linux_dsm_epyc7002/lib/genalloc.c

785 lines
22 KiB
C
Raw Normal View History

[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
/*
* Basic general purpose allocator for managing special purpose
* memory, for example, memory that is not managed by the regular
* kmalloc/kfree interface. Uses for this includes on-device special
* memory, uncached memory etc.
*
* It is safe to use the allocator in NMI handlers and other special
* unblockable contexts that could otherwise deadlock on locks. This
* is implemented by using atomic operations and retries on any
* conflicts. The disadvantage is that there may be livelocks in
* extreme cases. For better scalability, one allocator can be used
* for each CPU.
*
* The lockless operation only works if there is enough memory
* available. If new memory is added to the pool a lock has to be
* still taken. So any user relying on locklessness has to ensure
* that sufficient memory is preallocated.
*
* The basic atomic operation of this allocator is cmpxchg on long.
* On architectures that don't have NMI-safe cmpxchg implementation,
* the allocator can NOT be used in NMI handler. So code uses the
* allocator in NMI handler should depend on
* CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
*
* Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/bitmap.h>
#include <linux/rculist.h>
#include <linux/interrupt.h>
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
#include <linux/genalloc.h>
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
#include <linux/of_device.h>
#include <linux/vmalloc.h>
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
{
return chunk->end_addr - chunk->start_addr + 1;
}
static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if (val & mask_to_set)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
return 0;
}
static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if ((val & mask_to_clear) != mask_to_clear)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
return 0;
}
/*
* bitmap_set_ll - set the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Set @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users set the same bit, one user will return remain bits, otherwise
* return 0.
*/
static int bitmap_set_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_set >= 0) {
if (set_bits_ll(p, mask_to_set))
return nr;
nr -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (nr) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
if (set_bits_ll(p, mask_to_set))
return nr;
}
return 0;
}
/*
* bitmap_clear_ll - clear the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Clear @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users clear the same bit, one user will return remain bits,
* otherwise return 0.
*/
static int bitmap_clear_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_clear >= 0) {
if (clear_bits_ll(p, mask_to_clear))
return nr;
nr -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (nr) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
if (clear_bits_ll(p, mask_to_clear))
return nr;
}
return 0;
}
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
/**
* gen_pool_create - create a new special memory pool
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
* @nid: node id of the node the pool structure should be allocated on, or -1
*
* Create a new special memory pool that can be used to manage special purpose
* memory not managed by the regular kmalloc/kfree interface.
*/
struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
{
struct gen_pool *pool;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
if (pool != NULL) {
spin_lock_init(&pool->lock);
INIT_LIST_HEAD(&pool->chunks);
pool->min_alloc_order = min_alloc_order;
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
pool->algo = gen_pool_first_fit;
pool->data = NULL;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
pool->name = NULL;
}
return pool;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
}
EXPORT_SYMBOL(gen_pool_create);
/**
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
* gen_pool_add_owner- add a new chunk of special memory to the pool
* @pool: pool to add new memory chunk to
* @virt: virtual starting address of memory chunk to add to pool
* @phys: physical starting address of memory chunk to add to pool
* @size: size in bytes of the memory chunk to add to pool
* @nid: node id of the node the chunk structure and bitmap should be
* allocated on, or -1
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
* @owner: private data the publisher would like to recall at alloc time
*
* Add a new chunk of special memory to the specified pool.
*
* Returns 0 on success or a -ve errno on failure.
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
*/
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
size_t size, int nid, void *owner)
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
{
struct gen_pool_chunk *chunk;
int nbits = size >> pool->min_alloc_order;
int nbytes = sizeof(struct gen_pool_chunk) +
genalloc: stop crashing the system when destroying a pool The genalloc code uses the bitmap API from include/linux/bitmap.h and lib/bitmap.c, which is based on long values. Both bitmap_set from lib/bitmap.c and bitmap_set_ll, which is the lockless version from genalloc.c, use BITMAP_LAST_WORD_MASK to set the first bits in a long in the bitmap. That one uses (1 << bits) - 1, 0b111, if you are setting the first three bits. This means that the API counts from the least significant bits (LSB from now on) to the MSB. The LSB in the first long is bit 0, then. The same works for the lookup functions. The genalloc code uses longs for the bitmap, as it should. In include/linux/genalloc.h, struct gen_pool_chunk has unsigned long bits[0] as its last member. When allocating the struct, genalloc should reserve enough space for the bitmap. This should be a proper number of longs that can fit the amount of bits in the bitmap. However, genalloc allocates an integer number of bytes that fit the amount of bits, but may not be an integer amount of longs. 9 bytes, for example, could be allocated for 70 bits. This is a problem in itself if the Least Significat Bit in a long is in the byte with the largest address, which happens in Big Endian machines. This means genalloc is not allocating the byte in which it will try to set or check for a bit. This may end up in memory corruption, where genalloc will try to set the bits it has not allocated. In fact, genalloc may not set these bits because it may find them already set, because they were not zeroed since they were not allocated. And that's what causes a BUG when gen_pool_destroy is called and check for any set bits. What really happens is that genalloc uses kmalloc_node with __GFP_ZERO on gen_pool_add_virt. With SLAB and SLUB, this means the whole slab will be cleared, not only the requested bytes. Since struct gen_pool_chunk has a size that is a multiple of 8, and slab sizes are multiples of 8, we get lucky and allocate and clear the right amount of bytes. Hower, this is not the case with SLOB or with older code that did memset after allocating instead of using __GFP_ZERO. So, a simple module as this (running 3.6.0), will cause a crash when rmmod'ed. [root@phantom-lp2 foo]# cat foo.c #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/genalloc.h> MODULE_LICENSE("GPL"); MODULE_VERSION("0.1"); static struct gen_pool *foo_pool; static __init int foo_init(void) { int ret; foo_pool = gen_pool_create(10, -1); if (!foo_pool) return -ENOMEM; ret = gen_pool_add(foo_pool, 0xa0000000, 32 << 10, -1); if (ret) { gen_pool_destroy(foo_pool); return ret; } return 0; } static __exit void foo_exit(void) { gen_pool_destroy(foo_pool); } module_init(foo_init); module_exit(foo_exit); [root@phantom-lp2 foo]# zcat /proc/config.gz | grep SLOB CONFIG_SLOB=y [root@phantom-lp2 foo]# insmod ./foo.ko [root@phantom-lp2 foo]# rmmod foo ------------[ cut here ]------------ kernel BUG at lib/genalloc.c:243! cpu 0x4: Vector: 700 (Program Check) at [c0000000bb0e7960] pc: c0000000003cb50c: .gen_pool_destroy+0xac/0x110 lr: c0000000003cb4fc: .gen_pool_destroy+0x9c/0x110 sp: c0000000bb0e7be0 msr: 8000000000029032 current = 0xc0000000bb0e0000 paca = 0xc000000006d30e00 softe: 0 irq_happened: 0x01 pid = 13044, comm = rmmod kernel BUG at lib/genalloc.c:243! [c0000000bb0e7ca0] d000000004b00020 .foo_exit+0x20/0x38 [foo] [c0000000bb0e7d20] c0000000000dff98 .SyS_delete_module+0x1a8/0x290 [c0000000bb0e7e30] c0000000000097d4 syscall_exit+0x0/0x94 --- Exception: c00 (System Call) at 000000800753d1a0 SP (fffd0b0e640) is in userspace Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-26 03:37:51 +07:00
BITS_TO_LONGS(nbits) * sizeof(long);
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
chunk = vzalloc_node(nbytes, nid);
if (unlikely(chunk == NULL))
return -ENOMEM;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
chunk->phys_addr = phys;
chunk->start_addr = virt;
chunk->end_addr = virt + size - 1;
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
chunk->owner = owner;
atomic_long_set(&chunk->avail, size);
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
spin_lock(&pool->lock);
list_add_rcu(&chunk->next_chunk, &pool->chunks);
spin_unlock(&pool->lock);
return 0;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
}
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
EXPORT_SYMBOL(gen_pool_add_owner);
/**
* gen_pool_virt_to_phys - return the physical address of memory
* @pool: pool to allocate from
* @addr: starting address of memory
*
* Returns the physical address on success, or -1 on error.
*/
phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
{
struct gen_pool_chunk *chunk;
phys_addr_t paddr = -1;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
paddr = chunk->phys_addr + (addr - chunk->start_addr);
break;
}
}
rcu_read_unlock();
return paddr;
}
EXPORT_SYMBOL(gen_pool_virt_to_phys);
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
/**
* gen_pool_destroy - destroy a special memory pool
* @pool: pool to destroy
*
* Destroy the specified special memory pool. Verifies that there are no
* outstanding allocations.
*/
void gen_pool_destroy(struct gen_pool *pool)
{
struct list_head *_chunk, *_next_chunk;
struct gen_pool_chunk *chunk;
int order = pool->min_alloc_order;
int bit, end_bit;
list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
list_del(&chunk->next_chunk);
end_bit = chunk_size(chunk) >> order;
bit = find_next_bit(chunk->bits, end_bit, 0);
BUG_ON(bit < end_bit);
vfree(chunk);
}
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
kfree_const(pool->name);
kfree(pool);
}
EXPORT_SYMBOL(gen_pool_destroy);
/**
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
* gen_pool_alloc_algo_owner - allocate special memory from the pool
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @algo: algorithm passed from caller
* @data: data passed to algorithm
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
* @owner: optionally retrieve the chunk owner
*
* Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
genpool_algo_t algo, void *data, void **owner)
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
{
struct gen_pool_chunk *chunk;
unsigned long addr = 0;
int order = pool->min_alloc_order;
lib/genalloc.c: start search from start of chunk gen_pool_alloc_algo() iterates over the chunks of a pool trying to find a contiguous block of memory that satisfies the allocation request. The shortcut if (size > atomic_read(&chunk->avail)) continue; makes the loop skip over chunks that do not have enough bytes left to fulfill the request. There are two situations, though, where an allocation might still fail: (1) The available memory is not contiguous, i.e. the request cannot be fulfilled due to external fragmentation. (2) A race condition. Another thread runs the same code concurrently and is quicker to grab the available memory. In those situations, the loop calls pool->algo() to search the entire chunk, and pool->algo() returns some value that is >= end_bit to indicate that the search failed. This return value is then assigned to start_bit. The variables start_bit and end_bit describe the range that should be searched, and this range should be reset for every chunk that is searched. Today, the code fails to reset start_bit to 0. As a result, prefixes of subsequent chunks are ignored. Memory allocations might fail even though there is plenty of room left in these prefixes of those other chunks. Fixes: 7f184275aa30 ("lib, Make gen_pool memory allocator lockless") Link: http://lkml.kernel.org/r/1477420604-28918-1-git-send-email-danielmentz@google.com Signed-off-by: Daniel Mentz <danielmentz@google.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-28 07:46:59 +07:00
int nbits, start_bit, end_bit, remain;
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
#endif
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
if (owner)
*owner = NULL;
if (size == 0)
return 0;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (size > atomic_long_read(&chunk->avail))
continue;
lib/genalloc.c: start search from start of chunk gen_pool_alloc_algo() iterates over the chunks of a pool trying to find a contiguous block of memory that satisfies the allocation request. The shortcut if (size > atomic_read(&chunk->avail)) continue; makes the loop skip over chunks that do not have enough bytes left to fulfill the request. There are two situations, though, where an allocation might still fail: (1) The available memory is not contiguous, i.e. the request cannot be fulfilled due to external fragmentation. (2) A race condition. Another thread runs the same code concurrently and is quicker to grab the available memory. In those situations, the loop calls pool->algo() to search the entire chunk, and pool->algo() returns some value that is >= end_bit to indicate that the search failed. This return value is then assigned to start_bit. The variables start_bit and end_bit describe the range that should be searched, and this range should be reset for every chunk that is searched. Today, the code fails to reset start_bit to 0. As a result, prefixes of subsequent chunks are ignored. Memory allocations might fail even though there is plenty of room left in these prefixes of those other chunks. Fixes: 7f184275aa30 ("lib, Make gen_pool memory allocator lockless") Link: http://lkml.kernel.org/r/1477420604-28918-1-git-send-email-danielmentz@google.com Signed-off-by: Daniel Mentz <danielmentz@google.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-28 07:46:59 +07:00
start_bit = 0;
end_bit = chunk_size(chunk) >> order;
retry:
start_bit = algo(chunk->bits, end_bit, start_bit,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
nbits, data, pool, chunk->start_addr);
if (start_bit >= end_bit)
continue;
remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
if (remain) {
remain = bitmap_clear_ll(chunk->bits, start_bit,
nbits - remain);
BUG_ON(remain);
goto retry;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
}
addr = chunk->start_addr + ((unsigned long)start_bit << order);
size = nbits << order;
atomic_long_sub(size, &chunk->avail);
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
if (owner)
*owner = chunk->owner;
break;
}
rcu_read_unlock();
return addr;
}
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
/**
* gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: dma-view physical address return value. Use NULL if unneeded.
*
* Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
{
unsigned long vaddr;
if (!pool)
return NULL;
vaddr = gen_pool_alloc(pool, size);
if (!vaddr)
return NULL;
if (dma)
*dma = gen_pool_virt_to_phys(pool, vaddr);
return (void *)vaddr;
}
EXPORT_SYMBOL(gen_pool_dma_alloc);
/**
* gen_pool_free - free allocated special memory back to the pool
* @pool: pool to free to
* @addr: starting address of memory to free back to pool
* @size: size in bytes of memory to free
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
* @owner: private data stashed at gen_pool_add() time
*
* Free previously allocated special memory back to the specified
* pool. Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
void **owner)
{
struct gen_pool_chunk *chunk;
int order = pool->min_alloc_order;
int start_bit, nbits, remain;
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
#endif
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
if (owner)
*owner = NULL;
nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
BUG_ON(addr + size - 1 > chunk->end_addr);
start_bit = (addr - chunk->start_addr) >> order;
remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
BUG_ON(remain);
size = nbits << order;
atomic_long_add(size, &chunk->avail);
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
if (owner)
*owner = chunk->owner;
rcu_read_unlock();
return;
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
}
}
rcu_read_unlock();
BUG();
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:15:02 +07:00
}
lib/genalloc: introduce chunk owners The p2pdma facility enables a provider to publish a pool of dma addresses for a consumer to allocate. A genpool is used internally by p2pdma to collect dma resources, 'chunks', to be handed out to consumers. Whenever a consumer allocates a resource it needs to pin the 'struct dev_pagemap' instance that backs the chunk selected by pci_alloc_p2pmem(). Currently that reference is taken globally on the entire provider device. That sets up a lifetime mismatch whereby the p2pdma core needs to maintain hacks to make sure the percpu_ref is not released twice. This lifetime mismatch also stands in the way of a fix to devm_memremap_pages() whereby devm_memremap_pages_release() must wait for the percpu_ref ->release() callback to complete before it can proceed to teardown pages. So, towards fixing this situation, introduce the ability to store a 'chunk owner' at gen_pool_add() time, and a facility to retrieve the owner at gen_pool_{alloc,free}() time. For p2pdma this will be used to store and recall individual dev_pagemap reference counter instances per-chunk. Link: http://lkml.kernel.org/r/155727338118.292046.13407378933221579644.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-14 05:56:27 +07:00
EXPORT_SYMBOL(gen_pool_free_owner);
/**
* gen_pool_for_each_chunk - call func for every chunk of generic memory pool
* @pool: the generic memory pool
* @func: func to call
* @data: additional data used by @func
*
* Call @func for every chunk of generic memory pool. The @func is
* called with rcu_read_lock held.
*/
void gen_pool_for_each_chunk(struct gen_pool *pool,
void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
void *data)
{
struct gen_pool_chunk *chunk;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
func(pool, chunk, data);
rcu_read_unlock();
}
EXPORT_SYMBOL(gen_pool_for_each_chunk);
/**
* addr_in_gen_pool - checks if an address falls within the range of a pool
* @pool: the generic memory pool
* @start: start address
* @size: size of the region
*
* Check if the range of addresses falls within the specified pool. Returns
* true if the entire range is contained in the pool and false otherwise.
*/
bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
size_t size)
{
bool found = false;
unsigned long end = start + size - 1;
struct gen_pool_chunk *chunk;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
if (start >= chunk->start_addr && start <= chunk->end_addr) {
if (end <= chunk->end_addr) {
found = true;
break;
}
}
}
rcu_read_unlock();
return found;
}
/**
* gen_pool_avail - get available free space of the pool
* @pool: pool to get available free space
*
* Return available free space of the specified pool.
*/
size_t gen_pool_avail(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t avail = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
avail += atomic_long_read(&chunk->avail);
rcu_read_unlock();
return avail;
}
EXPORT_SYMBOL_GPL(gen_pool_avail);
/**
* gen_pool_size - get size in bytes of memory managed by the pool
* @pool: pool to get size
*
* Return size in bytes of memory managed by the pool.
*/
size_t gen_pool_size(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t size = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
size += chunk_size(chunk);
rcu_read_unlock();
return size;
}
EXPORT_SYMBOL_GPL(gen_pool_size);
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
/**
* gen_pool_set_algo - set the allocation algorithm
* @pool: pool to change allocation algorithm
* @algo: custom algorithm function
* @data: additional data used by @algo
*
* Call @algo for each memory allocation in the pool.
* If @algo is NULL use gen_pool_first_fit as default
* memory allocation function.
*/
void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
{
rcu_read_lock();
pool->algo = algo;
if (!pool->algo)
pool->algo = gen_pool_first_fit;
pool->data = data;
rcu_read_unlock();
}
EXPORT_SYMBOL(gen_pool_set_algo);
/**
* gen_pool_first_fit - find the first available region
* of memory matching the size requirement (no alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
*/
unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
struct gen_pool *pool, unsigned long start_addr)
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
{
return bitmap_find_next_zero_area(map, size, start, nr, 0);
}
EXPORT_SYMBOL(gen_pool_first_fit);
/**
* gen_pool_first_fit_align - find the first available region
* of memory matching the size requirement (alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: data for alignment
* @pool: pool to get order from
*/
unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
struct gen_pool *pool, unsigned long start_addr)
{
struct genpool_data_align *alignment;
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
unsigned long align_mask, align_off;
int order;
alignment = data;
order = pool->min_alloc_order;
align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
align_off = (start_addr & (alignment->align - 1)) >> order;
return bitmap_find_next_zero_area_off(map, size, start, nr,
align_mask, align_off);
}
EXPORT_SYMBOL(gen_pool_first_fit_align);
/**
* gen_pool_fixed_alloc - reserve a specific region
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: data for alignment
* @pool: pool to get order from
*/
unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
struct gen_pool *pool, unsigned long start_addr)
{
struct genpool_data_fixed *fixed_data;
int order;
unsigned long offset_bit;
unsigned long start_bit;
fixed_data = data;
order = pool->min_alloc_order;
offset_bit = fixed_data->offset >> order;
if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
return size;
start_bit = bitmap_find_next_zero_area(map, size,
start + offset_bit, nr, 0);
if (start_bit != offset_bit)
start_bit = size;
return start_bit;
}
EXPORT_SYMBOL(gen_pool_fixed_alloc);
/**
* gen_pool_first_fit_order_align - find the first available region
* of memory matching the size requirement. The region will be aligned
* to the order of the size specified.
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
*/
unsigned long gen_pool_first_fit_order_align(unsigned long *map,
unsigned long size, unsigned long start,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
unsigned int nr, void *data, struct gen_pool *pool,
unsigned long start_addr)
{
unsigned long align_mask = roundup_pow_of_two(nr) - 1;
return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
}
EXPORT_SYMBOL(gen_pool_first_fit_order_align);
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
/**
* gen_pool_best_fit - find the best fitting region of memory
* macthing the size requirement (no alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
*
* Iterate over the bitmap to find the smallest free region
* which we can allocate the memory.
*/
unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
lib/genalloc.c: fix allocation of aligned buffer from non-aligned chunk gen_pool_alloc_algo() uses different allocation functions implementing different allocation algorithms. With gen_pool_first_fit_align() allocation function, the returned address should be aligned on the requested boundary. If chunk start address isn't aligned on the requested boundary, the returned address isn't aligned too. The only way to get properly aligned address is to initialize the pool with chunks aligned on the requested boundary. If want to have an ability to allocate buffers aligned on different boundaries (for example, 4K, 1MB, ...), the chunk start address should be aligned on the max possible alignment. This happens because gen_pool_first_fit_align() looks for properly aligned memory block without taking into account the chunk start address alignment. To fix this, we provide chunk start address to gen_pool_first_fit_align() and change its implementation such that it starts looking for properly aligned block with appropriate offset (exactly as is done in CMA). Link: https://lkml.kernel.org/lkml/a170cf65-6884-3592-1de9-4c235888cc8a@intel.com Link: http://lkml.kernel.org/r/1541690953-4623-1-git-send-email-alexey.skidanov@intel.com Signed-off-by: Alexey Skidanov <alexey.skidanov@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 06:26:44 +07:00
struct gen_pool *pool, unsigned long start_addr)
genalloc: make it possible to use a custom allocation algorithm Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-05 07:13:20 +07:00
{
unsigned long start_bit = size;
unsigned long len = size + 1;
unsigned long index;
index = bitmap_find_next_zero_area(map, size, start, nr, 0);
while (index < size) {
int next_bit = find_next_bit(map, size, index + nr);
if ((next_bit - index) < len) {
len = next_bit - index;
start_bit = index;
if (len == nr)
return start_bit;
}
index = bitmap_find_next_zero_area(map, size,
next_bit + 1, nr, 0);
}
return start_bit;
}
EXPORT_SYMBOL(gen_pool_best_fit);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
static void devm_gen_pool_release(struct device *dev, void *res)
{
gen_pool_destroy(*(struct gen_pool **)res);
}
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
static int devm_gen_pool_match(struct device *dev, void *res, void *data)
{
struct gen_pool **p = res;
/* NULL data matches only a pool without an assigned name */
if (!data && !(*p)->name)
return 1;
if (!data || !(*p)->name)
return 0;
return !strcmp((*p)->name, data);
}
genalloc: add name arg to gen_pool_get() and devm_gen_pool_create() This change modifies gen_pool_get() and devm_gen_pool_create() client interfaces adding one more argument "name" of a gen_pool object. Due to implementation gen_pool_get() is capable to retrieve only one gen_pool associated with a device even if multiple gen_pools are created, fortunately right at the moment it is sufficient for the clients, hence provide NULL as a valid argument on both producer devm_gen_pool_create() and consumer gen_pool_get() sides. Because only one created gen_pool per device is addressable, explicitly add a restriction to devm_gen_pool_create() to create only one gen_pool per device, this implies two possible error codes returned by the function, account it on client side (only misc/sram). This completes client side changes related to genalloc updates. [akpm@linux-foundation.org: gen_pool_get() cleanup] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:43 +07:00
/**
* gen_pool_get - Obtain the gen_pool (if any) for a device
* @dev: device to retrieve the gen_pool from
* @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
*
* Returns the gen_pool for the device if one is present, or NULL.
*/
struct gen_pool *gen_pool_get(struct device *dev, const char *name)
{
struct gen_pool **p;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
(void *)name);
genalloc: add name arg to gen_pool_get() and devm_gen_pool_create() This change modifies gen_pool_get() and devm_gen_pool_create() client interfaces adding one more argument "name" of a gen_pool object. Due to implementation gen_pool_get() is capable to retrieve only one gen_pool associated with a device even if multiple gen_pools are created, fortunately right at the moment it is sufficient for the clients, hence provide NULL as a valid argument on both producer devm_gen_pool_create() and consumer gen_pool_get() sides. Because only one created gen_pool per device is addressable, explicitly add a restriction to devm_gen_pool_create() to create only one gen_pool per device, this implies two possible error codes returned by the function, account it on client side (only misc/sram). This completes client side changes related to genalloc updates. [akpm@linux-foundation.org: gen_pool_get() cleanup] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:43 +07:00
if (!p)
return NULL;
return *p;
}
EXPORT_SYMBOL_GPL(gen_pool_get);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
/**
* devm_gen_pool_create - managed gen_pool_create
* @dev: device that provides the gen_pool
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
genalloc: add name arg to gen_pool_get() and devm_gen_pool_create() This change modifies gen_pool_get() and devm_gen_pool_create() client interfaces adding one more argument "name" of a gen_pool object. Due to implementation gen_pool_get() is capable to retrieve only one gen_pool associated with a device even if multiple gen_pools are created, fortunately right at the moment it is sufficient for the clients, hence provide NULL as a valid argument on both producer devm_gen_pool_create() and consumer gen_pool_get() sides. Because only one created gen_pool per device is addressable, explicitly add a restriction to devm_gen_pool_create() to create only one gen_pool per device, this implies two possible error codes returned by the function, account it on client side (only misc/sram). This completes client side changes related to genalloc updates. [akpm@linux-foundation.org: gen_pool_get() cleanup] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:43 +07:00
* @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
* @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
*
* Create a new special memory pool that can be used to manage special purpose
* memory not managed by the regular kmalloc/kfree interface. The pool will be
* automatically destroyed by the device management code.
*/
struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
genalloc: add name arg to gen_pool_get() and devm_gen_pool_create() This change modifies gen_pool_get() and devm_gen_pool_create() client interfaces adding one more argument "name" of a gen_pool object. Due to implementation gen_pool_get() is capable to retrieve only one gen_pool associated with a device even if multiple gen_pools are created, fortunately right at the moment it is sufficient for the clients, hence provide NULL as a valid argument on both producer devm_gen_pool_create() and consumer gen_pool_get() sides. Because only one created gen_pool per device is addressable, explicitly add a restriction to devm_gen_pool_create() to create only one gen_pool per device, this implies two possible error codes returned by the function, account it on client side (only misc/sram). This completes client side changes related to genalloc updates. [akpm@linux-foundation.org: gen_pool_get() cleanup] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:43 +07:00
int nid, const char *name)
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
{
struct gen_pool **ptr, *pool;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
const char *pool_name = NULL;
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
genalloc: add name arg to gen_pool_get() and devm_gen_pool_create() This change modifies gen_pool_get() and devm_gen_pool_create() client interfaces adding one more argument "name" of a gen_pool object. Due to implementation gen_pool_get() is capable to retrieve only one gen_pool associated with a device even if multiple gen_pools are created, fortunately right at the moment it is sufficient for the clients, hence provide NULL as a valid argument on both producer devm_gen_pool_create() and consumer gen_pool_get() sides. Because only one created gen_pool per device is addressable, explicitly add a restriction to devm_gen_pool_create() to create only one gen_pool per device, this implies two possible error codes returned by the function, account it on client side (only misc/sram). This completes client side changes related to genalloc updates. [akpm@linux-foundation.org: gen_pool_get() cleanup] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:43 +07:00
/* Check that genpool to be created is uniquely addressed on device */
if (gen_pool_get(dev, name))
return ERR_PTR(-EINVAL);
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
if (name) {
pool_name = kstrdup_const(name, GFP_KERNEL);
if (!pool_name)
return ERR_PTR(-ENOMEM);
}
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
goto free_pool_name;
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
pool = gen_pool_create(min_alloc_order, nid);
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
if (!pool)
goto free_devres;
*ptr = pool;
pool->name = pool_name;
devres_add(dev, ptr);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
return pool;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
free_devres:
devres_free(ptr);
free_pool_name:
kfree_const(pool_name);
return ERR_PTR(-ENOMEM);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
}
EXPORT_SYMBOL(devm_gen_pool_create);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
#ifdef CONFIG_OF
/**
* of_gen_pool_get - find a pool by phandle property
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
* @np: device node
* @propname: property name containing phandle(s)
* @index: index into the phandle array
*
* Returns the pool that contains the chunk starting at the physical
* address of the device tree node pointed at by the phandle property,
* or NULL if not found.
*/
struct gen_pool *of_gen_pool_get(struct device_node *np,
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
const char *propname, int index)
{
struct platform_device *pdev;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
struct device_node *np_pool, *parent;
const char *name = NULL;
struct gen_pool *pool = NULL;
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
np_pool = of_parse_phandle(np, propname, index);
if (!np_pool)
return NULL;
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
pdev = of_find_device_by_node(np_pool);
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
if (!pdev) {
/* Check if named gen_pool is created by parent node device */
parent = of_get_parent(np_pool);
pdev = of_find_device_by_node(parent);
of_node_put(parent);
of_property_read_string(np_pool, "label", &name);
if (!name)
name = np_pool->name;
}
if (pdev)
pool = gen_pool_get(&pdev->dev, name);
of_node_put(np_pool);
genalloc: add support of multiple gen_pools per device This change fills devm_gen_pool_create()/gen_pool_get() "name" argument stub with contents and extends of_gen_pool_get() functionality on this basis. If there is no associated platform device with a device node passed to of_gen_pool_get(), the function attempts to get a label property or device node name (= repeats MTD OF partition standard) and seeks for a named gen_pool registered by device of the parent device node. The main idea of the change is to allow registration of independent gen_pools under the same umbrella device, say "partitions" on "storage device", the original functionality of one "partition" per "storage device" is untouched. [akpm@linux-foundation.org: fix constness in devres_find()] [dan.carpenter@oracle.com: freeing const data pointers] Signed-off-by: Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Alexandre Belloni <alexandre.belloni@free-electrons.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 05:47:47 +07:00
return pool;
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
}
EXPORT_SYMBOL_GPL(of_gen_pool_get);
genalloc: add devres support, allow to find a managed pool by device This patch adds three exported functions to lib/genalloc.c: devm_gen_pool_create, dev_get_gen_pool, and of_get_named_gen_pool. devm_gen_pool_create is a managed version of gen_pool_create that keeps track of the pool via devres and allows the management code to automatically destroy it after device removal. dev_get_gen_pool retrieves the gen_pool for a given device, if it was created with devm_gen_pool_create, using devres_find. of_get_named_gen_pool retrieves the gen_pool for a given device node and property name, where the property must contain a phandle pointing to a platform device node. The corresponding platform device is then fed into dev_get_gen_pool and the resulting gen_pool is returned. [akpm@linux-foundation.org: make the of_get_named_gen_pool() stub static, fixing a zillion link errors] [akpm@linux-foundation.org: squish "struct device declared inside parameter list" warning] Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Matt Porter <mporter@ti.com> Cc: Dong Aisheng <dong.aisheng@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Javier Martin <javier.martin@vista-silicon.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:17:10 +07:00
#endif /* CONFIG_OF */