linux_dsm_epyc7002/virt/kvm/arm/arm.c

1510 lines
33 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/cpu_pm.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
#include <linux/kvm.h>
#include <trace/events/kvm.h>
#include <kvm/arm_pmu.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include <linux/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_psci.h>
#include <asm/sections.h>
#ifdef REQUIRES_VIRT
__asm__(".arch_extension virt");
#endif
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
static DEFINE_SPINLOCK(kvm_vmid_lock);
static bool vgic_present;
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
BUG_ON(preemptible());
__this_cpu_write(kvm_arm_running_vcpu, vcpu);
}
/**
* kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
* Must be called from non-preemptible context
*/
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
BUG_ON(preemptible());
return __this_cpu_read(kvm_arm_running_vcpu);
}
/**
* kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
*/
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
{
return &kvm_arm_running_vcpu;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
void kvm_arch_check_processor_compat(void *rtn)
{
*(int *)rtn = 0;
}
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
/**
* kvm_arch_init_vm - initializes a VM data structure
* @kvm: pointer to the KVM struct
*/
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int ret, cpu;
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
if (type)
return -EINVAL;
kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
if (!kvm->arch.last_vcpu_ran)
return -ENOMEM;
for_each_possible_cpu(cpu)
*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
ret = kvm_alloc_stage2_pgd(kvm);
if (ret)
goto out_fail_alloc;
ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
if (ret)
goto out_free_stage2_pgd;
kvm_vgic_early_init(kvm);
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
/* Mark the initial VMID generation invalid */
kvm->arch.vmid_gen = 0;
/* The maximum number of VCPUs is limited by the host's GIC model */
kvm->arch.max_vcpus = vgic_present ?
kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
return ret;
out_free_stage2_pgd:
kvm_free_stage2_pgd(kvm);
out_fail_alloc:
free_percpu(kvm->arch.last_vcpu_ran);
kvm->arch.last_vcpu_ran = NULL;
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
return ret;
}
bool kvm_arch_has_vcpu_debugfs(void)
{
return false;
}
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
/**
* kvm_arch_destroy_vm - destroy the VM data structure
* @kvm: pointer to the KVM struct
*/
void kvm_arch_destroy_vm(struct kvm *kvm)
{
int i;
free_percpu(kvm->arch.last_vcpu_ran);
kvm->arch.last_vcpu_ran = NULL;
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_arch_vcpu_free(kvm->vcpus[i]);
kvm->vcpus[i] = NULL;
}
}
kvm_vgic_destroy(kvm);
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
r = vgic_present;
break;
case KVM_CAP_IOEVENTFD:
case KVM_CAP_DEVICE_CTRL:
case KVM_CAP_USER_MEMORY:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
case KVM_CAP_ONE_REG:
case KVM_CAP_ARM_PSCI:
case KVM_CAP_ARM_PSCI_0_2:
case KVM_CAP_READONLY_MEM:
case KVM_CAP_MP_STATE:
case KVM_CAP_IMMEDIATE_EXIT:
r = 1;
break;
case KVM_CAP_ARM_SET_DEVICE_ADDR:
r = 1;
break;
case KVM_CAP_NR_VCPUS:
r = num_online_cpus();
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_USER_MEM_SLOTS;
break;
case KVM_CAP_MSI_DEVID:
if (!kvm)
r = -EINVAL;
else
r = kvm->arch.vgic.msis_require_devid;
break;
case KVM_CAP_ARM_USER_IRQ:
/*
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
* (bump this number if adding more devices)
*/
r = 1;
break;
default:
r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
int err;
struct kvm_vcpu *vcpu;
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
err = -EBUSY;
goto out;
}
if (id >= kvm->arch.max_vcpus) {
err = -EINVAL;
goto out;
}
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
if (err)
goto vcpu_uninit;
return vcpu;
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
vcpu_uninit:
kvm_vcpu_uninit(vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(err);
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
kvm_vgic_vcpu_early_init(vcpu);
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
kvm_mmu_free_memory_caches(vcpu);
kvm_timer_vcpu_terminate(vcpu);
kvm_vgic_vcpu_destroy(vcpu);
kvm_pmu_vcpu_destroy(vcpu);
KVM: arm/arm64: Stop leaking vcpu pid references kvm provides kvm_vcpu_uninit(), which amongst other things, releases the last reference to the struct pid of the task that was last running the vcpu. On arm64 built with CONFIG_DEBUG_KMEMLEAK, starting a guest with kvmtool, then killing it with SIGKILL results (after some considerable time) in: > cat /sys/kernel/debug/kmemleak > unreferenced object 0xffff80007d5ea080 (size 128): > comm "lkvm", pid 2025, jiffies 4294942645 (age 1107.776s) > hex dump (first 32 bytes): > 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ > 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ > backtrace: > [<ffff8000001b30ec>] create_object+0xfc/0x278 > [<ffff80000071da34>] kmemleak_alloc+0x34/0x70 > [<ffff80000019fa2c>] kmem_cache_alloc+0x16c/0x1d8 > [<ffff8000000d0474>] alloc_pid+0x34/0x4d0 > [<ffff8000000b5674>] copy_process.isra.6+0x79c/0x1338 > [<ffff8000000b633c>] _do_fork+0x74/0x320 > [<ffff8000000b66b0>] SyS_clone+0x18/0x20 > [<ffff800000085cb0>] el0_svc_naked+0x24/0x28 > [<ffffffffffffffff>] 0xffffffffffffffff On x86 kvm_vcpu_uninit() is called on the path from kvm_arch_destroy_vm(), on arm no equivalent call is made. Add the call to kvm_arch_vcpu_free(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 749cf76c5a36 ("KVM: ARM: Initial skeleton to compile KVM support") Cc: <stable@vger.kernel.org> # 3.10+ Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-06-08 23:24:45 +07:00
kvm_vcpu_uninit(vcpu);
KVM: ARM: Memory virtualization setup This commit introduces the framework for guest memory management through the use of 2nd stage translation. Each VM has a pointer to a level-1 table (the pgd field in struct kvm_arch) which is used for the 2nd stage translations. Entries are added when handling guest faults (later patch) and the table itself can be allocated and freed through the following functions implemented in arch/arm/kvm/arm_mmu.c: - kvm_alloc_stage2_pgd(struct kvm *kvm); - kvm_free_stage2_pgd(struct kvm *kvm); Each entry in TLBs and caches are tagged with a VMID identifier in addition to ASIDs. The VMIDs are assigned consecutively to VMs in the order that VMs are executed, and caches and tlbs are invalidated when the VMID space has been used to allow for more than 255 simultaenously running guests. The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is freed in kvm_arch_destroy_vm(). Both functions are called from the main KVM code. We pre-allocate page table memory to be able to synchronize using a spinlock and be called under rcu_read_lock from the MMU notifiers. We steal the mmu_memory_cache implementation from x86 and adapt for our specific usage. We support MMU notifiers (thanks to Marc Zyngier) through kvm_unmap_hva and kvm_set_spte_hva. Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA, which is used by VGIC support to map the virtual CPU interface registers to the guest. This support is added by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:28:07 +07:00
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
kvm_timer_should_fire(vcpu_ptimer(vcpu));
}
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
kvm_timer_schedule(vcpu);
}
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
kvm_timer_unschedule(vcpu);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/* Force users to call KVM_ARM_VCPU_INIT */
vcpu->arch.target = -1;
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
/* Set up the timer */
kvm_timer_vcpu_init(vcpu);
kvm_arm_reset_debug_ptr(vcpu);
return kvm_vgic_vcpu_init(vcpu);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
int *last_ran;
last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
/*
* We might get preempted before the vCPU actually runs, but
* over-invalidation doesn't affect correctness.
*/
if (*last_ran != vcpu->vcpu_id) {
kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
*last_ran = vcpu->vcpu_id;
}
vcpu->cpu = cpu;
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
kvm_arm_set_running_vcpu(vcpu);
kvm_vgic_load(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_vgic_put(vcpu);
vcpu->cpu = -1;
kvm_arm_set_running_vcpu(NULL);
kvm_timer_vcpu_put(vcpu);
}
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
vcpu->arch.power_off = true;
kvm_make_request(KVM_REQ_SLEEP, vcpu);
kvm_vcpu_kick(vcpu);
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
if (vcpu->arch.power_off)
mp_state->mp_state = KVM_MP_STATE_STOPPED;
else
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
switch (mp_state->mp_state) {
case KVM_MP_STATE_RUNNABLE:
vcpu->arch.power_off = false;
break;
case KVM_MP_STATE_STOPPED:
vcpu_power_off(vcpu);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
* @v: The VCPU pointer
*
* If the guest CPU is not waiting for interrupts or an interrupt line is
* asserted, the CPU is by definition runnable.
*/
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
&& !v->arch.power_off && !v->arch.pause);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return vcpu_mode_priv(vcpu);
}
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}
void force_vm_exit(const cpumask_t *mask)
{
preempt_disable();
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
smp_call_function_many(mask, exit_vm_noop, NULL, true);
preempt_enable();
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
}
/**
* need_new_vmid_gen - check that the VMID is still valid
* @kvm: The VM's VMID to check
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
*
* return true if there is a new generation of VMIDs being used
*
* The hardware supports only 256 values with the value zero reserved for the
* host, so we check if an assigned value belongs to a previous generation,
* which which requires us to assign a new value. If we're the first to use a
* VMID for the new generation, we must flush necessary caches and TLBs on all
* CPUs.
*/
static bool need_new_vmid_gen(struct kvm *kvm)
{
return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}
/**
* update_vttbr - Update the VTTBR with a valid VMID before the guest runs
* @kvm The guest that we are about to run
*
* Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
* VM has a valid VMID, otherwise assigns a new one and flushes corresponding
* caches and TLBs.
*/
static void update_vttbr(struct kvm *kvm)
{
phys_addr_t pgd_phys;
u64 vmid;
if (!need_new_vmid_gen(kvm))
return;
spin_lock(&kvm_vmid_lock);
/*
* We need to re-check the vmid_gen here to ensure that if another vcpu
* already allocated a valid vmid for this vm, then this vcpu should
* use the same vmid.
*/
if (!need_new_vmid_gen(kvm)) {
spin_unlock(&kvm_vmid_lock);
return;
}
/* First user of a new VMID generation? */
if (unlikely(kvm_next_vmid == 0)) {
atomic64_inc(&kvm_vmid_gen);
kvm_next_vmid = 1;
/*
* On SMP we know no other CPUs can use this CPU's or each
* other's VMID after force_vm_exit returns since the
* kvm_vmid_lock blocks them from reentry to the guest.
*/
force_vm_exit(cpu_all_mask);
/*
* Now broadcast TLB + ICACHE invalidation over the inner
* shareable domain to make sure all data structures are
* clean.
*/
kvm_call_hyp(__kvm_flush_vm_context);
}
kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
kvm->arch.vmid = kvm_next_vmid;
kvm_next_vmid++;
kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/* update vttbr to be used with the new vmid */
pgd_phys = virt_to_phys(kvm->arch.pgd);
BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
kvm->arch.vttbr = pgd_phys | vmid;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
spin_unlock(&kvm_vmid_lock);
}
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
int ret = 0;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
if (likely(vcpu->arch.has_run_once))
return 0;
vcpu->arch.has_run_once = true;
/*
* Map the VGIC hardware resources before running a vcpu the first
* time on this VM.
*/
if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
ret = kvm_vgic_map_resources(kvm);
if (ret)
return ret;
}
KVM: arm/arm64: Support arch timers with a userspace gic If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-28 02:08:06 +07:00
ret = kvm_timer_enable(vcpu);
if (ret)
return ret;
ret = kvm_arm_pmu_v3_enable(vcpu);
return ret;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
}
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
return vgic_initialized(kvm);
}
void kvm_arm_halt_guest(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
vcpu->arch.pause = true;
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
}
void kvm_arm_resume_guest(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.pause = false;
swake_up(kvm_arch_vcpu_wq(vcpu));
}
}
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
{
KVM: Use simple waitqueue for vcpu->wq The problem: On -rt, an emulated LAPIC timer instances has the following path: 1) hard interrupt 2) ksoftirqd is scheduled 3) ksoftirqd wakes up vcpu thread 4) vcpu thread is scheduled This extra context switch introduces unnecessary latency in the LAPIC path for a KVM guest. The solution: Allow waking up vcpu thread from hardirq context, thus avoiding the need for ksoftirqd to be scheduled. Normal waitqueues make use of spinlocks, which on -RT are sleepable locks. Therefore, waking up a waitqueue waiter involves locking a sleeping lock, which is not allowed from hard interrupt context. cyclictest command line: This patch reduces the average latency in my tests from 14us to 11us. Daniel writes: Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency benchmark on mainline. The test was run 1000 times on tip/sched/core 4.4.0-rc8-01134-g0905f04: ./x86-run x86/tscdeadline_latency.flat -cpu host with idle=poll. The test seems not to deliver really stable numbers though most of them are smaller. Paolo write: "Anything above ~10000 cycles means that the host went to C1 or lower---the number means more or less nothing in that case. The mean shows an improvement indeed." Before: min max mean std count 1000.000000 1000.000000 1000.000000 1000.000000 mean 5162.596000 2019270.084000 5824.491541 20681.645558 std 75.431231 622607.723969 89.575700 6492.272062 min 4466.000000 23928.000000 5537.926500 585.864966 25% 5163.000000 1613252.750000 5790.132275 16683.745433 50% 5175.000000 2281919.000000 5834.654000 23151.990026 75% 5190.000000 2382865.750000 5861.412950 24148.206168 max 5228.000000 4175158.000000 6254.827300 46481.048691 After min max mean std count 1000.000000 1000.00000 1000.000000 1000.000000 mean 5143.511000 2076886.10300 5813.312474 21207.357565 std 77.668322 610413.09583 86.541500 6331.915127 min 4427.000000 25103.00000 5529.756600 559.187707 25% 5148.000000 1691272.75000 5784.889825 17473.518244 50% 5160.000000 2308328.50000 5832.025000 23464.837068 75% 5172.000000 2393037.75000 5853.177675 24223.969976 max 5222.000000 3922458.00000 6186.720500 42520.379830 [Patch was originaly based on the swait implementation found in the -rt tree. Daniel ported it to mainline's version and gathered the benchmark numbers for tscdeadline_latency test.] Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-rt-users@vger.kernel.org Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-02-19 15:46:39 +07:00
struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
KVM: Use simple waitqueue for vcpu->wq The problem: On -rt, an emulated LAPIC timer instances has the following path: 1) hard interrupt 2) ksoftirqd is scheduled 3) ksoftirqd wakes up vcpu thread 4) vcpu thread is scheduled This extra context switch introduces unnecessary latency in the LAPIC path for a KVM guest. The solution: Allow waking up vcpu thread from hardirq context, thus avoiding the need for ksoftirqd to be scheduled. Normal waitqueues make use of spinlocks, which on -RT are sleepable locks. Therefore, waking up a waitqueue waiter involves locking a sleeping lock, which is not allowed from hard interrupt context. cyclictest command line: This patch reduces the average latency in my tests from 14us to 11us. Daniel writes: Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency benchmark on mainline. The test was run 1000 times on tip/sched/core 4.4.0-rc8-01134-g0905f04: ./x86-run x86/tscdeadline_latency.flat -cpu host with idle=poll. The test seems not to deliver really stable numbers though most of them are smaller. Paolo write: "Anything above ~10000 cycles means that the host went to C1 or lower---the number means more or less nothing in that case. The mean shows an improvement indeed." Before: min max mean std count 1000.000000 1000.000000 1000.000000 1000.000000 mean 5162.596000 2019270.084000 5824.491541 20681.645558 std 75.431231 622607.723969 89.575700 6492.272062 min 4466.000000 23928.000000 5537.926500 585.864966 25% 5163.000000 1613252.750000 5790.132275 16683.745433 50% 5175.000000 2281919.000000 5834.654000 23151.990026 75% 5190.000000 2382865.750000 5861.412950 24148.206168 max 5228.000000 4175158.000000 6254.827300 46481.048691 After min max mean std count 1000.000000 1000.00000 1000.000000 1000.000000 mean 5143.511000 2076886.10300 5813.312474 21207.357565 std 77.668322 610413.09583 86.541500 6331.915127 min 4427.000000 25103.00000 5529.756600 559.187707 25% 5148.000000 1691272.75000 5784.889825 17473.518244 50% 5160.000000 2308328.50000 5832.025000 23464.837068 75% 5172.000000 2393037.75000 5853.177675 24223.969976 max 5222.000000 3922458.00000 6186.720500 42520.379830 [Patch was originaly based on the swait implementation found in the -rt tree. Daniel ported it to mainline's version and gathered the benchmark numbers for tscdeadline_latency test.] Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-rt-users@vger.kernel.org Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-02-19 15:46:39 +07:00
swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
(!vcpu->arch.pause)));
if (vcpu->arch.power_off || vcpu->arch.pause) {
/* Awaken to handle a signal, request we sleep again later. */
kvm_make_request(KVM_REQ_SLEEP, vcpu);
}
}
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
return vcpu->arch.target >= 0;
}
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
if (kvm_request_pending(vcpu)) {
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
vcpu_req_sleep(vcpu);
/*
* Clear IRQ_PENDING requests that were made to guarantee
* that a VCPU sees new virtual interrupts.
*/
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
}
}
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/**
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
* @vcpu: The VCPU pointer
* @run: The kvm_run structure pointer used for userspace state exchange
*
* This function is called through the VCPU_RUN ioctl called from user space. It
* will execute VM code in a loop until the time slice for the process is used
* or some emulation is needed from user space in which case the function will
* return with return value 0 and with the kvm_run structure filled in with the
* required data for the requested emulation.
*/
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
int ret;
sigset_t sigsaved;
if (unlikely(!kvm_vcpu_initialized(vcpu)))
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
return -ENOEXEC;
ret = kvm_vcpu_first_run_init(vcpu);
if (ret)
return ret;
if (run->exit_reason == KVM_EXIT_MMIO) {
ret = kvm_handle_mmio_return(vcpu, vcpu->run);
if (ret)
return ret;
}
if (run->immediate_exit)
return -EINTR;
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
ret = 1;
run->exit_reason = KVM_EXIT_UNKNOWN;
while (ret > 0) {
/*
* Check conditions before entering the guest
*/
cond_resched();
update_vttbr(vcpu->kvm);
check_vcpu_requests(vcpu);
/*
* Preparing the interrupts to be injected also
* involves poking the GIC, which must be done in a
* non-preemptible context.
*/
preempt_disable();
kvm_pmu_flush_hwstate(vcpu);
local_irq_disable();
kvm_timer_flush_hwstate(vcpu);
kvm_vgic_flush_hwstate(vcpu);
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/*
KVM: arm/arm64: Support arch timers with a userspace gic If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-28 02:08:06 +07:00
* If we have a singal pending, or need to notify a userspace
* irqchip about timer or PMU level changes, then we exit (and
* update the timer level state in kvm_timer_update_run
* below).
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
*/
KVM: arm/arm64: Support arch timers with a userspace gic If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-28 02:08:06 +07:00
if (signal_pending(current) ||
kvm_timer_should_notify_user(vcpu) ||
kvm_pmu_should_notify_user(vcpu)) {
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
ret = -EINTR;
run->exit_reason = KVM_EXIT_INTR;
}
/*
* Ensure we set mode to IN_GUEST_MODE after we disable
* interrupts and before the final VCPU requests check.
* See the comment in kvm_vcpu_exiting_guest_mode() and
* Documentation/virtual/kvm/vcpu-requests.rst
*/
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
kvm_request_pending(vcpu)) {
vcpu->mode = OUTSIDE_GUEST_MODE;
kvm_pmu_sync_hwstate(vcpu);
arm/arm64: KVM: Rework the arch timer to use level-triggered semantics The arch timer currently uses edge-triggered semantics in the sense that the line is never sampled by the vgic and lowering the line from the timer to the vgic doesn't have any effect on the pending state of virtual interrupts in the vgic. This means that we do not support a guest with the otherwise valid behavior of (1) disable interrupts (2) enable the timer (3) disable the timer (4) enable interrupts. Such a guest would validly not expect to see any interrupts on real hardware, but will see interrupts on KVM. This patch fixes this shortcoming through the following series of changes. First, we change the flow of the timer/vgic sync/flush operations. Now the timer is always flushed/synced before the vgic, because the vgic samples the state of the timer output. This has the implication that we move the timer operations in to non-preempible sections, but that is fine after the previous commit getting rid of hrtimer schedules on every entry/exit. Second, we change the internal behavior of the timer, letting the timer keep track of its previous output state, and only lower/raise the line to the vgic when the state changes. Note that in theory this could have been accomplished more simply by signalling the vgic every time the state *potentially* changed, but we don't want to be hitting the vgic more often than necessary. Third, we get rid of the use of the map->active field in the vgic and instead simply set the interrupt as active on the physical distributor whenever the input to the GIC is asserted and conversely clear the physical active state when the input to the GIC is deasserted. Fourth, and finally, we now initialize the timer PPIs (and all the other unused PPIs for now), to be level-triggered, and modify the sync code to sample the line state on HW sync and re-inject a new interrupt if it is still pending at that time. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-08-30 20:01:27 +07:00
kvm_timer_sync_hwstate(vcpu);
kvm_vgic_sync_hwstate(vcpu);
local_irq_enable();
preempt_enable();
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
continue;
}
kvm_arm_setup_debug(vcpu);
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/**************************************************************
* Enter the guest
*/
trace_kvm_entry(*vcpu_pc(vcpu));
guest_enter_irqoff();
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
vcpu->mode = OUTSIDE_GUEST_MODE;
vcpu->stat.exits++;
/*
* Back from guest
*************************************************************/
kvm_arm_clear_debug(vcpu);
/*
* We must sync the PMU and timer state before the vgic state so
* that the vgic can properly sample the updated state of the
* interrupt line.
*/
kvm_pmu_sync_hwstate(vcpu);
kvm_timer_sync_hwstate(vcpu);
kvm_vgic_sync_hwstate(vcpu);
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
/*
* We may have taken a host interrupt in HYP mode (ie
* while executing the guest). This interrupt is still
* pending, as we haven't serviced it yet!
*
* We're now back in SVC mode, with interrupts
* disabled. Enabling the interrupts now will have
* the effect of taking the interrupt again, in SVC
* mode this time.
*/
local_irq_enable();
/*
* We do local_irq_enable() before calling guest_exit() so
* that if a timer interrupt hits while running the guest we
* account that tick as being spent in the guest. We enable
* preemption after calling guest_exit() so that if we get
* preempted we make sure ticks after that is not counted as
* guest time.
*/
guest_exit();
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
preempt_enable();
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
ret = handle_exit(vcpu, run, ret);
}
KVM: arm/arm64: Support arch timers with a userspace gic If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-28 02:08:06 +07:00
/* Tell userspace about in-kernel device output levels */
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
kvm_timer_update_run(vcpu);
kvm_pmu_update_run(vcpu);
}
KVM: arm/arm64: Support arch timers with a userspace gic If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-28 02:08:06 +07:00
KVM: ARM: World-switch implementation Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-21 06:47:42 +07:00
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return ret;
}
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
int bit_index;
bool set;
unsigned long *ptr;
if (number == KVM_ARM_IRQ_CPU_IRQ)
bit_index = __ffs(HCR_VI);
else /* KVM_ARM_IRQ_CPU_FIQ */
bit_index = __ffs(HCR_VF);
ptr = (unsigned long *)&vcpu->arch.irq_lines;
if (level)
set = test_and_set_bit(bit_index, ptr);
else
set = test_and_clear_bit(bit_index, ptr);
/*
* If we didn't change anything, no need to wake up or kick other CPUs
*/
if (set == level)
return 0;
/*
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
* trigger a world-switch round on the running physical CPU to set the
* virtual IRQ/FIQ fields in the HCR appropriately.
*/
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
kvm_vcpu_kick(vcpu);
return 0;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
bool line_status)
{
u32 irq = irq_level->irq;
unsigned int irq_type, vcpu_idx, irq_num;
int nrcpus = atomic_read(&kvm->online_vcpus);
struct kvm_vcpu *vcpu = NULL;
bool level = irq_level->level;
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
switch (irq_type) {
case KVM_ARM_IRQ_TYPE_CPU:
if (irqchip_in_kernel(kvm))
return -ENXIO;
if (vcpu_idx >= nrcpus)
return -EINVAL;
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
if (!vcpu)
return -EINVAL;
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
return -EINVAL;
return vcpu_interrupt_line(vcpu, irq_num, level);
case KVM_ARM_IRQ_TYPE_PPI:
if (!irqchip_in_kernel(kvm))
return -ENXIO;
if (vcpu_idx >= nrcpus)
return -EINVAL;
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
if (!vcpu)
return -EINVAL;
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
return -EINVAL;
return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
case KVM_ARM_IRQ_TYPE_SPI:
if (!irqchip_in_kernel(kvm))
return -ENXIO;
KVM: arm/arm64: check IRQ number on userland injection When userland injects a SPI via the KVM_IRQ_LINE ioctl we currently only check it against a fixed limit, which historically is set to 127. With the new dynamic IRQ allocation the effective limit may actually be smaller (64). So when now a malicious or buggy userland injects a SPI in that range, we spill over on our VGIC bitmaps and bytemaps memory. I could trigger a host kernel NULL pointer dereference with current mainline by injecting some bogus IRQ number from a hacked kvmtool: ----------------- .... DEBUG: kvm_vgic_inject_irq(kvm, cpu=0, irq=114, level=1) DEBUG: vgic_update_irq_pending(kvm, cpu=0, irq=114, level=1) DEBUG: IRQ #114 still in the game, writing to bytemap now... Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = ffffffc07652e000 [00000000] *pgd=00000000f658b003, *pud=00000000f658b003, *pmd=0000000000000000 Internal error: Oops: 96000006 [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 1053 Comm: lkvm-msi-irqinj Not tainted 4.0.0-rc7+ #3027 Hardware name: FVP Base (DT) task: ffffffc0774e9680 ti: ffffffc0765a8000 task.ti: ffffffc0765a8000 PC is at kvm_vgic_inject_irq+0x234/0x310 LR is at kvm_vgic_inject_irq+0x30c/0x310 pc : [<ffffffc0000ae0a8>] lr : [<ffffffc0000ae180>] pstate: 80000145 ..... So this patch fixes this by checking the SPI number against the actual limit. Also we remove the former legacy hard limit of 127 in the ioctl code. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> CC: <stable@vger.kernel.org> # 4.0, 3.19, 3.18 [maz: wrap KVM_ARM_IRQ_GIC_MAX with #ifndef __KERNEL__, as suggested by Christopher Covington] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-04-10 22:17:59 +07:00
if (irq_num < VGIC_NR_PRIVATE_IRQS)
return -EINVAL;
return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
}
return -EINVAL;
}
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
const struct kvm_vcpu_init *init)
{
unsigned int i;
int phys_target = kvm_target_cpu();
if (init->target != phys_target)
return -EINVAL;
/*
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
* use the same target.
*/
if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
return -EINVAL;
/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
for (i = 0; i < sizeof(init->features) * 8; i++) {
bool set = (init->features[i / 32] & (1 << (i % 32)));
if (set && i >= KVM_VCPU_MAX_FEATURES)
return -ENOENT;
/*
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
* use the same feature set.
*/
if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
test_bit(i, vcpu->arch.features) != set)
return -EINVAL;
if (set)
set_bit(i, vcpu->arch.features);
}
vcpu->arch.target = phys_target;
/* Now we know what it is, we can reset it. */
return kvm_reset_vcpu(vcpu);
}
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
struct kvm_vcpu_init *init)
{
int ret;
ret = kvm_vcpu_set_target(vcpu, init);
if (ret)
return ret;
/*
* Ensure a rebooted VM will fault in RAM pages and detect if the
* guest MMU is turned off and flush the caches as needed.
*/
if (vcpu->arch.has_run_once)
stage2_unmap_vm(vcpu->kvm);
vcpu_reset_hcr(vcpu);
/*
* Handle the "start in power-off" case.
*/
if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
vcpu_power_off(vcpu);
else
vcpu->arch.power_off = false;
return 0;
}
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
default:
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
break;
}
return ret;
}
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
default:
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
break;
}
return ret;
}
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
default:
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
break;
}
return ret;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
struct kvm_device_attr attr;
switch (ioctl) {
case KVM_ARM_VCPU_INIT: {
struct kvm_vcpu_init init;
if (copy_from_user(&init, argp, sizeof(init)))
return -EFAULT;
return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
}
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
if (unlikely(!kvm_vcpu_initialized(vcpu)))
return -ENOEXEC;
if (copy_from_user(&reg, argp, sizeof(reg)))
return -EFAULT;
if (ioctl == KVM_SET_ONE_REG)
return kvm_arm_set_reg(vcpu, &reg);
else
return kvm_arm_get_reg(vcpu, &reg);
}
case KVM_GET_REG_LIST: {
struct kvm_reg_list __user *user_list = argp;
struct kvm_reg_list reg_list;
unsigned n;
if (unlikely(!kvm_vcpu_initialized(vcpu)))
return -ENOEXEC;
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
return -EFAULT;
n = reg_list.n;
reg_list.n = kvm_arm_num_regs(vcpu);
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
return -EFAULT;
if (n < reg_list.n)
return -E2BIG;
return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
}
case KVM_SET_DEVICE_ATTR: {
if (copy_from_user(&attr, argp, sizeof(attr)))
return -EFAULT;
return kvm_arm_vcpu_set_attr(vcpu, &attr);
}
case KVM_GET_DEVICE_ATTR: {
if (copy_from_user(&attr, argp, sizeof(attr)))
return -EFAULT;
return kvm_arm_vcpu_get_attr(vcpu, &attr);
}
case KVM_HAS_DEVICE_ATTR: {
if (copy_from_user(&attr, argp, sizeof(attr)))
return -EFAULT;
return kvm_arm_vcpu_has_attr(vcpu, &attr);
}
default:
return -EINVAL;
}
}
/**
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
* Steps 1-4 below provide general overview of dirty page logging. See
* kvm_get_dirty_log_protect() function description for additional details.
*
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
* always flush the TLB (step 4) even if previous step failed and the dirty
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
* writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Flush TLB's if needed.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
bool is_dirty = false;
int r;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
if (is_dirty)
kvm_flush_remote_tlbs(kvm);
mutex_unlock(&kvm->slots_lock);
return r;
}
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
struct kvm_arm_device_addr *dev_addr)
{
unsigned long dev_id, type;
dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
KVM_ARM_DEVICE_ID_SHIFT;
type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
KVM_ARM_DEVICE_TYPE_SHIFT;
switch (dev_id) {
case KVM_ARM_DEVICE_VGIC_V2:
if (!vgic_present)
return -ENXIO;
return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
default:
return -ENODEV;
}
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
switch (ioctl) {
case KVM_CREATE_IRQCHIP: {
int ret;
if (!vgic_present)
return -ENXIO;
mutex_lock(&kvm->lock);
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
mutex_unlock(&kvm->lock);
return ret;
}
case KVM_ARM_SET_DEVICE_ADDR: {
struct kvm_arm_device_addr dev_addr;
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
return -EFAULT;
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
}
case KVM_ARM_PREFERRED_TARGET: {
int err;
struct kvm_vcpu_init init;
err = kvm_vcpu_preferred_target(&init);
if (err)
return err;
if (copy_to_user(argp, &init, sizeof(init)))
return -EFAULT;
return 0;
}
default:
return -EINVAL;
}
}
static void cpu_init_hyp_mode(void *dummy)
{
phys_addr_t pgd_ptr;
unsigned long hyp_stack_ptr;
unsigned long stack_page;
unsigned long vector_ptr;
/* Switch from the HYP stub to our own HYP init vector */
ARM: KVM: switch to a dual-step HYP init code Our HYP init code suffers from two major design issues: - it cannot support CPU hotplug, as we tear down the idmap very early - it cannot perform a TLB invalidation when switching from init to runtime mappings, as pages are manipulated from PL1 exclusively The hotplug problem mandates that we keep two sets of page tables (boot and runtime). The TLB problem mandates that we're able to transition from one PGD to another while in HYP, invalidating the TLBs in the process. To be able to do this, we need to share a page between the two page tables. A page that will have the same VA in both configurations. All we need is a VA that has the following properties: - This VA can't be used to represent a kernel mapping. - This VA will not conflict with the physical address of the kernel text The vectors page seems to satisfy this requirement: - The kernel never maps anything else there - The kernel text being copied at the beginning of the physical memory, it is unlikely to use the last 64kB (I doubt we'll ever support KVM on a system with something like 4MB of RAM, but patches are very welcome). Let's call this VA the trampoline VA. Now, we map our init page at 3 locations: - idmap in the boot pgd - trampoline VA in the boot pgd - trampoline VA in the runtime pgd The init scenario is now the following: - We jump in HYP with four parameters: boot HYP pgd, runtime HYP pgd, runtime stack, runtime vectors - Enable the MMU with the boot pgd - Jump to a target into the trampoline page (remember, this is the same physical page!) - Now switch to the runtime pgd (same VA, and still the same physical page!) - Invalidate TLBs - Set stack and vectors - Profit! (or eret, if you only care about the code). Note that we keep the boot mapping permanently (it is not strictly an idmap anymore) to allow for CPU hotplug in later patches. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
2013-04-13 01:12:06 +07:00
__hyp_set_vectors(kvm_get_idmap_vector());
pgd_ptr = kvm_mmu_get_httbr();
stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
hyp_stack_ptr = stack_page + PAGE_SIZE;
vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
__cpu_init_stage2();
kvm_arm_init_debug();
}
static void cpu_hyp_reset(void)
{
if (!is_kernel_in_hyp_mode())
__hyp_reset_vectors();
}
static void cpu_hyp_reinit(void)
{
cpu_hyp_reset();
if (is_kernel_in_hyp_mode()) {
/*
* __cpu_init_stage2() is safe to call even if the PM
* event was cancelled before the CPU was reset.
*/
__cpu_init_stage2();
kvm_timer_init_vhe();
} else {
cpu_init_hyp_mode(NULL);
}
if (vgic_present)
kvm_vgic_init_cpu_hardware();
}
static void _kvm_arch_hardware_enable(void *discard)
{
if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
cpu_hyp_reinit();
__this_cpu_write(kvm_arm_hardware_enabled, 1);
}
}
int kvm_arch_hardware_enable(void)
{
_kvm_arch_hardware_enable(NULL);
return 0;
}
static void _kvm_arch_hardware_disable(void *discard)
{
if (__this_cpu_read(kvm_arm_hardware_enabled)) {
cpu_hyp_reset();
__this_cpu_write(kvm_arm_hardware_enabled, 0);
}
}
void kvm_arch_hardware_disable(void)
{
_kvm_arch_hardware_disable(NULL);
}
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd,
void *v)
{
/*
* kvm_arm_hardware_enabled is left with its old value over
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
* re-enable hyp.
*/
switch (cmd) {
case CPU_PM_ENTER:
if (__this_cpu_read(kvm_arm_hardware_enabled))
/*
* don't update kvm_arm_hardware_enabled here
* so that the hardware will be re-enabled
* when we resume. See below.
*/
cpu_hyp_reset();
return NOTIFY_OK;
case CPU_PM_EXIT:
if (__this_cpu_read(kvm_arm_hardware_enabled))
/* The hardware was enabled before suspend. */
cpu_hyp_reinit();
return NOTIFY_OK;
default:
return NOTIFY_DONE;
}
}
static struct notifier_block hyp_init_cpu_pm_nb = {
.notifier_call = hyp_init_cpu_pm_notifier,
};
static void __init hyp_cpu_pm_init(void)
{
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
static void __init hyp_cpu_pm_exit(void)
{
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
static inline void hyp_cpu_pm_exit(void)
{
}
#endif
static void teardown_common_resources(void)
{
free_percpu(kvm_host_cpu_state);
}
static int init_common_resources(void)
{
kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
if (!kvm_host_cpu_state) {
kvm_err("Cannot allocate host CPU state\n");
return -ENOMEM;
}
/* set size of VMID supported by CPU */
kvm_vmid_bits = kvm_get_vmid_bits();
kvm_info("%d-bit VMID\n", kvm_vmid_bits);
return 0;
}
static int init_subsystems(void)
{
int err = 0;
/*
* Enable hardware so that subsystem initialisation can access EL2.
*/
on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
/*
* Register CPU lower-power notifier
*/
hyp_cpu_pm_init();
/*
* Init HYP view of VGIC
*/
err = kvm_vgic_hyp_init();
switch (err) {
case 0:
vgic_present = true;
break;
case -ENODEV:
case -ENXIO:
vgic_present = false;
err = 0;
break;
default:
goto out;
}
/*
* Init HYP architected timer support
*/
err = kvm_timer_hyp_init();
if (err)
goto out;
kvm_perf_init();
kvm_coproc_table_init();
out:
on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
return err;
}
static void teardown_hyp_mode(void)
{
int cpu;
if (is_kernel_in_hyp_mode())
return;
free_hyp_pgds();
for_each_possible_cpu(cpu)
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
hyp_cpu_pm_exit();
}
static int init_vhe_mode(void)
{
kvm_info("VHE mode initialized successfully\n");
return 0;
}
/**
* Inits Hyp-mode on all online CPUs
*/
static int init_hyp_mode(void)
{
int cpu;
int err = 0;
/*
* Allocate Hyp PGD and setup Hyp identity mapping
*/
err = kvm_mmu_init();
if (err)
goto out_err;
/*
* Allocate stack pages for Hypervisor-mode
*/
for_each_possible_cpu(cpu) {
unsigned long stack_page;
stack_page = __get_free_page(GFP_KERNEL);
if (!stack_page) {
err = -ENOMEM;
goto out_err;
}
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
}
/*
* Map the Hyp-code called directly from the host
*/
arm64 updates for 4.6: - Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+ RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv 50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3 DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7 3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM LepccTgykiUBqW5TRzPz =/oS+ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Here are the main arm64 updates for 4.6. There are some relatively intrusive changes to support KASLR, the reworking of the kernel virtual memory layout and initial page table creation. Summary: - Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits) arm64: kasan: Fix zero shadow mapping overriding kernel image shadow arm64: kasan: Use actual memory node when populating the kernel image shadow arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission arm64: Fix misspellings in comments. arm64: efi: add missing frame pointer assignment arm64: make mrs_s prefixing implicit in read_cpuid arm64: enable CONFIG_DEBUG_RODATA by default arm64: Rework valid_user_regs arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly arm64: KVM: Move kvm_call_hyp back to its original localtion arm64: mm: treat memstart_addr as a signed quantity arm64: mm: list kernel sections in order arm64: lse: deal with clobbered IP registers after branch via PLT arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR arm64: kconfig: add submenu for 8.2 architectural features arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot arm64: Add support for Half precision floating point arm64: Remove fixmap include fragility arm64: Add workaround for Cavium erratum 27456 arm64: mm: Mark .rodata as RO ...
2016-03-18 10:03:47 +07:00
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
if (err) {
kvm_err("Cannot map world-switch code\n");
goto out_err;
}
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
if (err) {
kvm_err("Cannot map rodata section\n");
goto out_err;
}
err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
if (err) {
kvm_err("Cannot map bss section\n");
goto out_err;
}
/*
* Map the Hyp stack pages
*/
for_each_possible_cpu(cpu) {
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
PAGE_HYP);
if (err) {
kvm_err("Cannot map hyp stack\n");
goto out_err;
}
}
for_each_possible_cpu(cpu) {
kvm_cpu_context_t *cpu_ctxt;
cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
if (err) {
kvm_err("Cannot map host CPU state: %d\n", err);
goto out_err;
}
}
kvm_info("Hyp mode initialized successfully\n");
return 0;
out_err:
teardown_hyp_mode();
kvm_err("error initializing Hyp mode: %d\n", err);
return err;
}
static void check_kvm_target_cpu(void *ret)
{
*(int *)ret = kvm_target_cpu();
}
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
struct kvm_vcpu *vcpu;
int i;
mpidr &= MPIDR_HWID_BITMASK;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
return vcpu;
}
return NULL;
}
/**
* Initialize Hyp-mode and memory mappings on all CPUs.
*/
int kvm_arch_init(void *opaque)
{
int err;
int ret, cpu;
if (!is_hyp_mode_available()) {
kvm_err("HYP mode not available\n");
return -ENODEV;
}
for_each_online_cpu(cpu) {
smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
if (ret < 0) {
kvm_err("Error, CPU %d not supported!\n", cpu);
return -ENODEV;
}
}
err = init_common_resources();
if (err)
return err;
if (is_kernel_in_hyp_mode())
err = init_vhe_mode();
else
err = init_hyp_mode();
if (err)
goto out_err;
arm, kvm: Fix CPU hotplug callback registration On 03/15/2014 12:40 AM, Christoffer Dall wrote: > On Fri, Mar 14, 2014 at 11:13:29AM +0530, Srivatsa S. Bhat wrote: >> On 03/13/2014 04:51 AM, Christoffer Dall wrote: >>> On Tue, Mar 11, 2014 at 02:05:38AM +0530, Srivatsa S. Bhat wrote: >>>> Subsystems that want to register CPU hotplug callbacks, as well as perform >>>> initialization for the CPUs that are already online, often do it as shown >>>> below: >>>> [...] >>> Just so we're clear, the existing code was simply racy as not prone to >>> deadlocks, right? >>> >>> This makes it clear that the test above for compatible CPUs can be quite >>> easily evaded by using CPU hotplug, but we don't really have a good >>> solution for handling that yet... Hmmm, grumble grumble, I guess if you >>> hotplug unsupported CPUs on a KVM/ARM system for now, stuff will break. >>> >> >> In this particular case, there was no deadlock possibility, rather the >> existing code had insufficient synchronization against CPU hotplug. >> >> init_hyp_mode() would invoke cpu_init_hyp_mode() on currently online CPUs >> using on_each_cpu(). If a CPU came online after this point and before calling >> register_cpu_notifier(), that CPU would remain uninitialized because this >> subsystem would miss the hot-online event. This patch fixes this bug and >> also uses the new synchronization method (instead of get/put_online_cpus()) >> to ensure that we don't deadlock with CPU hotplug. >> > > Yes, that was my conclusion as well. Thanks for clarifying. (It could > be noted in the commit message as well if you should feel so inclined). > Please find the patch with updated changelog (and your Ack) below. (No changes in code). From: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Subject: [PATCH] arm, kvm: Fix CPU hotplug callback registration Subsystems that want to register CPU hotplug callbacks, as well as perform initialization for the CPUs that are already online, often do it as shown below: get_online_cpus(); for_each_online_cpu(cpu) init_cpu(cpu); register_cpu_notifier(&foobar_cpu_notifier); put_online_cpus(); This is wrong, since it is prone to ABBA deadlocks involving the cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently with CPU hotplug operations). Instead, the correct and race-free way of performing the callback registration is: cpu_notifier_register_begin(); for_each_online_cpu(cpu) init_cpu(cpu); /* Note the use of the double underscored version of the API */ __register_cpu_notifier(&foobar_cpu_notifier); cpu_notifier_register_done(); In the existing arm kvm code, there is no synchronization with CPU hotplug to avoid missing the hotplug events that might occur after invoking init_hyp_mode() and before calling register_cpu_notifier(). Fix this bug and also use the new synchronization method (instead of get/put_online_cpus()) to ensure that we don't deadlock with CPU hotplug. Cc: Gleb Natapov <gleb@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Ingo Molnar <mingo@kernel.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-03-18 17:23:05 +07:00
err = init_subsystems();
if (err)
goto out_hyp;
return 0;
out_hyp:
teardown_hyp_mode();
out_err:
teardown_common_resources();
return err;
}
/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
kvm_perf_teardown();
}
static int arm_init(void)
{
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
return rc;
}
module_init(arm_init);