;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid);
cval->val_type = USB_MIXER_U8;
cval->channels = 1;
cval->min = 1;
cval->max = desc->bNrInPins;
cval->res = 1;
cval->initialized = 1;
switch (state->mixer->protocol) {
case UAC_VERSION_1:
default:
cval->control = 0;
break;
case UAC_VERSION_2:
case UAC_VERSION_3:
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR ||
desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR)
cval->control = UAC2_CX_CLOCK_SELECTOR;
else /* UAC2/3_SELECTOR_UNIT */
cval->control = UAC2_SU_SELECTOR;
break;
}
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 03:55:00 +07:00
namelist = kmalloc_array(desc->bNrInPins, sizeof(char *), GFP_KERNEL);
if (!namelist) {
kfree(cval);
return -ENOMEM;
}
#define MAX_ITEM_NAME_LEN 64
for (i = 0; i < desc->bNrInPins; i++) {
struct usb_audio_term iterm;
len = 0;
namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
if (!namelist[i]) {
while (i--)
kfree(namelist[i]);
kfree(namelist);
kfree(cval);
return -ENOMEM;
}
len = check_mapped_selector_name(state, unitid, i, namelist[i],
MAX_ITEM_NAME_LEN);
if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
len = get_term_name(state->chip, &iterm, namelist[i],
MAX_ITEM_NAME_LEN, 0);
if (! len)
sprintf(namelist[i], "Input %u", i);
}
kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
if (! kctl) {
usb_audio_err(state->chip, "cannot malloc kcontrol\n");
kfree(namelist);
kfree(cval);
return -ENOMEM;
}
kctl->private_value = (unsigned long)namelist;
kctl->private_free = usb_mixer_selector_elem_free;
/* check the static mapping table at first */
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (!len) {
/* no mapping ? */
switch (state->mixer->protocol) {
case UAC_VERSION_1:
case UAC_VERSION_2:
default:
/* if iSelector is given, use it */
nameid = uac_selector_unit_iSelector(desc);
if (nameid)
len = snd_usb_copy_string_desc(state->chip,
nameid, kctl->id.name,
sizeof(kctl->id.name));
break;
case UAC_VERSION_3:
/* TODO: Class-Specific strings not yet supported */
break;
}
/* ... or pick up the terminal name at next */
if (!len)
len = get_term_name(state->chip, &state->oterm,
kctl->id.name, sizeof(kctl->id.name), 0);
/* ... or use the fixed string "USB" as the last resort */
if (!len)
strlcpy(kctl->id.name, "USB", sizeof(kctl->id.name));
/* and add the proper suffix */
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR ||
desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR)
append_ctl_name(kctl, " Clock Source");
else if ((state->oterm.type & 0xff00) == 0x0100)
append_ctl_name(kctl, " Capture Source");
else
append_ctl_name(kctl, " Playback Source");
}
usb_audio_dbg(state->chip, "[%d] SU [%s] items = %d\n",
cval->head.id, kctl->id.name, desc->bNrInPins);
return snd_usb_mixer_add_control(&cval->head, kctl);
}
/*
* parse an audio unit recursively
*/
static int parse_audio_unit(struct mixer_build *state, int unitid)
{
unsigned char *p1;
int protocol = state->mixer->protocol;
if (test_and_set_bit(unitid, state->unitbitmap))
return 0; /* the unit already visited */
p1 = find_audio_control_unit(state, unitid);
if (!p1) {
usb_audio_err(state->chip, "unit %d not found!\n", unitid);
return -EINVAL;
}
if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
switch (p1[2]) {
case UAC_INPUT_TERMINAL:
return parse_audio_input_terminal(state, unitid, p1);
case UAC_MIXER_UNIT:
return parse_audio_mixer_unit(state, unitid, p1);
case UAC2_CLOCK_SOURCE:
return parse_clock_source_unit(state, unitid, p1);
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR:
return parse_audio_selector_unit(state, unitid, p1);
case UAC_FEATURE_UNIT:
return parse_audio_feature_unit(state, unitid, p1);
case UAC1_PROCESSING_UNIT:
/* UAC2_EFFECT_UNIT has the same value */
if (protocol == UAC_VERSION_1)
return parse_audio_processing_unit(state, unitid, p1);
else
return 0; /* FIXME - effect units not implemented yet */
case UAC1_EXTENSION_UNIT:
/* UAC2_PROCESSING_UNIT_V2 has the same value */
if (protocol == UAC_VERSION_1)
return parse_audio_extension_unit(state, unitid, p1);
else /* UAC_VERSION_2 */
return parse_audio_processing_unit(state, unitid, p1);
case UAC2_EXTENSION_UNIT_V2:
return parse_audio_extension_unit(state, unitid, p1);
default:
usb_audio_err(state->chip,
"unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return -EINVAL;
}
} else { /* UAC_VERSION_3 */
switch (p1[2]) {
case UAC_INPUT_TERMINAL:
return parse_audio_input_terminal(state, unitid, p1);
case UAC3_MIXER_UNIT:
return parse_audio_mixer_unit(state, unitid, p1);
case UAC3_CLOCK_SOURCE:
return parse_clock_source_unit(state, unitid, p1);
case UAC3_SELECTOR_UNIT:
case UAC3_CLOCK_SELECTOR:
return parse_audio_selector_unit(state, unitid, p1);
case UAC3_FEATURE_UNIT:
return parse_audio_feature_unit(state, unitid, p1);
case UAC3_EFFECT_UNIT:
return 0; /* FIXME - effect units not implemented yet */
case UAC3_PROCESSING_UNIT:
return parse_audio_processing_unit(state, unitid, p1);
case UAC3_EXTENSION_UNIT:
return parse_audio_extension_unit(state, unitid, p1);
default:
usb_audio_err(state->chip,
"unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return -EINVAL;
}
}
}
static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
{
ALSA: usb-audio: Kill stray URB at exiting USB-audio driver may leave a stray URB for the mixer interrupt when it exits by some error during probe. This leads to a use-after-free error as spotted by syzkaller like: ================================================================== BUG: KASAN: use-after-free in snd_usb_mixer_interrupt+0x604/0x6f0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:16 dump_stack+0x292/0x395 lib/dump_stack.c:52 print_address_description+0x78/0x280 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 kasan_report+0x23d/0x350 mm/kasan/report.c:409 __asan_report_load8_noabort+0x19/0x20 mm/kasan/report.c:430 snd_usb_mixer_interrupt+0x604/0x6f0 sound/usb/mixer.c:2490 __usb_hcd_giveback_urb+0x2e0/0x650 drivers/usb/core/hcd.c:1779 .... Allocated by task 1484: save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 kmem_cache_alloc_trace+0x11e/0x2d0 mm/slub.c:2772 kmalloc ./include/linux/slab.h:493 kzalloc ./include/linux/slab.h:666 snd_usb_create_mixer+0x145/0x1010 sound/usb/mixer.c:2540 create_standard_mixer_quirk+0x58/0x80 sound/usb/quirks.c:516 snd_usb_create_quirk+0x92/0x100 sound/usb/quirks.c:560 create_composite_quirk+0x1c4/0x3e0 sound/usb/quirks.c:59 snd_usb_create_quirk+0x92/0x100 sound/usb/quirks.c:560 usb_audio_probe+0x1040/0x2c10 sound/usb/card.c:618 .... Freed by task 1484: save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 kasan_slab_free+0x72/0xc0 mm/kasan/kasan.c:524 slab_free_hook mm/slub.c:1390 slab_free_freelist_hook mm/slub.c:1412 slab_free mm/slub.c:2988 kfree+0xf6/0x2f0 mm/slub.c:3919 snd_usb_mixer_free+0x11a/0x160 sound/usb/mixer.c:2244 snd_usb_mixer_dev_free+0x36/0x50 sound/usb/mixer.c:2250 __snd_device_free+0x1ff/0x380 sound/core/device.c:91 snd_device_free_all+0x8f/0xe0 sound/core/device.c:244 snd_card_do_free sound/core/init.c:461 release_card_device+0x47/0x170 sound/core/init.c:181 device_release+0x13f/0x210 drivers/base/core.c:814 .... Actually such a URB is killed properly at disconnection when the device gets probed successfully, and what we need is to apply it for the error-path, too. In this patch, we apply snd_usb_mixer_disconnect() at releasing. Also introduce a new flag, disconnected, to struct usb_mixer_interface for not performing the disconnection procedure twice. Reported-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-10-10 19:10:32 +07:00
/* kill pending URBs */
snd_usb_mixer_disconnect(mixer);
kfree(mixer->id_elems);
if (mixer->urb) {
kfree(mixer->urb->transfer_buffer);
usb_free_urb(mixer->urb);
}
usb_free_urb(mixer->rc_urb);
kfree(mixer->rc_setup_packet);
kfree(mixer);
}
static int snd_usb_mixer_dev_free(struct snd_device *device)
{
struct usb_mixer_interface *mixer = device->device_data;
snd_usb_mixer_free(mixer);
return 0;
}
/* UAC3 predefined channels configuration */
struct uac3_badd_profile {
int subclass;
const char *name;
int c_chmask; /* capture channels mask */
int p_chmask; /* playback channels mask */
int st_chmask; /* side tone mixing channel mask */
};
static struct uac3_badd_profile uac3_badd_profiles[] = {
{
/*
* BAIF, BAOF or combination of both
* IN: Mono or Stereo cfg, Mono alt possible
* OUT: Mono or Stereo cfg, Mono alt possible
*/
.subclass = UAC3_FUNCTION_SUBCLASS_GENERIC_IO,
.name = "GENERIC IO",
.c_chmask = -1, /* dynamic channels */
.p_chmask = -1, /* dynamic channels */
},
{
/* BAOF; Stereo only cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_HEADPHONE,
.name = "HEADPHONE",
.p_chmask = 3,
},
{
/* BAOF; Mono or Stereo cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_SPEAKER,
.name = "SPEAKER",
.p_chmask = -1, /* dynamic channels */
},
{
/* BAIF; Mono or Stereo cfg, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_MICROPHONE,
.name = "MICROPHONE",
.c_chmask = -1, /* dynamic channels */
},
{
/*
* BAIOF topology
* IN: Mono only
* OUT: Mono or Stereo cfg, Mono alt possible
*/
.subclass = UAC3_FUNCTION_SUBCLASS_HEADSET,
.name = "HEADSET",
.c_chmask = 1,
.p_chmask = -1, /* dynamic channels */
.st_chmask = 1,
},
{
/* BAIOF; IN: Mono only; OUT: Stereo only, Mono alt possible */
.subclass = UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER,
.name = "HEADSET ADAPTER",
.c_chmask = 1,
.p_chmask = 3,
.st_chmask = 1,
},
{
/* BAIF + BAOF; IN: Mono only; OUT: Mono only */
.subclass = UAC3_FUNCTION_SUBCLASS_SPEAKERPHONE,
.name = "SPEAKERPHONE",
.c_chmask = 1,
.p_chmask = 1,
},
{ 0 } /* terminator */
};
static bool uac3_badd_func_has_valid_channels(struct usb_mixer_interface *mixer,
struct uac3_badd_profile *f,
int c_chmask, int p_chmask)
{
/*
* If both playback/capture channels are dynamic, make sure
* at least one channel is present
*/
if (f->c_chmask < 0 && f->p_chmask < 0) {
if (!c_chmask && !p_chmask) {
usb_audio_warn(mixer->chip, "BAAD %s: no channels?",
f->name);
return false;
}
return true;
}
if ((f->c_chmask < 0 && !c_chmask) ||
(f->c_chmask >= 0 && f->c_chmask != c_chmask)) {
usb_audio_warn(mixer->chip, "BAAD %s c_chmask mismatch",
f->name);
return false;
}
if ((f->p_chmask < 0 && !p_chmask) ||
(f->p_chmask >= 0 && f->p_chmask != p_chmask)) {
usb_audio_warn(mixer->chip, "BAAD %s p_chmask mismatch",
f->name);
return false;
}
return true;
}
/*
* create mixer controls for UAC3 BADD profiles
*
* UAC3 BADD device doesn't contain CS descriptors thus we will guess everything
*
* BADD device may contain Mixer Unit, which doesn't have any controls, skip it
*/
static int snd_usb_mixer_controls_badd(struct usb_mixer_interface *mixer,
int ctrlif)
{
struct usb_device *dev = mixer->chip->dev;
struct usb_interface_assoc_descriptor *assoc;
int badd_profile = mixer->chip->badd_profile;
struct uac3_badd_profile *f;
const struct usbmix_ctl_map *map;
int p_chmask = 0, c_chmask = 0, st_chmask = 0;
int i;
assoc = usb_ifnum_to_if(dev, ctrlif)->intf_assoc;
/* Detect BADD capture/playback channels from AS EP descriptors */
for (i = 0; i < assoc->bInterfaceCount; i++) {
int intf = assoc->bFirstInterface + i;
struct usb_interface *iface;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
unsigned int maxpacksize;
char dir_in;
int chmask, num;
if (intf == ctrlif)
continue;
iface = usb_ifnum_to_if(dev, intf);
num = iface->num_altsetting;
if (num < 2)
return -EINVAL;
/*
* The number of Channels in an AudioStreaming interface
* and the audio sample bit resolution (16 bits or 24
* bits) can be derived from the wMaxPacketSize field in
* the Standard AS Audio Data Endpoint descriptor in
* Alternate Setting 1
*/
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (altsd->bNumEndpoints < 1)
return -EINVAL;
/* check direction */
dir_in = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN);
maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
switch (maxpacksize) {
default:
usb_audio_err(mixer->chip,
"incorrect wMaxPacketSize 0x%x for BADD profile\n",
maxpacksize);
return -EINVAL;
case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_16:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_16:
case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_24:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_24:
chmask = 1;
break;
case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_16:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_16:
case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_24:
case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_24:
chmask = 3;
break;
}
if (dir_in)
c_chmask = chmask;
else
p_chmask = chmask;
}
usb_audio_dbg(mixer->chip,
"UAC3 BADD profile 0x%x: detected c_chmask=%d p_chmask=%d\n",
badd_profile, c_chmask, p_chmask);
/* check the mapping table */
for (map = uac3_badd_usbmix_ctl_maps; map->id; map++) {
if (map->id == badd_profile)
break;
}
if (!map->id)
return -EINVAL;
for (f = uac3_badd_profiles; f->name; f++) {
if (badd_profile == f->subclass)
break;
}
if (!f->name)
return -EINVAL;
if (!uac3_badd_func_has_valid_channels(mixer, f, c_chmask, p_chmask))
return -EINVAL;
st_chmask = f->st_chmask;
/* Playback */
if (p_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID2, map->map);
/* Mono/Stereo volume channels, always writable */
build_feature_ctl_badd(mixer, p_chmask, UAC_FU_VOLUME,
UAC3_BADD_FU_ID2, map->map);
}
/* Capture */
if (c_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID5, map->map);
/* Mono/Stereo volume channels, always writable */
build_feature_ctl_badd(mixer, c_chmask, UAC_FU_VOLUME,
UAC3_BADD_FU_ID5, map->map);
}
/* Side tone-mixing */
if (st_chmask) {
/* Master channel, always writable */
build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE,
UAC3_BADD_FU_ID7, map->map);
/* Mono volume channel, always writable */
build_feature_ctl_badd(mixer, 1, UAC_FU_VOLUME,
UAC3_BADD_FU_ID7, map->map);
}
/* Insertion Control */
if (f->subclass == UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER) {
struct usb_audio_term iterm, oterm;
/* Input Term - Insertion control */
memset(&iterm, 0, sizeof(iterm));
iterm.id = UAC3_BADD_IT_ID4;
iterm.type = UAC_BIDIR_TERMINAL_HEADSET;
build_connector_control(mixer, &iterm, true);
/* Output Term - Insertion control */
memset(&oterm, 0, sizeof(oterm));
oterm.id = UAC3_BADD_OT_ID3;
oterm.type = UAC_BIDIR_TERMINAL_HEADSET;
build_connector_control(mixer, &oterm, false);
}
return 0;
}
/*
* create mixer controls
*
* walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
*/
static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
{
struct mixer_build state;
int err;
const struct usbmix_ctl_map *map;
void *p;
memset(&state, 0, sizeof(state));
state.chip = mixer->chip;
state.mixer = mixer;
state.buffer = mixer->hostif->extra;
state.buflen = mixer->hostif->extralen;
/* check the mapping table */
for (map = usbmix_ctl_maps; map->id; map++) {
if (map->id == state.chip->usb_id) {
state.map = map->map;
state.selector_map = map->selector_map;
mixer->ignore_ctl_error = map->ignore_ctl_error;
break;
}
}
p = NULL;
while ((p = snd_usb_find_csint_desc(mixer->hostif->extra,
mixer->hostif->extralen,
p, UAC_OUTPUT_TERMINAL)) != NULL) {
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
} else if (mixer->protocol == UAC_VERSION_2) {
struct uac2_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
/*
* For UAC2, use the same approach to also add the
* clock selectors
*/
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL)
return err;
if (uac_v2v3_control_is_readable(le16_to_cpu(desc->bmControls),
UAC2_TE_CONNECTOR)) {
build_connector_control(state.mixer, &state.oterm,
false);
}
} else { /* UAC_VERSION_3 */
struct uac3_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = le16_to_cpu(desc->wTerminalDescrStr);
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
/*
* For UAC3, use the same approach to also add the
* clock selectors
*/
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL)
return err;
if (uac_v2v3_control_is_readable(le32_to_cpu(desc->bmControls),
UAC3_TE_INSERTION)) {
build_connector_control(state.mixer, &state.oterm,
false);
}
}
}
return 0;
}
void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
{
struct usb_mixer_elem_list *list;
for_each_mixer_elem(list, mixer, unitid) {
struct usb_mixer_elem_info *info =
mixer_elem_list_to_info(list);
/* invalidate cache, so the value is read from the device */
info->cached = 0;
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&list->kctl->id);
}
}
static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
struct usb_mixer_elem_list *list)
{
struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list);
static char *val_types[] = {"BOOLEAN", "INV_BOOLEAN",
"S8", "U8", "S16", "U16"};
snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
"channels=%i, type=\"%s\"\n", cval->head.id,
cval->control, cval->cmask, cval->channels,
val_types[cval->val_type]);
snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
cval->min, cval->max, cval->dBmin, cval->dBmax);
}
static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_usb_audio *chip = entry->private_data;
struct usb_mixer_interface *mixer;
struct usb_mixer_elem_list *list;
int unitid;
list_for_each_entry(mixer, &chip->mixer_list, list) {
snd_iprintf(buffer,
"USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
chip->usb_id, snd_usb_ctrl_intf(chip),
mixer->ignore_ctl_error);
snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
for_each_mixer_elem(list, mixer, unitid) {
snd_iprintf(buffer, " Unit: %i\n", list->id);
if (list->kctl)
snd_iprintf(buffer,
" Control: name=\"%s\", index=%i\n",
list->kctl->id.name,
list->kctl->id.index);
if (list->dump)
list->dump(buffer, list);
}
}
}
}
static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
int attribute, int value, int index)
{
struct usb_mixer_elem_list *list;
__u8 unitid = (index >> 8) & 0xff;
__u8 control = (value >> 8) & 0xff;
__u8 channel = value & 0xff;
unsigned int count = 0;
if (channel >= MAX_CHANNELS) {
usb_audio_dbg(mixer->chip,
"%s(): bogus channel number %d\n",
__func__, channel);
return;
}
for_each_mixer_elem(list, mixer, unitid)
count++;
if (count == 0)
return;
for_each_mixer_elem(list, mixer, unitid) {
struct usb_mixer_elem_info *info;
if (!list->kctl)
continue;
info = mixer_elem_list_to_info(list);
if (count > 1 && info->control != control)
continue;
switch (attribute) {
case UAC2_CS_CUR:
/* invalidate cache, so the value is read from the device */
if (channel)
info->cached &= ~(1 << channel);
else /* master channel */
info->cached = 0;
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&info->head.kctl->id);
break;
case UAC2_CS_RANGE:
/* TODO */
break;
case UAC2_CS_MEM:
/* TODO */
break;
default:
usb_audio_dbg(mixer->chip,
"unknown attribute %d in interrupt\n",
attribute);
break;
} /* switch */
}
}
static void snd_usb_mixer_interrupt(struct urb *urb)
{
struct usb_mixer_interface *mixer = urb->context;
int len = urb->actual_length;
int ustatus = urb->status;
if (ustatus != 0)
goto requeue;
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_status_word *status;
for (status = urb->transfer_buffer;
len >= sizeof(*status);
len -= sizeof(*status), status++) {
dev_dbg(&urb->dev->dev, "status interrupt: %02x %02x\n",
status->bStatusType,
status->bOriginator);
/* ignore any notifications not from the control interface */
if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
continue;
if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
else
snd_usb_mixer_notify_id(mixer, status->bOriginator);
}
} else { /* UAC_VERSION_2 */
struct uac2_interrupt_data_msg *msg;
for (msg = urb->transfer_buffer;
len >= sizeof(*msg);
len -= sizeof(*msg), msg++) {
/* drop vendor specific and endpoint requests */
if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
(msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
continue;
snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
le16_to_cpu(msg->wValue),
le16_to_cpu(msg->wIndex));
}
}
requeue:
if (ustatus != -ENOENT &&
ustatus != -ECONNRESET &&
ustatus != -ESHUTDOWN) {
urb->dev = mixer->chip->dev;
usb_submit_urb(urb, GFP_ATOMIC);
}
}
/* create the handler for the optional status interrupt endpoint */
static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
{
struct usb_endpoint_descriptor *ep;
void *transfer_buffer;
int buffer_length;
unsigned int epnum;
/* we need one interrupt input endpoint */
if (get_iface_desc(mixer->hostif)->bNumEndpoints < 1)
return 0;
ep = get_endpoint(mixer->hostif, 0);
if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
return 0;
epnum = usb_endpoint_num(ep);
buffer_length = le16_to_cpu(ep->wMaxPacketSize);
transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
if (!transfer_buffer)
return -ENOMEM;
mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!mixer->urb) {
kfree(transfer_buffer);
return -ENOMEM;
}
usb_fill_int_urb(mixer->urb, mixer->chip->dev,
usb_rcvintpipe(mixer->chip->dev, epnum),
transfer_buffer, buffer_length,
snd_usb_mixer_interrupt, mixer, ep->bInterval);
usb_submit_urb(mixer->urb, GFP_KERNEL);
return 0;
}
static int keep_iface_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_interface *mixer = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = mixer->chip->keep_iface;
return 0;
}
static int keep_iface_ctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_interface *mixer = snd_kcontrol_chip(kcontrol);
bool keep_iface = !!ucontrol->value.integer.value[0];
if (mixer->chip->keep_iface == keep_iface)
return 0;
mixer->chip->keep_iface = keep_iface;
return 1;
}
static const struct snd_kcontrol_new keep_iface_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "Keep Interface",
.info = snd_ctl_boolean_mono_info,
.get = keep_iface_ctl_get,
.put = keep_iface_ctl_put,
};
static int create_keep_iface_ctl(struct usb_mixer_interface *mixer)
{
struct snd_kcontrol *kctl = snd_ctl_new1(&keep_iface_ctl, mixer);
/* need only one control per card */
if (snd_ctl_find_id(mixer->chip->card, &kctl->id)) {
snd_ctl_free_one(kctl);
return 0;
}
return snd_ctl_add(mixer->chip->card, kctl);
}
int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
int ignore_error)
{
static struct snd_device_ops dev_ops = {
.dev_free = snd_usb_mixer_dev_free
};
struct usb_mixer_interface *mixer;
struct snd_info_entry *entry;
int err;
strcpy(chip->card->mixername, "USB Mixer");
mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
if (!mixer)
return -ENOMEM;
mixer->chip = chip;
mixer->ignore_ctl_error = ignore_error;
mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
GFP_KERNEL);
if (!mixer->id_elems) {
kfree(mixer);
return -ENOMEM;
}
mixer->hostif = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
switch (get_iface_desc(mixer->hostif)->bInterfaceProtocol) {
case UAC_VERSION_1:
default:
mixer->protocol = UAC_VERSION_1;
break;
case UAC_VERSION_2:
mixer->protocol = UAC_VERSION_2;
break;
case UAC_VERSION_3:
mixer->protocol = UAC_VERSION_3;
break;
}
if (mixer->protocol == UAC_VERSION_3 &&
chip->badd_profile >= UAC3_FUNCTION_SUBCLASS_GENERIC_IO) {
err = snd_usb_mixer_controls_badd(mixer, ctrlif);
if (err < 0)
goto _error;
} else {
err = snd_usb_mixer_controls(mixer);
if (err < 0)
goto _error;
}
err = snd_usb_mixer_status_create(mixer);
if (err < 0)
goto _error;
err = create_keep_iface_ctl(mixer);
if (err < 0)
goto _error;
snd_usb_mixer_apply_create_quirk(mixer);
err = snd_device_new(chip->card, SNDRV_DEV_CODEC, mixer, &dev_ops);
if (err < 0)
goto _error;
if (list_empty(&chip->mixer_list) &&
!snd_card_proc_new(chip->card, "usbmixer", &entry))
snd_info_set_text_ops(entry, chip, snd_usb_mixer_proc_read);
list_add(&mixer->list, &chip->mixer_list);
return 0;
_error:
snd_usb_mixer_free(mixer);
return err;
}
void snd_usb_mixer_disconnect(struct usb_mixer_interface *mixer)
{
ALSA: usb-audio: Kill stray URB at exiting USB-audio driver may leave a stray URB for the mixer interrupt when it exits by some error during probe. This leads to a use-after-free error as spotted by syzkaller like: ================================================================== BUG: KASAN: use-after-free in snd_usb_mixer_interrupt+0x604/0x6f0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:16 dump_stack+0x292/0x395 lib/dump_stack.c:52 print_address_description+0x78/0x280 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 kasan_report+0x23d/0x350 mm/kasan/report.c:409 __asan_report_load8_noabort+0x19/0x20 mm/kasan/report.c:430 snd_usb_mixer_interrupt+0x604/0x6f0 sound/usb/mixer.c:2490 __usb_hcd_giveback_urb+0x2e0/0x650 drivers/usb/core/hcd.c:1779 .... Allocated by task 1484: save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 kmem_cache_alloc_trace+0x11e/0x2d0 mm/slub.c:2772 kmalloc ./include/linux/slab.h:493 kzalloc ./include/linux/slab.h:666 snd_usb_create_mixer+0x145/0x1010 sound/usb/mixer.c:2540 create_standard_mixer_quirk+0x58/0x80 sound/usb/quirks.c:516 snd_usb_create_quirk+0x92/0x100 sound/usb/quirks.c:560 create_composite_quirk+0x1c4/0x3e0 sound/usb/quirks.c:59 snd_usb_create_quirk+0x92/0x100 sound/usb/quirks.c:560 usb_audio_probe+0x1040/0x2c10 sound/usb/card.c:618 .... Freed by task 1484: save_stack_trace+0x1b/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 kasan_slab_free+0x72/0xc0 mm/kasan/kasan.c:524 slab_free_hook mm/slub.c:1390 slab_free_freelist_hook mm/slub.c:1412 slab_free mm/slub.c:2988 kfree+0xf6/0x2f0 mm/slub.c:3919 snd_usb_mixer_free+0x11a/0x160 sound/usb/mixer.c:2244 snd_usb_mixer_dev_free+0x36/0x50 sound/usb/mixer.c:2250 __snd_device_free+0x1ff/0x380 sound/core/device.c:91 snd_device_free_all+0x8f/0xe0 sound/core/device.c:244 snd_card_do_free sound/core/init.c:461 release_card_device+0x47/0x170 sound/core/init.c:181 device_release+0x13f/0x210 drivers/base/core.c:814 .... Actually such a URB is killed properly at disconnection when the device gets probed successfully, and what we need is to apply it for the error-path, too. In this patch, we apply snd_usb_mixer_disconnect() at releasing. Also introduce a new flag, disconnected, to struct usb_mixer_interface for not performing the disconnection procedure twice. Reported-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-10-10 19:10:32 +07:00
if (mixer->disconnected)
return;
if (mixer->urb)
usb_kill_urb(mixer->urb);
if (mixer->rc_urb)
usb_kill_urb(mixer->rc_urb);
mixer->disconnected = true;
}
#ifdef CONFIG_PM
/* stop any bus activity of a mixer */
static void snd_usb_mixer_inactivate(struct usb_mixer_interface *mixer)
{
usb_kill_urb(mixer->urb);
usb_kill_urb(mixer->rc_urb);
}
static int snd_usb_mixer_activate(struct usb_mixer_interface *mixer)
{
int err;
if (mixer->urb) {
err = usb_submit_urb(mixer->urb, GFP_NOIO);
if (err < 0)
return err;
}
return 0;
}
int snd_usb_mixer_suspend(struct usb_mixer_interface *mixer)
{
snd_usb_mixer_inactivate(mixer);
return 0;
}
static int restore_mixer_value(struct usb_mixer_elem_list *list)
{
struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list);
int c, err, idx;
if (cval->cmask) {
idx = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & (1 << c)))
continue;
if (cval->cached & (1 << (c + 1))) {
err = snd_usb_set_cur_mix_value(cval, c + 1, idx,
cval->cache_val[idx]);
if (err < 0)
return err;
}
idx++;
}
} else {
/* master */
if (cval->cached) {
err = snd_usb_set_cur_mix_value(cval, 0, 0, *cval->cache_val);
if (err < 0)
return err;
}
}
return 0;
}
int snd_usb_mixer_resume(struct usb_mixer_interface *mixer, bool reset_resume)
{
struct usb_mixer_elem_list *list;
int id, err;
if (reset_resume) {
/* restore cached mixer values */
for (id = 0; id < MAX_ID_ELEMS; id++) {
for_each_mixer_elem(list, mixer, id) {
if (list->resume) {
err = list->resume(list);
if (err < 0)
return err;
}
}
}
}
snd_usb_mixer_resume_quirk(mixer);
return snd_usb_mixer_activate(mixer);
}
#endif
void snd_usb_mixer_elem_init_std(struct usb_mixer_elem_list *list,
struct usb_mixer_interface *mixer,
int unitid)
{
list->mixer = mixer;
list->id = unitid;
list->dump = snd_usb_mixer_dump_cval;
#ifdef CONFIG_PM
list->resume = restore_mixer_value;
#endif
}