linux_dsm_epyc7002/drivers/acpi/sleep.c

1314 lines
32 KiB
C
Raw Normal View History

/*
* sleep.c - ACPI sleep support.
*
* Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
* Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
* Copyright (c) 2000-2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2.
*
*/
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/dmi.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/suspend.h>
#include <linux/reboot.h>
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/syscore_ops.h>
#include <asm/io.h>
#include <trace/events/power.h>
#include "internal.h"
#include "sleep.h"
/*
* Some HW-full platforms do not have _S5, so they may need
* to leverage efi power off for a shutdown.
*/
bool acpi_no_s5;
static u8 sleep_states[ACPI_S_STATE_COUNT];
static void acpi_sleep_tts_switch(u32 acpi_state)
{
acpi_status status;
status = acpi_execute_simple_method(NULL, "\\_TTS", acpi_state);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
/*
* OS can't evaluate the _TTS object correctly. Some warning
* message will be printed. But it won't break anything.
*/
printk(KERN_NOTICE "Failure in evaluating _TTS object\n");
}
}
static int tts_notify_reboot(struct notifier_block *this,
unsigned long code, void *x)
{
acpi_sleep_tts_switch(ACPI_STATE_S5);
return NOTIFY_DONE;
}
static struct notifier_block tts_notifier = {
.notifier_call = tts_notify_reboot,
.next = NULL,
.priority = 0,
};
static int acpi_sleep_prepare(u32 acpi_state)
{
#ifdef CONFIG_ACPI_SLEEP
/* do we have a wakeup address for S2 and S3? */
if (acpi_state == ACPI_STATE_S3) {
if (!acpi_wakeup_address)
return -EFAULT;
acpi_set_waking_vector(acpi_wakeup_address);
}
ACPI_FLUSH_CPU_CACHE();
#endif
printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n",
acpi_state);
acpi_enable_wakeup_devices(acpi_state);
acpi_enter_sleep_state_prep(acpi_state);
return 0;
}
static bool acpi_sleep_state_supported(u8 sleep_state)
{
acpi_status status;
u8 type_a, type_b;
status = acpi_get_sleep_type_data(sleep_state, &type_a, &type_b);
return ACPI_SUCCESS(status) && (!acpi_gbl_reduced_hardware
|| (acpi_gbl_FADT.sleep_control.address
&& acpi_gbl_FADT.sleep_status.address));
}
#ifdef CONFIG_ACPI_SLEEP
static u32 acpi_target_sleep_state = ACPI_STATE_S0;
u32 acpi_target_system_state(void)
{
return acpi_target_sleep_state;
}
EXPORT_SYMBOL_GPL(acpi_target_system_state);
static bool pwr_btn_event_pending;
/*
* The ACPI specification wants us to save NVS memory regions during hibernation
* and to restore them during the subsequent resume. Windows does that also for
* suspend to RAM. However, it is known that this mechanism does not work on
* all machines, so we allow the user to disable it with the help of the
* 'acpi_sleep=nonvs' kernel command line option.
*/
static bool nvs_nosave;
void __init acpi_nvs_nosave(void)
{
nvs_nosave = true;
}
/*
* The ACPI specification wants us to save NVS memory regions during hibernation
* but says nothing about saving NVS during S3. Not all versions of Windows
* save NVS on S3 suspend either, and it is clear that not all systems need
* NVS to be saved at S3 time. To improve suspend/resume time, allow the
* user to disable saving NVS on S3 if their system does not require it, but
* continue to save/restore NVS for S4 as specified.
*/
static bool nvs_nosave_s3;
void __init acpi_nvs_nosave_s3(void)
{
nvs_nosave_s3 = true;
}
static int __init init_nvs_save_s3(const struct dmi_system_id *d)
{
nvs_nosave_s3 = false;
return 0;
}
/*
* ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
* user to request that behavior by using the 'acpi_old_suspend_ordering'
* kernel command line option that causes the following variable to be set.
*/
static bool old_suspend_ordering;
void __init acpi_old_suspend_ordering(void)
{
old_suspend_ordering = true;
}
static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
{
acpi_old_suspend_ordering();
return 0;
}
static int __init init_nvs_nosave(const struct dmi_system_id *d)
{
acpi_nvs_nosave();
return 0;
}
static bool acpi_sleep_no_lps0;
static int __init init_no_lps0(const struct dmi_system_id *d)
{
acpi_sleep_no_lps0 = true;
return 0;
}
static const struct dmi_system_id acpisleep_dmi_table[] __initconst = {
{
.callback = init_old_suspend_ordering,
.ident = "Abit KN9 (nForce4 variant)",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "HP xw4600 Workstation",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Panasonic CF51-2L",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR,
"Matsushita Electric Industrial Co.,Ltd."),
DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW41E_H",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW41E_H"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW21E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW21M",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21M"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB17FX",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-SR11M",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Everex StepNote Series",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB1Z1E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-NW130D",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCCW29FX",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Averatec AV1020-ED2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus A8N-SLI DELUXE",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus A8N-SLI Premium",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-SR26GN_P",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB1S1E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1S1E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW520F",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Asus K54C",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Asus K54HR",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
},
},
{
.callback = init_nvs_save_s3,
.ident = "Asus 1025C",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_MATCH(DMI_PRODUCT_NAME, "1025C"),
},
},
/*
* https://bugzilla.kernel.org/show_bug.cgi?id=189431
* Lenovo G50-45 is a platform later than 2012, but needs nvs memory
* saving during S3.
*/
{
.callback = init_nvs_save_s3,
.ident = "Lenovo G50-45",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "80E3"),
},
},
/*
* https://bugzilla.kernel.org/show_bug.cgi?id=196907
* Some Dell XPS13 9360 cannot do suspend-to-idle using the Low Power
* S0 Idle firmware interface.
*/
{
.callback = init_no_lps0,
.ident = "Dell XPS13 9360",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "XPS 13 9360"),
},
},
/*
* ThinkPad X1 Tablet(2016) cannot do suspend-to-idle using
* the Low Power S0 Idle firmware interface (see
* https://bugzilla.kernel.org/show_bug.cgi?id=199057).
*/
{
.callback = init_no_lps0,
.ident = "ThinkPad X1 Tablet(2016)",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "20GGA00L00"),
},
},
{},
};
static bool ignore_blacklist;
void __init acpi_sleep_no_blacklist(void)
{
ignore_blacklist = true;
}
static void __init acpi_sleep_dmi_check(void)
{
if (ignore_blacklist)
return;
if (dmi_get_bios_year() >= 2012)
acpi_nvs_nosave_s3();
dmi_check_system(acpisleep_dmi_table);
}
/**
* acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
*/
static int acpi_pm_freeze(void)
{
acpi_disable_all_gpes();
acpi_os_wait_events_complete();
acpi_ec_block_transactions();
return 0;
}
/**
* acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
*/
static int acpi_pm_pre_suspend(void)
{
acpi_pm_freeze();
return suspend_nvs_save();
}
/**
* __acpi_pm_prepare - Prepare the platform to enter the target state.
*
* If necessary, set the firmware waking vector and do arch-specific
* nastiness to get the wakeup code to the waking vector.
*/
static int __acpi_pm_prepare(void)
{
int error = acpi_sleep_prepare(acpi_target_sleep_state);
if (error)
acpi_target_sleep_state = ACPI_STATE_S0;
return error;
}
/**
* acpi_pm_prepare - Prepare the platform to enter the target sleep
* state and disable the GPEs.
*/
static int acpi_pm_prepare(void)
{
int error = __acpi_pm_prepare();
if (!error)
error = acpi_pm_pre_suspend();
return error;
}
static int find_powerf_dev(struct device *dev, void *data)
{
struct acpi_device *device = to_acpi_device(dev);
const char *hid = acpi_device_hid(device);
return !strcmp(hid, ACPI_BUTTON_HID_POWERF);
}
/**
* acpi_pm_finish - Instruct the platform to leave a sleep state.
*
* This is called after we wake back up (or if entering the sleep state
* failed).
*/
static void acpi_pm_finish(void)
{
struct device *pwr_btn_dev;
u32 acpi_state = acpi_target_sleep_state;
acpi_ec_unblock_transactions();
suspend_nvs_free();
if (acpi_state == ACPI_STATE_S0)
return;
printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n",
acpi_state);
acpi_disable_wakeup_devices(acpi_state);
acpi_leave_sleep_state(acpi_state);
/* reset firmware waking vector */
acpi_set_waking_vector(0);
acpi_target_sleep_state = ACPI_STATE_S0;
acpi_resume_power_resources();
/* If we were woken with the fixed power button, provide a small
* hint to userspace in the form of a wakeup event on the fixed power
* button device (if it can be found).
*
* We delay the event generation til now, as the PM layer requires
* timekeeping to be running before we generate events. */
if (!pwr_btn_event_pending)
return;
pwr_btn_event_pending = false;
pwr_btn_dev = bus_find_device(&acpi_bus_type, NULL, NULL,
find_powerf_dev);
if (pwr_btn_dev) {
pm_wakeup_event(pwr_btn_dev, 0);
put_device(pwr_btn_dev);
}
}
/**
* acpi_pm_start - Start system PM transition.
*/
static void acpi_pm_start(u32 acpi_state)
{
acpi_target_sleep_state = acpi_state;
acpi_sleep_tts_switch(acpi_target_sleep_state);
acpi_scan_lock_acquire();
}
/**
* acpi_pm_end - Finish up system PM transition.
*/
static void acpi_pm_end(void)
{
ACPI / power: Delay turning off unused power resources after suspend Commit 660b1113e0f3 (ACPI / PM: Fix consistency check for power resources during resume) introduced a check for ACPI power resources which have been turned on by the BIOS during suspend and turns these back off again. This is causing problems on a Dell Venue Pro 11 7130 (i5-4300Y) it causes the following messages to show up in dmesg: [ 131.014605] ACPI: Waking up from system sleep state S3 [ 131.150271] acpi LNXPOWER:07: Turning OFF [ 131.150323] acpi LNXPOWER:06: Turning OFF [ 131.150911] acpi LNXPOWER:00: Turning OFF [ 131.169014] ACPI : EC: interrupt unblocked [ 131.181811] xhci_hcd 0000:00:14.0: System wakeup disabled by ACPI [ 133.535728] pci_raw_set_power_state: 76 callbacks suppressed [ 133.535735] iwlwifi 0000:01:00.0: Refused to change power state, currently in D3 [ 133.597672] PM: noirq resume of devices complete after 2428.891 msecs Followed by a bunch of iwlwifi errors later on and the pcie device dropping from the bus (acpiphp thinks it has been unplugged). Disabling the turning off of unused power resources fixes this. Instead of adding a quirk for this system, this commit fixes this by moving the disabling of unused power resources to later in the resume sequence when the iwlwifi card has been moved out of D3 so the ref_count for its power resource no longer is 0. This new behavior seems to match the intend of the original commit which commit-msg says: "(... which means that no devices are going to need them any time soon) and we should turn them off". This also avoids power resources which we need when bringing devices out of D3 from getting bounced off and then back on again. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-01 03:54:16 +07:00
acpi_turn_off_unused_power_resources();
acpi_scan_lock_release();
/*
* This is necessary in case acpi_pm_finish() is not called during a
* failing transition to a sleep state.
*/
acpi_target_sleep_state = ACPI_STATE_S0;
acpi_sleep_tts_switch(acpi_target_sleep_state);
}
#else /* !CONFIG_ACPI_SLEEP */
#define acpi_target_sleep_state ACPI_STATE_S0
#define acpi_sleep_no_lps0 (false)
static inline void acpi_sleep_dmi_check(void) {}
#endif /* CONFIG_ACPI_SLEEP */
#ifdef CONFIG_SUSPEND
static u32 acpi_suspend_states[] = {
[PM_SUSPEND_ON] = ACPI_STATE_S0,
[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
[PM_SUSPEND_MEM] = ACPI_STATE_S3,
[PM_SUSPEND_MAX] = ACPI_STATE_S5
};
/**
* acpi_suspend_begin - Set the target system sleep state to the state
* associated with given @pm_state, if supported.
*/
static int acpi_suspend_begin(suspend_state_t pm_state)
{
u32 acpi_state = acpi_suspend_states[pm_state];
int error;
error = (nvs_nosave || nvs_nosave_s3) ? 0 : suspend_nvs_alloc();
if (error)
return error;
if (!sleep_states[acpi_state]) {
pr_err("ACPI does not support sleep state S%u\n", acpi_state);
return -ENOSYS;
}
if (acpi_state > ACPI_STATE_S1)
pm_set_suspend_via_firmware();
acpi_pm_start(acpi_state);
return 0;
}
/**
* acpi_suspend_enter - Actually enter a sleep state.
* @pm_state: ignored
*
* Flush caches and go to sleep. For STR we have to call arch-specific
* assembly, which in turn call acpi_enter_sleep_state().
* It's unfortunate, but it works. Please fix if you're feeling frisky.
*/
static int acpi_suspend_enter(suspend_state_t pm_state)
{
acpi_status status = AE_OK;
u32 acpi_state = acpi_target_sleep_state;
int error;
ACPI_FLUSH_CPU_CACHE();
trace_suspend_resume(TPS("acpi_suspend"), acpi_state, true);
switch (acpi_state) {
case ACPI_STATE_S1:
barrier();
status = acpi_enter_sleep_state(acpi_state);
break;
case ACPI_STATE_S3:
if (!acpi_suspend_lowlevel)
return -ENOSYS;
error = acpi_suspend_lowlevel();
if (error)
return error;
pr_info(PREFIX "Low-level resume complete\n");
pm_set_resume_via_firmware();
break;
}
trace_suspend_resume(TPS("acpi_suspend"), acpi_state, false);
/* This violates the spec but is required for bug compatibility. */
acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
/* Reprogram control registers */
acpi_leave_sleep_state_prep(acpi_state);
/* ACPI 3.0 specs (P62) says that it's the responsibility
* of the OSPM to clear the status bit [ implying that the
* POWER_BUTTON event should not reach userspace ]
*
* However, we do generate a small hint for userspace in the form of
* a wakeup event. We flag this condition for now and generate the
* event later, as we're currently too early in resume to be able to
* generate wakeup events.
*/
if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) {
acpi_event_status pwr_btn_status = ACPI_EVENT_FLAG_DISABLED;
acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status);
if (pwr_btn_status & ACPI_EVENT_FLAG_STATUS_SET) {
acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
/* Flag for later */
pwr_btn_event_pending = true;
}
}
/*
* Disable and clear GPE status before interrupt is enabled. Some GPEs
* (like wakeup GPE) haven't handler, this can avoid such GPE misfire.
* acpi_leave_sleep_state will reenable specific GPEs later
*/
acpi_disable_all_gpes();
/* Allow EC transactions to happen. */
ACPI / EC: Add PM operations to improve event handling for resume process This patch makes 2 changes: 1. Restore old behavior Originally, EC driver stops handling both events and transactions in acpi_ec_block_transactions(), and restarts to handle transactions in acpi_ec_unblock_transactions_early(), restarts to handle both events and transactions in acpi_ec_unblock_transactions(). While currently, EC driver still stops handling both events and transactions in acpi_ec_block_transactions(), but restarts to handle both events and transactions in acpi_ec_unblock_transactions_early(). This patch tries to restore the old behavior by dropping __acpi_ec_enable_event() from acpi_unblock_transactions_early(). 2. Improve old behavior However this still cannot fix the real issue as both of the acpi_ec_unblock_xxx() functions are invoked in the noirq stage. Since the EC driver actually doesn't implement the event handling in the polling mode, re-enabling the event handling too early in the noirq stage could result in the problem that if there is no triggering source causing advance_transaction() to be invoked, pending SCI_EVT cannot be detected by the EC driver and _Qxx cannot be triggered. It actually makes sense to restart the event handling in any point during resuming after the noirq stage. Just like the boot stage where the event handling is enabled in .add(), this patch further moves acpi_ec_enable_event() to .resume(). After doing that, the following 2 functions can be combined: acpi_ec_unblock_transactions_early()/acpi_ec_unblock_transactions(). The differences of the event handling availability between the old behavior (this patch isn't applied) and the new behavior (this patch is applied) are as follows: !Applied Applied before suspend Y Y suspend before EC Y Y suspend after EC Y Y suspend_late Y Y suspend_noirq Y (actually N) Y (actually N) resume_noirq Y (actually N) Y (actually N) resume_late Y (actually N) Y (actually N) resume before EC Y (actually N) Y (actually N) resume after EC Y (actually N) Y after resume Y (actually N) Y Where "actually N" means if there is no triggering source, the EC driver is actually not able to notice the pending SCI_EVT occurred in the noirq stage. So we can clearly see that this patch has improved the situation. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-03 15:01:36 +07:00
acpi_ec_unblock_transactions();
suspend_nvs_restore();
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static int acpi_suspend_state_valid(suspend_state_t pm_state)
{
u32 acpi_state;
switch (pm_state) {
case PM_SUSPEND_ON:
case PM_SUSPEND_STANDBY:
case PM_SUSPEND_MEM:
acpi_state = acpi_suspend_states[pm_state];
return sleep_states[acpi_state];
default:
return 0;
}
}
static const struct platform_suspend_ops acpi_suspend_ops = {
.valid = acpi_suspend_state_valid,
.begin = acpi_suspend_begin,
.prepare_late = acpi_pm_prepare,
.enter = acpi_suspend_enter,
.wake = acpi_pm_finish,
.end = acpi_pm_end,
};
/**
* acpi_suspend_begin_old - Set the target system sleep state to the
* state associated with given @pm_state, if supported, and
* execute the _PTS control method. This function is used if the
* pre-ACPI 2.0 suspend ordering has been requested.
*/
static int acpi_suspend_begin_old(suspend_state_t pm_state)
{
int error = acpi_suspend_begin(pm_state);
if (!error)
error = __acpi_pm_prepare();
return error;
}
/*
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
* been requested.
*/
static const struct platform_suspend_ops acpi_suspend_ops_old = {
.valid = acpi_suspend_state_valid,
.begin = acpi_suspend_begin_old,
.prepare_late = acpi_pm_pre_suspend,
.enter = acpi_suspend_enter,
.wake = acpi_pm_finish,
.end = acpi_pm_end,
.recover = acpi_pm_finish,
};
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
static bool s2idle_in_progress;
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
static bool s2idle_wakeup;
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
/*
* On platforms supporting the Low Power S0 Idle interface there is an ACPI
* device object with the PNP0D80 compatible device ID (System Power Management
* Controller) and a specific _DSM method under it. That method, if present,
* can be used to indicate to the platform that the OS is transitioning into a
* low-power state in which certain types of activity are not desirable or that
* it is leaving such a state, which allows the platform to adjust its operation
* mode accordingly.
*/
static const struct acpi_device_id lps0_device_ids[] = {
{"PNP0D80", },
{"", },
};
#define ACPI_LPS0_DSM_UUID "c4eb40a0-6cd2-11e2-bcfd-0800200c9a66"
#define ACPI_LPS0_GET_DEVICE_CONSTRAINTS 1
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
#define ACPI_LPS0_SCREEN_OFF 3
#define ACPI_LPS0_SCREEN_ON 4
#define ACPI_LPS0_ENTRY 5
#define ACPI_LPS0_EXIT 6
static acpi_handle lps0_device_handle;
static guid_t lps0_dsm_guid;
static char lps0_dsm_func_mask;
/* Device constraint entry structure */
struct lpi_device_info {
char *name;
int enabled;
union acpi_object *package;
};
/* Constraint package structure */
struct lpi_device_constraint {
int uid;
int min_dstate;
int function_states;
};
struct lpi_constraints {
acpi_handle handle;
int min_dstate;
};
static struct lpi_constraints *lpi_constraints_table;
static int lpi_constraints_table_size;
static void lpi_device_get_constraints(void)
{
union acpi_object *out_obj;
int i;
out_obj = acpi_evaluate_dsm_typed(lps0_device_handle, &lps0_dsm_guid,
1, ACPI_LPS0_GET_DEVICE_CONSTRAINTS,
NULL, ACPI_TYPE_PACKAGE);
acpi_handle_debug(lps0_device_handle, "_DSM function 1 eval %s\n",
out_obj ? "successful" : "failed");
if (!out_obj)
return;
lpi_constraints_table = kcalloc(out_obj->package.count,
sizeof(*lpi_constraints_table),
GFP_KERNEL);
if (!lpi_constraints_table)
goto free_acpi_buffer;
acpi_handle_debug(lps0_device_handle, "LPI: constraints list begin:\n");
for (i = 0; i < out_obj->package.count; i++) {
struct lpi_constraints *constraint;
acpi_status status;
union acpi_object *package = &out_obj->package.elements[i];
struct lpi_device_info info = { };
int package_count = 0, j;
if (!package)
continue;
for (j = 0; j < package->package.count; ++j) {
union acpi_object *element =
&(package->package.elements[j]);
switch (element->type) {
case ACPI_TYPE_INTEGER:
info.enabled = element->integer.value;
break;
case ACPI_TYPE_STRING:
info.name = element->string.pointer;
break;
case ACPI_TYPE_PACKAGE:
package_count = element->package.count;
info.package = element->package.elements;
break;
}
}
if (!info.enabled || !info.package || !info.name)
continue;
constraint = &lpi_constraints_table[lpi_constraints_table_size];
status = acpi_get_handle(NULL, info.name, &constraint->handle);
if (ACPI_FAILURE(status))
continue;
acpi_handle_debug(lps0_device_handle,
"index:%d Name:%s\n", i, info.name);
constraint->min_dstate = -1;
for (j = 0; j < package_count; ++j) {
union acpi_object *info_obj = &info.package[j];
union acpi_object *cnstr_pkg;
union acpi_object *obj;
struct lpi_device_constraint dev_info;
switch (info_obj->type) {
case ACPI_TYPE_INTEGER:
/* version */
break;
case ACPI_TYPE_PACKAGE:
if (info_obj->package.count < 2)
break;
cnstr_pkg = info_obj->package.elements;
obj = &cnstr_pkg[0];
dev_info.uid = obj->integer.value;
obj = &cnstr_pkg[1];
dev_info.min_dstate = obj->integer.value;
acpi_handle_debug(lps0_device_handle,
"uid:%d min_dstate:%s\n",
dev_info.uid,
acpi_power_state_string(dev_info.min_dstate));
constraint->min_dstate = dev_info.min_dstate;
break;
}
}
if (constraint->min_dstate < 0) {
acpi_handle_debug(lps0_device_handle,
"Incomplete constraint defined\n");
continue;
}
lpi_constraints_table_size++;
}
acpi_handle_debug(lps0_device_handle, "LPI: constraints list end\n");
free_acpi_buffer:
ACPI_FREE(out_obj);
}
static void lpi_check_constraints(void)
{
int i;
for (i = 0; i < lpi_constraints_table_size; ++i) {
acpi_handle handle = lpi_constraints_table[i].handle;
struct acpi_device *adev;
if (!handle || acpi_bus_get_device(handle, &adev))
continue;
acpi_handle_debug(handle,
"LPI: required min power state:%s current power state:%s\n",
acpi_power_state_string(lpi_constraints_table[i].min_dstate),
acpi_power_state_string(adev->power.state));
if (!adev->flags.power_manageable) {
acpi_handle_info(handle, "LPI: Device not power manageable\n");
lpi_constraints_table[i].handle = NULL;
continue;
}
if (adev->power.state < lpi_constraints_table[i].min_dstate)
acpi_handle_info(handle,
"LPI: Constraint not met; min power state:%s current power state:%s\n",
acpi_power_state_string(lpi_constraints_table[i].min_dstate),
acpi_power_state_string(adev->power.state));
}
}
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
static void acpi_sleep_run_lps0_dsm(unsigned int func)
{
union acpi_object *out_obj;
if (!(lps0_dsm_func_mask & (1 << func)))
return;
out_obj = acpi_evaluate_dsm(lps0_device_handle, &lps0_dsm_guid, 1, func, NULL);
ACPI_FREE(out_obj);
acpi_handle_debug(lps0_device_handle, "_DSM function %u evaluation %s\n",
func, out_obj ? "successful" : "failed");
}
static int lps0_device_attach(struct acpi_device *adev,
const struct acpi_device_id *not_used)
{
union acpi_object *out_obj;
if (lps0_device_handle)
return 0;
if (acpi_sleep_no_lps0) {
acpi_handle_info(adev->handle,
"Low Power S0 Idle interface disabled\n");
return 0;
}
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
return 0;
guid_parse(ACPI_LPS0_DSM_UUID, &lps0_dsm_guid);
/* Check if the _DSM is present and as expected. */
out_obj = acpi_evaluate_dsm(adev->handle, &lps0_dsm_guid, 1, 0, NULL);
if (out_obj && out_obj->type == ACPI_TYPE_BUFFER) {
char bitmask = *(char *)out_obj->buffer.pointer;
lps0_dsm_func_mask = bitmask;
lps0_device_handle = adev->handle;
/*
* Use suspend-to-idle by default if the default
* suspend mode was not set from the command line.
*/
if (mem_sleep_default > PM_SUSPEND_MEM)
mem_sleep_current = PM_SUSPEND_TO_IDLE;
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
acpi_handle_debug(adev->handle, "_DSM function mask: 0x%x\n",
bitmask);
acpi_ec_mark_gpe_for_wake();
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
} else {
acpi_handle_debug(adev->handle,
"_DSM function 0 evaluation failed\n");
}
ACPI_FREE(out_obj);
lpi_device_get_constraints();
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
return 0;
}
static struct acpi_scan_handler lps0_handler = {
.ids = lps0_device_ids,
.attach = lps0_device_attach,
};
static int acpi_s2idle_begin(void)
{
acpi_scan_lock_acquire();
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
s2idle_in_progress = true;
return 0;
}
static int acpi_s2idle_prepare(void)
{
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
if (lps0_device_handle) {
acpi_sleep_run_lps0_dsm(ACPI_LPS0_SCREEN_OFF);
acpi_sleep_run_lps0_dsm(ACPI_LPS0_ENTRY);
acpi_ec_set_gpe_wake_mask(ACPI_GPE_ENABLE);
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
}
ACPI / PM: Do not reconfigure GPEs for suspend-to-idle It is reported that commit 235d81a630ca (ACPI / PM: Clean up device wakeup enable/disable code) broke wakeup from suspend-to-idle on some platforms. That is due to the acpi_enable_all_wakeup_gpes() in acpi_s2idle_prepare() which needs acpi_enable_wakeup_devices() to be called before it as the latter sets up the GPE masks used by the former and commit 235d81a630ca removed acpi_enable_wakeup_devices() invocation from the suspend-to-idle path. However, acpi_enable_wakeup_devices() does more than just setting the GPE masks and the remaining part of it is not necessary for suspend-to-idle. Moreover, non-wakeup GPEs are disabled on suspend- to-idle entry to avoid spurious wakeups, but that should not be strictly necessary any more after commit 33e4f80ee69b (ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle) which prevents spurious GPE wakeups from resuming the system. The only consequence of leaving non-wakeup GPEs enabled may be more interrupt-related activity while suspended, which is not ideal (more energy is used if that happens), but it is not critical too. For this reason, drop the GPE reconfiguration from the suspend-to-idle path entirely. This change also allows Dells XPS13 9360 blacklisted by commit 71630b7a832f (ACPI / PM: Blacklist Low Power S0 Idle _DSM for Dell XPS13 9360) to use the power button for waking up from suspend- to-idle and it helps at least one other older Dell system (the wakeup button GPE on that one is not listed in _PRW for any devices, so it is not regarded as a wakeup one and gets disabled on suspend-to-idle entry today). Fixes: 235d81a630ca (ACPI / PM: Clean up device wakeup enable/disable code) Reported-by: Du Wenkai <wenkai.du@intel.com> Tested-by: Du Wenkai <wenkai.du@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-02-20 18:10:32 +07:00
if (acpi_sci_irq_valid())
enable_irq_wake(acpi_sci_irq);
ACPI: PM: Set enable_for_wake for wakeup GPEs during suspend-to-idle I noticed that recently multiple systems (chromebooks) couldn't wake from S0ix using LID or Keyboard after updating to a newer kernel. I bisected and it turned up commit f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle"). I checked that the issue got fixed if that commit was reverted. I debugged and found that although PNP0C0D:00 (representing the LID) is wake capable and should wakeup the system per the code in acpi_wakeup_gpe_init() and in drivers/acpi/button.c: localhost /sys # cat /proc/acpi/wakeup Device S-state Status Sysfs node LID0 S4 *enabled platform:PNP0C0D:00 CREC S5 *disabled platform:GOOG0004:00 *disabled platform:cros-ec-dev.1.auto *disabled platform:cros-ec-accel.0 *disabled platform:cros-ec-accel.1 *disabled platform:cros-ec-gyro.0 *disabled platform:cros-ec-ring.0 *disabled platform:cros-usbpd-charger.2.auto *disabled platform:cros-usbpd-logger.3.auto D015 S3 *enabled i2c:i2c-ELAN0000:00 PENH S3 *enabled platform:PRP0001:00 XHCI S3 *enabled pci:0000:00:14.0 GLAN S4 *disabled WIFI S3 *disabled pci:0000:00:14.3 localhost /sys # On debugging, I found that its corresponding GPE is not being enabled. The particular GPE's "gpe_register_info->enable_for_wake" does not have any bits set when acpi_enable_all_wakeup_gpes() comes around to use it. I looked at code and could not find any other code path that should set the bits in "enable_for_wake" bitmask for the wake enabled devices for s2idle. [I do see that it happens for S3 in acpi_sleep_prepare()]. Thus I used the same call to enable the GPEs for wake enabled devices, and verified that this fixes the regression I was seeing on multiple of my devices. [ rjw: The problem is that commit f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle") forgot to add the acpi_enable_wakeup_devices() call for s2idle along with acpi_enable_all_wakeup_gpes(). ] Fixes: f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle") Link: https://bugzilla.kernel.org/show_bug.cgi?id=203579 Signed-off-by: Rajat Jain <rajatja@google.com> [ rjw: Subject & changelog ] Cc: 5.0+ <stable@vger.kernel.org> # 5.0+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-05-14 02:17:08 +07:00
acpi_enable_wakeup_devices(ACPI_STATE_S0);
/* Change the configuration of GPEs to avoid spurious wakeup. */
acpi_enable_all_wakeup_gpes();
acpi_os_wait_events_complete();
return 0;
}
static void acpi_s2idle_wake(void)
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
{
if (!lps0_device_handle)
return;
if (pm_debug_messages_on)
lpi_check_constraints();
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
/*
* If IRQD_WAKEUP_ARMED is not set for the SCI at this point, it means
* that the SCI has triggered while suspended, so cancel the wakeup in
* case it has not been a wakeup event (the GPEs will be checked later).
*/
if (acpi_sci_irq_valid() &&
!irqd_is_wakeup_armed(irq_get_irq_data(acpi_sci_irq))) {
pm_system_cancel_wakeup();
s2idle_wakeup = true;
/*
* On some platforms with the LPS0 _DSM device noirq resume
* takes too much time for EC wakeup events to survive, so look
* for them now.
*/
acpi_ec_dispatch_gpe();
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
}
}
static void acpi_s2idle_sync(void)
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
{
/*
* Process all pending events in case there are any wakeup ones.
*
* The EC driver uses the system workqueue and an additional special
* one, so those need to be flushed too.
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
*/
ACPI / PM: Fix keyboard wakeup from suspend-to-idle on ASUS UX331UA This issue happens on new ASUS laptop UX331UA which has modern standby mode (suspend-to-idle). Pressing keys on the PS2 keyboard can't wake up the system from suspend-to-idle which is not expected. However, pressing power button can wake up without problem. Per the engineers of ASUS, the keypress event is routed to Embedded Controller (EC) in standby mode. EC then signals the SCI event to BIOS so BIOS would Notify() power button to wake up the system. It's from BIOS perspective. What we observe here is that kernel receives the SCI event from SCI interrupt handler which informs that the GPE status bit belongs to EC needs to be handled and then queries the EC to find out what event is pending. Then execute the following ACPI _QDF method which defined in ACPI DSDT for EC to notify power button. Method (_QDF, 0, NotSerialized) // _Qxx: EC Query { Notify (PWRB, 0x80) // Status Change } With more debug messages added to analyze this problem, we find that the keypress does wake up the system from suspend-to-idle but it's back to suspend again almost immediately. As we see in the following messages, the acpi_button_notify() is invoked but acpi_pm_wakeup_event() can not really wake up the system here because acpi_s2idle_wakeup() is false. The acpi_s2idle_wakeup() returnd false because the acpi_s2idle_sync() has alrealdy exited. [ 52.987048] s2idle_loop going s2idle [ 59.713392] acpi_s2idle_wake enter [ 59.713394] acpi_s2idle_wake exit [ 59.760888] acpi_ev_gpe_detect enter [ 59.760893] acpi_s2idle_sync enter [ 59.760893] acpi_ec_query_flushed ec pending queries 0 [ 59.760953] Read registers for GPE 50-57: Status=01, Enable=01, RunEnable=01, WakeEnable=00 [ 59.760955] ACPI: EC: ===== IRQ (1) ===== [ 59.760972] ACPI: EC: EC_SC(R) = 0x28 SCI_EVT=1 BURST=0 CMD=1 IBF=0 OBF=0 [ 59.760979] ACPI: EC: +++++ Polling enabled +++++ [ 59.760979] ACPI: EC: ##### Command(QR_EC) submitted/blocked ##### [ 59.761003] acpi_s2idle_sync exit [ 59.769587] ACPI: EC: ##### Query(0xdf) started ##### [ 59.769611] ACPI: EC: ##### Query(0xdf) stopped ##### [ 59.774154] acpi_button_notify button type 1 [ 59.813175] s2idle_loop going s2idle acpi_s2idle_sync() already makes an effort to flush the EC event queue, but in this case, the EC event has yet to be generated when the call to acpi_ec_flush_work() is made. The event is generated shortly after, through the ongoing handling of the SCI interrupt which is happening on another CPU, and we must synchronize that to make sure that it has run and completed. Adding another call to acpi_os_wait_events_complete() solves this issue, since that function synchronizes with SCI interrupt completion. Signed-off-by: Chris Chiu <chiu@endlessm.com> [ rjw: Subject ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-03-31 09:09:31 +07:00
acpi_os_wait_events_complete(); /* synchronize SCI IRQ handling */
acpi_ec_flush_work();
ACPI / PM: Fix keyboard wakeup from suspend-to-idle on ASUS UX331UA This issue happens on new ASUS laptop UX331UA which has modern standby mode (suspend-to-idle). Pressing keys on the PS2 keyboard can't wake up the system from suspend-to-idle which is not expected. However, pressing power button can wake up without problem. Per the engineers of ASUS, the keypress event is routed to Embedded Controller (EC) in standby mode. EC then signals the SCI event to BIOS so BIOS would Notify() power button to wake up the system. It's from BIOS perspective. What we observe here is that kernel receives the SCI event from SCI interrupt handler which informs that the GPE status bit belongs to EC needs to be handled and then queries the EC to find out what event is pending. Then execute the following ACPI _QDF method which defined in ACPI DSDT for EC to notify power button. Method (_QDF, 0, NotSerialized) // _Qxx: EC Query { Notify (PWRB, 0x80) // Status Change } With more debug messages added to analyze this problem, we find that the keypress does wake up the system from suspend-to-idle but it's back to suspend again almost immediately. As we see in the following messages, the acpi_button_notify() is invoked but acpi_pm_wakeup_event() can not really wake up the system here because acpi_s2idle_wakeup() is false. The acpi_s2idle_wakeup() returnd false because the acpi_s2idle_sync() has alrealdy exited. [ 52.987048] s2idle_loop going s2idle [ 59.713392] acpi_s2idle_wake enter [ 59.713394] acpi_s2idle_wake exit [ 59.760888] acpi_ev_gpe_detect enter [ 59.760893] acpi_s2idle_sync enter [ 59.760893] acpi_ec_query_flushed ec pending queries 0 [ 59.760953] Read registers for GPE 50-57: Status=01, Enable=01, RunEnable=01, WakeEnable=00 [ 59.760955] ACPI: EC: ===== IRQ (1) ===== [ 59.760972] ACPI: EC: EC_SC(R) = 0x28 SCI_EVT=1 BURST=0 CMD=1 IBF=0 OBF=0 [ 59.760979] ACPI: EC: +++++ Polling enabled +++++ [ 59.760979] ACPI: EC: ##### Command(QR_EC) submitted/blocked ##### [ 59.761003] acpi_s2idle_sync exit [ 59.769587] ACPI: EC: ##### Query(0xdf) started ##### [ 59.769611] ACPI: EC: ##### Query(0xdf) stopped ##### [ 59.774154] acpi_button_notify button type 1 [ 59.813175] s2idle_loop going s2idle acpi_s2idle_sync() already makes an effort to flush the EC event queue, but in this case, the EC event has yet to be generated when the call to acpi_ec_flush_work() is made. The event is generated shortly after, through the ongoing handling of the SCI interrupt which is happening on another CPU, and we must synchronize that to make sure that it has run and completed. Adding another call to acpi_os_wait_events_complete() solves this issue, since that function synchronizes with SCI interrupt completion. Signed-off-by: Chris Chiu <chiu@endlessm.com> [ rjw: Subject ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-03-31 09:09:31 +07:00
acpi_os_wait_events_complete(); /* synchronize Notify handling */
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
s2idle_wakeup = false;
}
static void acpi_s2idle_restore(void)
{
acpi_enable_all_runtime_gpes();
ACPI: PM: Set enable_for_wake for wakeup GPEs during suspend-to-idle I noticed that recently multiple systems (chromebooks) couldn't wake from S0ix using LID or Keyboard after updating to a newer kernel. I bisected and it turned up commit f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle"). I checked that the issue got fixed if that commit was reverted. I debugged and found that although PNP0C0D:00 (representing the LID) is wake capable and should wakeup the system per the code in acpi_wakeup_gpe_init() and in drivers/acpi/button.c: localhost /sys # cat /proc/acpi/wakeup Device S-state Status Sysfs node LID0 S4 *enabled platform:PNP0C0D:00 CREC S5 *disabled platform:GOOG0004:00 *disabled platform:cros-ec-dev.1.auto *disabled platform:cros-ec-accel.0 *disabled platform:cros-ec-accel.1 *disabled platform:cros-ec-gyro.0 *disabled platform:cros-ec-ring.0 *disabled platform:cros-usbpd-charger.2.auto *disabled platform:cros-usbpd-logger.3.auto D015 S3 *enabled i2c:i2c-ELAN0000:00 PENH S3 *enabled platform:PRP0001:00 XHCI S3 *enabled pci:0000:00:14.0 GLAN S4 *disabled WIFI S3 *disabled pci:0000:00:14.3 localhost /sys # On debugging, I found that its corresponding GPE is not being enabled. The particular GPE's "gpe_register_info->enable_for_wake" does not have any bits set when acpi_enable_all_wakeup_gpes() comes around to use it. I looked at code and could not find any other code path that should set the bits in "enable_for_wake" bitmask for the wake enabled devices for s2idle. [I do see that it happens for S3 in acpi_sleep_prepare()]. Thus I used the same call to enable the GPEs for wake enabled devices, and verified that this fixes the regression I was seeing on multiple of my devices. [ rjw: The problem is that commit f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle") forgot to add the acpi_enable_wakeup_devices() call for s2idle along with acpi_enable_all_wakeup_gpes(). ] Fixes: f941d3e41da7 ("ACPI: EC / PM: Disable non-wakeup GPEs for suspend-to-idle") Link: https://bugzilla.kernel.org/show_bug.cgi?id=203579 Signed-off-by: Rajat Jain <rajatja@google.com> [ rjw: Subject & changelog ] Cc: 5.0+ <stable@vger.kernel.org> # 5.0+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-05-14 02:17:08 +07:00
acpi_disable_wakeup_devices(ACPI_STATE_S0);
if (acpi_sci_irq_valid())
disable_irq_wake(acpi_sci_irq);
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
if (lps0_device_handle) {
acpi_ec_set_gpe_wake_mask(ACPI_GPE_DISABLE);
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
acpi_sleep_run_lps0_dsm(ACPI_LPS0_EXIT);
acpi_sleep_run_lps0_dsm(ACPI_LPS0_SCREEN_ON);
}
}
static void acpi_s2idle_end(void)
{
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
s2idle_in_progress = false;
acpi_scan_lock_release();
}
static const struct platform_s2idle_ops acpi_s2idle_ops = {
.begin = acpi_s2idle_begin,
.prepare = acpi_s2idle_prepare,
.wake = acpi_s2idle_wake,
.sync = acpi_s2idle_sync,
.restore = acpi_s2idle_restore,
.end = acpi_s2idle_end,
};
static void acpi_sleep_suspend_setup(void)
{
int i;
for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++)
if (acpi_sleep_state_supported(i))
sleep_states[i] = 1;
suspend_set_ops(old_suspend_ordering ?
&acpi_suspend_ops_old : &acpi_suspend_ops);
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
acpi_scan_add_handler(&lps0_handler);
s2idle_set_ops(&acpi_s2idle_ops);
}
#else /* !CONFIG_SUSPEND */
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
#define s2idle_in_progress (false)
#define s2idle_wakeup (false)
#define lps0_device_handle (NULL)
static inline void acpi_sleep_suspend_setup(void) {}
#endif /* !CONFIG_SUSPEND */
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-13 03:56:34 +07:00
bool acpi_s2idle_wakeup(void)
{
return s2idle_wakeup;
}
ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-23 20:24:32 +07:00
bool acpi_sleep_no_ec_events(void)
{
return !s2idle_in_progress || !lps0_device_handle;
}
#ifdef CONFIG_PM_SLEEP
static u32 saved_bm_rld;
static int acpi_save_bm_rld(void)
{
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
return 0;
}
static void acpi_restore_bm_rld(void)
{
u32 resumed_bm_rld = 0;
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
if (resumed_bm_rld == saved_bm_rld)
return;
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
}
static struct syscore_ops acpi_sleep_syscore_ops = {
.suspend = acpi_save_bm_rld,
.resume = acpi_restore_bm_rld,
};
static void acpi_sleep_syscore_init(void)
{
register_syscore_ops(&acpi_sleep_syscore_ops);
}
#else
static inline void acpi_sleep_syscore_init(void) {}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HIBERNATION
static unsigned long s4_hardware_signature;
static struct acpi_table_facs *facs;
static bool nosigcheck;
void __init acpi_no_s4_hw_signature(void)
{
nosigcheck = true;
}
static int acpi_hibernation_begin(void)
{
int error;
error = nvs_nosave ? 0 : suspend_nvs_alloc();
if (!error)
acpi_pm_start(ACPI_STATE_S4);
return error;
}
static int acpi_hibernation_enter(void)
{
acpi_status status = AE_OK;
ACPI_FLUSH_CPU_CACHE();
/* This shouldn't return. If it returns, we have a problem */
status = acpi_enter_sleep_state(ACPI_STATE_S4);
/* Reprogram control registers */
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static void acpi_hibernation_leave(void)
{
pm_set_resume_via_firmware();
/*
* If ACPI is not enabled by the BIOS and the boot kernel, we need to
* enable it here.
*/
acpi_enable();
/* Reprogram control registers */
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
/* Check the hardware signature */
if (facs && s4_hardware_signature != facs->hardware_signature)
pr_crit("ACPI: Hardware changed while hibernated, success doubtful!\n");
/* Restore the NVS memory area */
suspend_nvs_restore();
/* Allow EC transactions to happen. */
ACPI / EC: Add PM operations to improve event handling for resume process This patch makes 2 changes: 1. Restore old behavior Originally, EC driver stops handling both events and transactions in acpi_ec_block_transactions(), and restarts to handle transactions in acpi_ec_unblock_transactions_early(), restarts to handle both events and transactions in acpi_ec_unblock_transactions(). While currently, EC driver still stops handling both events and transactions in acpi_ec_block_transactions(), but restarts to handle both events and transactions in acpi_ec_unblock_transactions_early(). This patch tries to restore the old behavior by dropping __acpi_ec_enable_event() from acpi_unblock_transactions_early(). 2. Improve old behavior However this still cannot fix the real issue as both of the acpi_ec_unblock_xxx() functions are invoked in the noirq stage. Since the EC driver actually doesn't implement the event handling in the polling mode, re-enabling the event handling too early in the noirq stage could result in the problem that if there is no triggering source causing advance_transaction() to be invoked, pending SCI_EVT cannot be detected by the EC driver and _Qxx cannot be triggered. It actually makes sense to restart the event handling in any point during resuming after the noirq stage. Just like the boot stage where the event handling is enabled in .add(), this patch further moves acpi_ec_enable_event() to .resume(). After doing that, the following 2 functions can be combined: acpi_ec_unblock_transactions_early()/acpi_ec_unblock_transactions(). The differences of the event handling availability between the old behavior (this patch isn't applied) and the new behavior (this patch is applied) are as follows: !Applied Applied before suspend Y Y suspend before EC Y Y suspend after EC Y Y suspend_late Y Y suspend_noirq Y (actually N) Y (actually N) resume_noirq Y (actually N) Y (actually N) resume_late Y (actually N) Y (actually N) resume before EC Y (actually N) Y (actually N) resume after EC Y (actually N) Y after resume Y (actually N) Y Where "actually N" means if there is no triggering source, the EC driver is actually not able to notice the pending SCI_EVT occurred in the noirq stage. So we can clearly see that this patch has improved the situation. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-03 15:01:36 +07:00
acpi_ec_unblock_transactions();
}
static void acpi_pm_thaw(void)
{
acpi_ec_unblock_transactions();
acpi_enable_all_runtime_gpes();
}
static const struct platform_hibernation_ops acpi_hibernation_ops = {
.begin = acpi_hibernation_begin,
.end = acpi_pm_end,
.pre_snapshot = acpi_pm_prepare,
.finish = acpi_pm_finish,
.prepare = acpi_pm_prepare,
.enter = acpi_hibernation_enter,
.leave = acpi_hibernation_leave,
.pre_restore = acpi_pm_freeze,
.restore_cleanup = acpi_pm_thaw,
};
/**
* acpi_hibernation_begin_old - Set the target system sleep state to
* ACPI_STATE_S4 and execute the _PTS control method. This
* function is used if the pre-ACPI 2.0 suspend ordering has been
* requested.
*/
static int acpi_hibernation_begin_old(void)
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 15:47:30 +07:00
{
int error;
/*
* The _TTS object should always be evaluated before the _PTS object.
* When the old_suspended_ordering is true, the _PTS object is
* evaluated in the acpi_sleep_prepare.
*/
acpi_sleep_tts_switch(ACPI_STATE_S4);
error = acpi_sleep_prepare(ACPI_STATE_S4);
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 15:47:30 +07:00
if (!error) {
if (!nvs_nosave)
error = suspend_nvs_alloc();
if (!error) {
acpi_target_sleep_state = ACPI_STATE_S4;
acpi_scan_lock_acquire();
}
}
return error;
}
/*
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
* been requested.
*/
static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
.begin = acpi_hibernation_begin_old,
.end = acpi_pm_end,
.pre_snapshot = acpi_pm_pre_suspend,
.prepare = acpi_pm_freeze,
.finish = acpi_pm_finish,
.enter = acpi_hibernation_enter,
.leave = acpi_hibernation_leave,
.pre_restore = acpi_pm_freeze,
.restore_cleanup = acpi_pm_thaw,
.recover = acpi_pm_finish,
};
static void acpi_sleep_hibernate_setup(void)
{
if (!acpi_sleep_state_supported(ACPI_STATE_S4))
return;
hibernation_set_ops(old_suspend_ordering ?
&acpi_hibernation_ops_old : &acpi_hibernation_ops);
sleep_states[ACPI_STATE_S4] = 1;
if (nosigcheck)
return;
acpi_get_table(ACPI_SIG_FACS, 1, (struct acpi_table_header **)&facs);
if (facs)
s4_hardware_signature = facs->hardware_signature;
}
#else /* !CONFIG_HIBERNATION */
static inline void acpi_sleep_hibernate_setup(void) {}
#endif /* !CONFIG_HIBERNATION */
static void acpi_power_off_prepare(void)
{
/* Prepare to power off the system */
acpi_sleep_prepare(ACPI_STATE_S5);
acpi_disable_all_gpes();
acpi_os_wait_events_complete();
}
static void acpi_power_off(void)
{
/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
printk(KERN_DEBUG "%s called\n", __func__);
local_irq_disable();
acpi_enter_sleep_state(ACPI_STATE_S5);
}
int __init acpi_sleep_init(void)
{
char supported[ACPI_S_STATE_COUNT * 3 + 1];
char *pos = supported;
int i;
acpi_sleep_dmi_check();
sleep_states[ACPI_STATE_S0] = 1;
acpi_sleep_syscore_init();
acpi_sleep_suspend_setup();
acpi_sleep_hibernate_setup();
if (acpi_sleep_state_supported(ACPI_STATE_S5)) {
sleep_states[ACPI_STATE_S5] = 1;
pm_power_off_prepare = acpi_power_off_prepare;
pm_power_off = acpi_power_off;
} else {
acpi_no_s5 = true;
}
supported[0] = 0;
for (i = 0; i < ACPI_S_STATE_COUNT; i++) {
if (sleep_states[i])
pos += sprintf(pos, " S%d", i);
}
pr_info(PREFIX "(supports%s)\n", supported);
/*
* Register the tts_notifier to reboot notifier list so that the _TTS
* object can also be evaluated when the system enters S5.
*/
register_reboot_notifier(&tts_notifier);
return 0;
}