linux_dsm_epyc7002/arch/s390/kernel/mcount.S

115 lines
3.0 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright IBM Corp. 2008, 2009
*
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>,
*
*/
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/ftrace.h>
#include <asm/nospec-insn.h>
#include <asm/ptrace.h>
#include <asm/export.h>
GEN_BR_THUNK %r1
GEN_BR_THUNK %r14
.section .kprobes.text, "ax"
ENTRY(ftrace_stub)
BR_EX %r14
ENDPROC(ftrace_stub)
#define STACK_FRAME_SIZE (STACK_FRAME_OVERHEAD + __PT_SIZE)
#define STACK_PTREGS (STACK_FRAME_OVERHEAD)
#define STACK_PTREGS_GPRS (STACK_PTREGS + __PT_GPRS)
#define STACK_PTREGS_PSW (STACK_PTREGS + __PT_PSW)
s390/ftrace: generate traced function stack frame Currently backtrace from ftraced function does not contain ftraced function itself. e.g. for "path_openat": arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Ftraced function is expected in the backtrace by ftrace kselftests, which are now failing. It would also be nice to have it for clarity reasons. "ftrace_caller" itself is called without stack frame allocated for it and does not store its caller (ftraced function). Instead it simply allocates a stack frame for "ftrace_trace_function" and sets backchain to point to ftraced function stack frame (which contains ftraced function caller in saved r14). To fix this issue make "ftrace_caller" allocate a stack frame for itself just to store ftraced function for the stack unwinder. As a result backtrace looks like the following: arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code path_openat+0x6/0xd60 <-- ftraced function do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Reported-by: Sven Schnelle <sven.schnelle@ibm.com> Tested-by: Sven Schnelle <sven.schnelle@ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-12-10 20:33:39 +07:00
#ifdef __PACK_STACK
/* allocate just enough for r14, r15 and backchain */
#define TRACED_FUNC_FRAME_SIZE 24
#else
#define TRACED_FUNC_FRAME_SIZE STACK_FRAME_OVERHEAD
#endif
ENTRY(_mcount)
BR_EX %r14
ENDPROC(_mcount)
EXPORT_SYMBOL(_mcount)
ENTRY(ftrace_caller)
.globl ftrace_regs_caller
.set ftrace_regs_caller,ftrace_caller
stg %r14,(__SF_GPRS+8*8)(%r15) # save traced function caller
lghi %r14,0 # save condition code
ipm %r14 # don't put any instructions
sllg %r14,%r14,16 # clobbering CC before this point
lgr %r1,%r15
#if !(defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT))
s390/ftrace,kprobes: allow to patch first instruction If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-15 17:17:38 +07:00
aghi %r0,MCOUNT_RETURN_FIXUP
#endif
s390/ftrace: generate traced function stack frame Currently backtrace from ftraced function does not contain ftraced function itself. e.g. for "path_openat": arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Ftraced function is expected in the backtrace by ftrace kselftests, which are now failing. It would also be nice to have it for clarity reasons. "ftrace_caller" itself is called without stack frame allocated for it and does not store its caller (ftraced function). Instead it simply allocates a stack frame for "ftrace_trace_function" and sets backchain to point to ftraced function stack frame (which contains ftraced function caller in saved r14). To fix this issue make "ftrace_caller" allocate a stack frame for itself just to store ftraced function for the stack unwinder. As a result backtrace looks like the following: arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code path_openat+0x6/0xd60 <-- ftraced function do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Reported-by: Sven Schnelle <sven.schnelle@ibm.com> Tested-by: Sven Schnelle <sven.schnelle@ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-12-10 20:33:39 +07:00
# allocate stack frame for ftrace_caller to contain traced function
aghi %r15,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15)
s390/ftrace: generate traced function stack frame Currently backtrace from ftraced function does not contain ftraced function itself. e.g. for "path_openat": arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Ftraced function is expected in the backtrace by ftrace kselftests, which are now failing. It would also be nice to have it for clarity reasons. "ftrace_caller" itself is called without stack frame allocated for it and does not store its caller (ftraced function). Instead it simply allocates a stack frame for "ftrace_trace_function" and sets backchain to point to ftraced function stack frame (which contains ftraced function caller in saved r14). To fix this issue make "ftrace_caller" allocate a stack frame for itself just to store ftraced function for the stack unwinder. As a result backtrace looks like the following: arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code path_openat+0x6/0xd60 <-- ftraced function do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Reported-by: Sven Schnelle <sven.schnelle@ibm.com> Tested-by: Sven Schnelle <sven.schnelle@ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-12-10 20:33:39 +07:00
stg %r0,(__SF_GPRS+8*8)(%r15)
stg %r15,(__SF_GPRS+9*8)(%r15)
# allocate pt_regs and stack frame for ftrace_trace_function
aghi %r15,-STACK_FRAME_SIZE
stg %r1,(STACK_PTREGS_GPRS+15*8)(%r15)
stg %r14,(STACK_PTREGS_PSW)(%r15)
lg %r14,(__SF_GPRS+8*8)(%r1) # restore original return address
stosm (STACK_PTREGS_PSW)(%r15),0
s390/ftrace: generate traced function stack frame Currently backtrace from ftraced function does not contain ftraced function itself. e.g. for "path_openat": arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Ftraced function is expected in the backtrace by ftrace kselftests, which are now failing. It would also be nice to have it for clarity reasons. "ftrace_caller" itself is called without stack frame allocated for it and does not store its caller (ftraced function). Instead it simply allocates a stack frame for "ftrace_trace_function" and sets backchain to point to ftraced function stack frame (which contains ftraced function caller in saved r14). To fix this issue make "ftrace_caller" allocate a stack frame for itself just to store ftraced function for the stack unwinder. As a result backtrace looks like the following: arch_stack_walk+0x15c/0x2d8 stack_trace_save+0x50/0x68 stack_trace_call+0x15e/0x3d8 ftrace_graph_caller+0x0/0x1c <-- ftrace code path_openat+0x6/0xd60 <-- ftraced function do_filp_open+0x7c/0xe8 <-- ftraced function caller do_open_execat+0x76/0x1b8 open_exec+0x52/0x78 load_elf_binary+0x180/0x1160 search_binary_handler+0x8e/0x288 load_script+0x2a8/0x2b8 search_binary_handler+0x8e/0x288 __do_execve_file.isra.39+0x6fa/0xb40 __s390x_sys_execve+0x56/0x68 system_call+0xdc/0x2d8 Reported-by: Sven Schnelle <sven.schnelle@ibm.com> Tested-by: Sven Schnelle <sven.schnelle@ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-12-10 20:33:39 +07:00
aghi %r1,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15)
stg %r0,(STACK_PTREGS_PSW+8)(%r15)
stmg %r2,%r14,(STACK_PTREGS_GPRS+2*8)(%r15)
#ifdef CONFIG_HAVE_MARCH_Z196_FEATURES
aghik %r2,%r0,-MCOUNT_INSN_SIZE
lgrl %r4,function_trace_op
lgrl %r1,ftrace_trace_function
#else
lgr %r2,%r0
aghi %r2,-MCOUNT_INSN_SIZE
larl %r4,function_trace_op
lg %r4,0(%r4)
larl %r1,ftrace_trace_function
lg %r1,0(%r1)
#endif
lgr %r3,%r14
la %r5,STACK_PTREGS(%r15)
BASR_EX %r14,%r1
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
# The j instruction gets runtime patched to a nop instruction.
# See ftrace_enable_ftrace_graph_caller.
.globl ftrace_graph_caller
ftrace_graph_caller:
j ftrace_graph_caller_end
lmg %r2,%r3,(STACK_PTREGS_GPRS+14*8)(%r15)
lg %r4,(STACK_PTREGS_PSW+8)(%r15)
brasl %r14,prepare_ftrace_return
stg %r2,(STACK_PTREGS_GPRS+14*8)(%r15)
ftrace_graph_caller_end:
.globl ftrace_graph_caller_end
#endif
lg %r1,(STACK_PTREGS_PSW+8)(%r15)
lmg %r2,%r15,(STACK_PTREGS_GPRS+2*8)(%r15)
BR_EX %r1
ENDPROC(ftrace_caller)
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(return_to_handler)
stmg %r2,%r5,32(%r15)
lgr %r1,%r15
aghi %r15,-STACK_FRAME_OVERHEAD
stg %r1,__SF_BACKCHAIN(%r15)
brasl %r14,ftrace_return_to_handler
aghi %r15,STACK_FRAME_OVERHEAD
lgr %r14,%r2
lmg %r2,%r5,32(%r15)
BR_EX %r14
ENDPROC(return_to_handler)
#endif