linux_dsm_epyc7002/arch/x86/kernel/nmi.c

557 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2011 Don Zickus Red Hat, Inc.
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/nmi.h>
#include <linux/debugfs.h>
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/slab.h>
#include <linux/export.h>
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <linux/atomic.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
#include <asm/nmi.h>
#include <asm/x86_init.h>
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
struct nmi_desc {
spinlock_t lock;
struct list_head head;
};
static struct nmi_desc nmi_desc[NMI_MAX] =
{
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
.head = LIST_HEAD_INIT(nmi_desc[0].head),
},
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
.head = LIST_HEAD_INIT(nmi_desc[1].head),
},
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
.head = LIST_HEAD_INIT(nmi_desc[2].head),
},
{
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
.head = LIST_HEAD_INIT(nmi_desc[3].head),
},
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
};
struct nmi_stats {
unsigned int normal;
unsigned int unknown;
unsigned int external;
unsigned int swallow;
};
static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
static int ignore_nmis;
int unknown_nmi_panic;
/*
* Prevent NMI reason port (0x61) being accessed simultaneously, can
* only be used in NMI handler.
*/
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
static int __init setup_unknown_nmi_panic(char *str)
{
unknown_nmi_panic = 1;
return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
#define nmi_to_desc(type) (&nmi_desc[type])
static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
static int __init nmi_warning_debugfs(void)
{
debugfs_create_u64("nmi_longest_ns", 0644,
arch_debugfs_dir, &nmi_longest_ns);
return 0;
}
fs_initcall(nmi_warning_debugfs);
static void nmi_max_handler(struct irq_work *w)
{
struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
int remainder_ns, decimal_msecs;
u64 whole_msecs = ACCESS_ONCE(a->max_duration);
remainder_ns = do_div(whole_msecs, (1000 * 1000));
decimal_msecs = remainder_ns / 1000;
printk_ratelimited(KERN_INFO
"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
a->handler, whole_msecs, decimal_msecs);
}
static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *a;
int handled=0;
rcu_read_lock();
/*
* NMIs are edge-triggered, which means if you have enough
* of them concurrently, you can lose some because only one
* can be latched at any given time. Walk the whole list
* to handle those situations.
*/
list_for_each_entry_rcu(a, &desc->head, list) {
int thishandled;
u64 delta;
delta = sched_clock();
thishandled = a->handler(type, regs);
handled += thishandled;
delta = sched_clock() - delta;
trace_nmi_handler(a->handler, (int)delta, thishandled);
if (delta < nmi_longest_ns || delta < a->max_duration)
continue;
a->max_duration = delta;
irq_work_queue(&a->irq_work);
}
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
rcu_read_unlock();
/* return total number of NMI events handled */
return handled;
}
x86/nmi: Fix page faults by nmiaction if kmemcheck is enabled This patch tries to fix the problem of page fault exception caused by accessing nmiaction structure in nmi if kmemcheck is enabled. If kmemcheck is enabled, the memory allocated through slab are in pages that are marked non-present, so that some checks could be done in the page fault handling code ( e.g. whether the memory is read before written to ). As nmiaction is allocated in this way, so it resides in a non-present page. Then there is a page fault while the nmi code accessing the nmiaction structure, which would then cause a warning by WARN_ON_ONCE(in_nmi()) in kmemcheck_fault(), called by do_page_fault(). This significantly simplifies the code as well, as the whole dynamic allocation dance goes away. v2: as Peter suggested, changed the nmiaction to use static storage. v3: as Peter suggested, use macro to shorten the codes. Also keep the original usage of register_nmi_handler, so users of this call doesn't need change. Tested-by: Seiji Aguchi <seiji.aguchi@hds.com> Fixes: https://lkml.org/lkml/2012/3/2/356 Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> [ simplified the wrappers ] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: thomas.mingarelli@hp.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1333051877-15755-4-git-send-email-dzickus@redhat.com [ tidied the patch a bit ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-30 03:11:17 +07:00
int __register_nmi_handler(unsigned int type, struct nmiaction *action)
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
{
struct nmi_desc *desc = nmi_to_desc(type);
unsigned long flags;
x86/nmi: Fix page faults by nmiaction if kmemcheck is enabled This patch tries to fix the problem of page fault exception caused by accessing nmiaction structure in nmi if kmemcheck is enabled. If kmemcheck is enabled, the memory allocated through slab are in pages that are marked non-present, so that some checks could be done in the page fault handling code ( e.g. whether the memory is read before written to ). As nmiaction is allocated in this way, so it resides in a non-present page. Then there is a page fault while the nmi code accessing the nmiaction structure, which would then cause a warning by WARN_ON_ONCE(in_nmi()) in kmemcheck_fault(), called by do_page_fault(). This significantly simplifies the code as well, as the whole dynamic allocation dance goes away. v2: as Peter suggested, changed the nmiaction to use static storage. v3: as Peter suggested, use macro to shorten the codes. Also keep the original usage of register_nmi_handler, so users of this call doesn't need change. Tested-by: Seiji Aguchi <seiji.aguchi@hds.com> Fixes: https://lkml.org/lkml/2012/3/2/356 Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> [ simplified the wrappers ] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: thomas.mingarelli@hp.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1333051877-15755-4-git-send-email-dzickus@redhat.com [ tidied the patch a bit ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-30 03:11:17 +07:00
if (!action->handler)
return -EINVAL;
init_irq_work(&action->irq_work, nmi_max_handler);
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
spin_lock_irqsave(&desc->lock, flags);
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
/*
* most handlers of type NMI_UNKNOWN never return because
* they just assume the NMI is theirs. Just a sanity check
* to manage expectations
*/
WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
/*
* some handlers need to be executed first otherwise a fake
* event confuses some handlers (kdump uses this flag)
*/
if (action->flags & NMI_FLAG_FIRST)
list_add_rcu(&action->list, &desc->head);
else
list_add_tail_rcu(&action->list, &desc->head);
spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
x86/nmi: Fix page faults by nmiaction if kmemcheck is enabled This patch tries to fix the problem of page fault exception caused by accessing nmiaction structure in nmi if kmemcheck is enabled. If kmemcheck is enabled, the memory allocated through slab are in pages that are marked non-present, so that some checks could be done in the page fault handling code ( e.g. whether the memory is read before written to ). As nmiaction is allocated in this way, so it resides in a non-present page. Then there is a page fault while the nmi code accessing the nmiaction structure, which would then cause a warning by WARN_ON_ONCE(in_nmi()) in kmemcheck_fault(), called by do_page_fault(). This significantly simplifies the code as well, as the whole dynamic allocation dance goes away. v2: as Peter suggested, changed the nmiaction to use static storage. v3: as Peter suggested, use macro to shorten the codes. Also keep the original usage of register_nmi_handler, so users of this call doesn't need change. Tested-by: Seiji Aguchi <seiji.aguchi@hds.com> Fixes: https://lkml.org/lkml/2012/3/2/356 Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> [ simplified the wrappers ] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: thomas.mingarelli@hp.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1333051877-15755-4-git-send-email-dzickus@redhat.com [ tidied the patch a bit ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-30 03:11:17 +07:00
EXPORT_SYMBOL(__register_nmi_handler);
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
x86/nmi: Fix page faults by nmiaction if kmemcheck is enabled This patch tries to fix the problem of page fault exception caused by accessing nmiaction structure in nmi if kmemcheck is enabled. If kmemcheck is enabled, the memory allocated through slab are in pages that are marked non-present, so that some checks could be done in the page fault handling code ( e.g. whether the memory is read before written to ). As nmiaction is allocated in this way, so it resides in a non-present page. Then there is a page fault while the nmi code accessing the nmiaction structure, which would then cause a warning by WARN_ON_ONCE(in_nmi()) in kmemcheck_fault(), called by do_page_fault(). This significantly simplifies the code as well, as the whole dynamic allocation dance goes away. v2: as Peter suggested, changed the nmiaction to use static storage. v3: as Peter suggested, use macro to shorten the codes. Also keep the original usage of register_nmi_handler, so users of this call doesn't need change. Tested-by: Seiji Aguchi <seiji.aguchi@hds.com> Fixes: https://lkml.org/lkml/2012/3/2/356 Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> [ simplified the wrappers ] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: thomas.mingarelli@hp.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1333051877-15755-4-git-send-email-dzickus@redhat.com [ tidied the patch a bit ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-30 03:11:17 +07:00
void unregister_nmi_handler(unsigned int type, const char *name)
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:20 +07:00
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *n;
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
list_for_each_entry_rcu(n, &desc->head, list) {
/*
* the name passed in to describe the nmi handler
* is used as the lookup key
*/
if (!strcmp(n->name, name)) {
WARN(in_nmi(),
"Trying to free NMI (%s) from NMI context!\n", n->name);
list_del_rcu(&n->list);
break;
}
}
spin_unlock_irqrestore(&desc->lock, flags);
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);
static __kprobes void
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_SERR, regs, false))
return;
pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
/*
* On some machines, PCI SERR line is used to report memory
* errors. EDAC makes use of it.
*/
#if defined(CONFIG_EDAC)
if (edac_handler_set()) {
edac_atomic_assert_error();
return;
}
#endif
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
/* Clear and disable the PCI SERR error line. */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
}
static __kprobes void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_IO_CHECK, regs, false))
return;
pr_emerg(
"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
show_regs(regs);
if (panic_on_io_nmi)
panic("NMI IOCK error: Not continuing");
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
i = 20000;
while (--i) {
touch_nmi_watchdog();
udelay(100);
}
reason &= ~NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
}
static __kprobes void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
int handled;
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
/*
* Use 'false' as back-to-back NMIs are dealt with one level up.
* Of course this makes having multiple 'unknown' handlers useless
* as only the first one is ever run (unless it can actually determine
* if it caused the NMI)
*/
handled = nmi_handle(NMI_UNKNOWN, regs, false);
if (handled) {
__this_cpu_add(nmi_stats.unknown, handled);
return;
}
__this_cpu_add(nmi_stats.unknown, 1);
pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
pr_emerg("Do you have a strange power saving mode enabled?\n");
if (unknown_nmi_panic || panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
}
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
static __kprobes void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int handled;
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
bool b2b = false;
/*
* CPU-specific NMI must be processed before non-CPU-specific
* NMI, otherwise we may lose it, because the CPU-specific
* NMI can not be detected/processed on other CPUs.
*/
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
/*
* Back-to-back NMIs are interesting because they can either
* be two NMI or more than two NMIs (any thing over two is dropped
* due to NMI being edge-triggered). If this is the second half
* of the back-to-back NMI, assume we dropped things and process
* more handlers. Otherwise reset the 'swallow' NMI behaviour
*/
if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = true;
else
__this_cpu_write(swallow_nmi, false);
__this_cpu_write(last_nmi_rip, regs->ip);
handled = nmi_handle(NMI_LOCAL, regs, b2b);
__this_cpu_add(nmi_stats.normal, handled);
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
if (handled) {
/*
* There are cases when a NMI handler handles multiple
* events in the current NMI. One of these events may
* be queued for in the next NMI. Because the event is
* already handled, the next NMI will result in an unknown
* NMI. Instead lets flag this for a potential NMI to
* swallow.
*/
if (handled > 1)
__this_cpu_write(swallow_nmi, true);
return;
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
}
/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
raw_spin_lock(&nmi_reason_lock);
reason = x86_platform.get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);
#ifdef CONFIG_X86_32
/*
* Reassert NMI in case it became active
* meanwhile as it's edge-triggered:
*/
reassert_nmi();
#endif
__this_cpu_add(nmi_stats.external, 1);
raw_spin_unlock(&nmi_reason_lock);
return;
}
raw_spin_unlock(&nmi_reason_lock);
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
/*
* Only one NMI can be latched at a time. To handle
* this we may process multiple nmi handlers at once to
* cover the case where an NMI is dropped. The downside
* to this approach is we may process an NMI prematurely,
* while its real NMI is sitting latched. This will cause
* an unknown NMI on the next run of the NMI processing.
*
* We tried to flag that condition above, by setting the
* swallow_nmi flag when we process more than one event.
* This condition is also only present on the second half
* of a back-to-back NMI, so we flag that condition too.
*
* If both are true, we assume we already processed this
* NMI previously and we swallow it. Otherwise we reset
* the logic.
*
* There are scenarios where we may accidentally swallow
* a 'real' unknown NMI. For example, while processing
* a perf NMI another perf NMI comes in along with a
* 'real' unknown NMI. These two NMIs get combined into
* one (as descibed above). When the next NMI gets
* processed, it will be flagged by perf as handled, but
* noone will know that there was a 'real' unknown NMI sent
* also. As a result it gets swallowed. Or if the first
* perf NMI returns two events handled then the second
* NMI will get eaten by the logic below, again losing a
* 'real' unknown NMI. But this is the best we can do
* for now.
*/
if (b2b && __this_cpu_read(swallow_nmi))
__this_cpu_add(nmi_stats.swallow, 1);
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
else
unknown_nmi_error(reason, regs);
}
2011-12-14 04:44:16 +07:00
/*
* NMIs can hit breakpoints which will cause it to lose its
* NMI context with the CPU when the breakpoint does an iret.
*/
#ifdef CONFIG_X86_32
/*
* For i386, NMIs use the same stack as the kernel, and we can
* add a workaround to the iret problem in C (preventing nested
* NMIs if an NMI takes a trap). Simply have 3 states the NMI
* can be in:
2011-12-14 04:44:16 +07:00
*
* 1) not running
* 2) executing
* 3) latched
*
* When no NMI is in progress, it is in the "not running" state.
* When an NMI comes in, it goes into the "executing" state.
* Normally, if another NMI is triggered, it does not interrupt
* the running NMI and the HW will simply latch it so that when
* the first NMI finishes, it will restart the second NMI.
* (Note, the latch is binary, thus multiple NMIs triggering,
* when one is running, are ignored. Only one NMI is restarted.)
*
* If an NMI hits a breakpoint that executes an iret, another
* NMI can preempt it. We do not want to allow this new NMI
* to run, but we want to execute it when the first one finishes.
* We set the state to "latched", and the exit of the first NMI will
* perform a dec_return, if the result is zero (NOT_RUNNING), then
* it will simply exit the NMI handler. If not, the dec_return
* would have set the state to NMI_EXECUTING (what we want it to
* be when we are running). In this case, we simply jump back
* to rerun the NMI handler again, and restart the 'latched' NMI.
*
* No trap (breakpoint or page fault) should be hit before nmi_restart,
* thus there is no race between the first check of state for NOT_RUNNING
* and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
* at this point.
*
* In case the NMI takes a page fault, we need to save off the CR2
* because the NMI could have preempted another page fault and corrupt
* the CR2 that is about to be read. As nested NMIs must be restarted
* and they can not take breakpoints or page faults, the update of the
* CR2 must be done before converting the nmi state back to NOT_RUNNING.
* Otherwise, there would be a race of another nested NMI coming in
* after setting state to NOT_RUNNING but before updating the nmi_cr2.
2011-12-14 04:44:16 +07:00
*/
enum nmi_states {
NMI_NOT_RUNNING = 0,
2011-12-14 04:44:16 +07:00
NMI_EXECUTING,
NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
2011-12-14 04:44:16 +07:00
#define nmi_nesting_preprocess(regs) \
do { \
if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
this_cpu_write(nmi_state, NMI_LATCHED); \
2011-12-14 04:44:16 +07:00
return; \
} \
this_cpu_write(nmi_state, NMI_EXECUTING); \
this_cpu_write(nmi_cr2, read_cr2()); \
} while (0); \
nmi_restart:
2011-12-14 04:44:16 +07:00
#define nmi_nesting_postprocess() \
do { \
if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
write_cr2(this_cpu_read(nmi_cr2)); \
if (this_cpu_dec_return(nmi_state)) \
2011-12-14 04:44:16 +07:00
goto nmi_restart; \
} while (0)
#else /* x86_64 */
/*
* In x86_64 things are a bit more difficult. This has the same problem
* where an NMI hitting a breakpoint that calls iret will remove the
* NMI context, allowing a nested NMI to enter. What makes this more
* difficult is that both NMIs and breakpoints have their own stack.
* When a new NMI or breakpoint is executed, the stack is set to a fixed
* point. If an NMI is nested, it will have its stack set at that same
* fixed address that the first NMI had, and will start corrupting the
* stack. This is handled in entry_64.S, but the same problem exists with
* the breakpoint stack.
*
* If a breakpoint is being processed, and the debug stack is being used,
* if an NMI comes in and also hits a breakpoint, the stack pointer
* will be set to the same fixed address as the breakpoint that was
* interrupted, causing that stack to be corrupted. To handle this case,
* check if the stack that was interrupted is the debug stack, and if
* so, change the IDT so that new breakpoints will use the current stack
* and not switch to the fixed address. On return of the NMI, switch back
* to the original IDT.
*/
static DEFINE_PER_CPU(int, update_debug_stack);
2011-12-14 04:44:16 +07:00
static inline void nmi_nesting_preprocess(struct pt_regs *regs)
{
/*
* If we interrupted a breakpoint, it is possible that
* the nmi handler will have breakpoints too. We need to
* change the IDT such that breakpoints that happen here
* continue to use the NMI stack.
*/
if (unlikely(is_debug_stack(regs->sp))) {
debug_stack_set_zero();
this_cpu_write(update_debug_stack, 1);
}
2011-12-14 04:44:16 +07:00
}
static inline void nmi_nesting_postprocess(void)
{
if (unlikely(this_cpu_read(update_debug_stack))) {
2011-12-14 04:44:16 +07:00
debug_stack_reset();
this_cpu_write(update_debug_stack, 0);
}
2011-12-14 04:44:16 +07:00
}
#endif
dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs *regs, long error_code)
{
nmi_nesting_preprocess(regs);
nmi_enter();
inc_irq_stat(__nmi_count);
if (!ignore_nmis)
default_do_nmi(regs);
nmi_exit();
2011-12-14 04:44:16 +07:00
/* On i386, may loop back to preprocess */
nmi_nesting_postprocess();
}
void stop_nmi(void)
{
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
}
x86, nmi: Add in logic to handle multiple events and unknown NMIs Previous patches allow the NMI subsystem to process multipe NMI events in one NMI. As previously discussed this can cause issues when an event triggered another NMI but is processed in the current NMI. This causes the next NMI to go unprocessed and become an 'unknown' NMI. To handle this, we first have to flag whether or not the NMI handler handled more than one event or not. If it did, then there exists a chance that the next NMI might be already processed. Once the NMI is flagged as a candidate to be swallowed, we next look for a back-to-back NMI condition. This is determined by looking at the %rip from pt_regs. If it is the same as the previous NMI, it is assumed the cpu did not have a chance to jump back into a non-NMI context and execute code and instead handled another NMI. If both of those conditions are true then we will swallow any unknown NMI. There still exists a chance that we accidentally swallow a real unknown NMI, but for now things seem better. An optimization has also been added to the nmi notifier rountine. Because x86 can latch up to one NMI while currently processing an NMI, we don't have to worry about executing _all_ the handlers in a standalone NMI. The idea is if multiple NMIs come in, the second NMI will represent them. For those back-to-back NMI cases, we have the potentail to drop NMIs. Therefore only execute all the handlers in the second half of a detected back-to-back NMI. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-5-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 02:06:22 +07:00
/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
__this_cpu_write(last_nmi_rip, 0);
}
EXPORT_SYMBOL_GPL(local_touch_nmi);