linux_dsm_epyc7002/drivers/scsi/53c7xx_d.h_shipped

2875 lines
62 KiB
Plaintext
Raw Normal View History

/* DO NOT EDIT - Generated automatically by script_asm.pl */
static u32 SCRIPT[] = {
/*
; 53c710 driver. Modified from Drew Eckhardts driver
; for 53c810 by Richard Hirst [richard@sleepie.demon.co.uk]
;
; I have left the script for the 53c8xx family in here, as it is likely
; to be useful to see what I changed when bug hunting.
; NCR 53c810 driver, main script
; Sponsored by
; iX Multiuser Multitasking Magazine
; hm@ix.de
;
; Copyright 1993, 1994, 1995 Drew Eckhardt
; Visionary Computing
; (Unix and Linux consulting and custom programming)
; drew@PoohSticks.ORG
; +1 (303) 786-7975
;
; TolerANT and SCSI SCRIPTS are registered trademarks of NCR Corporation.
;
; PRE-ALPHA
;
; For more information, please consult
;
; NCR 53C810
; PCI-SCSI I/O Processor
; Data Manual
;
; NCR 53C710
; SCSI I/O Processor
; Programmers Guide
;
; NCR Microelectronics
; 1635 Aeroplaza Drive
; Colorado Springs, CO 80916
; 1+ (719) 578-3400
;
; Toll free literature number
; +1 (800) 334-5454
;
; IMPORTANT : This code is self modifying due to the limitations of
; the NCR53c7,8xx series chips. Persons debugging this code with
; the remote debugger should take this into account, and NOT set
; breakpoints in modified instructions.
;
; Design:
; The NCR53c7,8xx family of SCSI chips are busmasters with an onboard
; microcontroller using a simple instruction set.
;
; So, to minimize the effects of interrupt latency, and to maximize
; throughput, this driver offloads the practical maximum amount
; of processing to the SCSI chip while still maintaining a common
; structure.
;
; Where tradeoffs were needed between efficiency on the older
; chips and the newer NCR53c800 series, the NCR53c800 series
; was chosen.
;
; While the NCR53c700 and NCR53c700-66 lacked the facilities to fully
; automate SCSI transfers without host processor intervention, this
; isn't the case with the NCR53c710 and newer chips which allow
;
; - reads and writes to the internal registers from within the SCSI
; scripts, allowing the SCSI SCRIPTS(tm) code to save processor
; state so that multiple threads of execution are possible, and also
; provide an ALU for loop control, etc.
;
; - table indirect addressing for some instructions. This allows
; pointers to be located relative to the DSA ((Data Structure
; Address) register.
;
; These features make it possible to implement a mailbox style interface,
; where the same piece of code is run to handle I/O for multiple threads
; at once minimizing our need to relocate code. Since the NCR53c700/
; NCR53c800 series have a unique combination of features, making a
; a standard ingoing/outgoing mailbox system, costly, I've modified it.
;
; - Mailboxes are a mixture of code and data. This lets us greatly
; simplify the NCR53c810 code and do things that would otherwise
; not be possible.
;
; The saved data pointer is now implemented as follows :
;
; Control flow has been architected such that if control reaches
; munge_save_data_pointer, on a restore pointers message or
; reconnection, a jump to the address formerly in the TEMP register
; will allow the SCSI command to resume execution.
;
;
; Note : the DSA structures must be aligned on 32 bit boundaries,
; since the source and destination of MOVE MEMORY instructions
; must share the same alignment and this is the alignment of the
; NCR registers.
;
; For some systems (MVME166, for example) dmode is always the same, so don't
; waste time writing it
ABSOLUTE dsa_temp_lun = 0 ; Patch to lun for current dsa
ABSOLUTE dsa_temp_next = 0 ; Patch to dsa next for current dsa
ABSOLUTE dsa_temp_addr_next = 0 ; Patch to address of dsa next address
; for current dsa
ABSOLUTE dsa_temp_sync = 0 ; Patch to address of per-target
; sync routine
ABSOLUTE dsa_sscf_710 = 0 ; Patch to address of per-target
; sscf value (53c710)
ABSOLUTE dsa_temp_target = 0 ; Patch to id for current dsa
ABSOLUTE dsa_temp_addr_saved_pointer = 0; Patch to address of per-command
; saved data pointer
ABSOLUTE dsa_temp_addr_residual = 0 ; Patch to address of per-command
; current residual code
ABSOLUTE dsa_temp_addr_saved_residual = 0; Patch to address of per-command
; saved residual code
ABSOLUTE dsa_temp_addr_new_value = 0 ; Address of value for JUMP operand
ABSOLUTE dsa_temp_addr_array_value = 0 ; Address to copy to
ABSOLUTE dsa_temp_addr_dsa_value = 0 ; Address of this DSA value
;
; Once a device has initiated reselection, we need to compare it
; against the singly linked list of commands which have disconnected
; and are pending reselection. These commands are maintained in
; an unordered singly linked list of DSA structures, through the
; DSA pointers at their 'centers' headed by the reconnect_dsa_head
; pointer.
;
; To avoid complications in removing commands from the list,
; I minimize the amount of expensive (at eight operations per
; addition @ 500-600ns each) pointer operations which must
; be done in the NCR driver by precomputing them on the
; host processor during dsa structure generation.
;
; The fixed-up per DSA code knows how to recognize the nexus
; associated with the corresponding SCSI command, and modifies
; the source and destination pointers for the MOVE MEMORY
; instruction which is executed when reselected_ok is called
; to remove the command from the list. Similarly, DSA is
; loaded with the address of the next DSA structure and
; reselected_check_next is called if a failure occurs.
;
; Perhaps more concisely, the net effect of the mess is
;
; for (dsa = reconnect_dsa_head, dest = &reconnect_dsa_head,
; src = NULL; dsa; dest = &dsa->next, dsa = dsa->next) {
; src = &dsa->next;
; if (target_id == dsa->id && target_lun == dsa->lun) {
; *dest = *src;
; break;
; }
; }
;
; if (!dsa)
; error (int_err_unexpected_reselect);
; else
; longjmp (dsa->jump_resume, 0);
;
;
; Define DSA structure used for mailboxes
ENTRY dsa_code_template
dsa_code_template:
ENTRY dsa_code_begin
dsa_code_begin:
; RGH: Don't care about TEMP and DSA here
MOVE MEMORY 4, dsa_temp_addr_dsa_value, addr_scratch
at 0x00000000 : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, saved_dsa
at 0x00000003 : */ 0xc0000004,0x00000000,0x00000000,
/*
; We are about to go and select the device, so must set SSCF bits
MOVE MEMORY 4, dsa_sscf_710, addr_scratch
at 0x00000006 : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE SCRATCH3 TO SFBR
at 0x00000009 : */ 0x72370000,0x00000000,
/*
MOVE SFBR TO SBCL
at 0x0000000b : */ 0x6a0b0000,0x00000000,
/*
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x0000000d : */ 0xc0000004,0x00000000,0x00000000,
/*
CALL select
at 0x00000010 : */ 0x88080000,0x000001f8,
/*
; Handle the phase mismatch which may have resulted from the
; MOVE FROM dsa_msgout if we returned here. The CLEAR ATN
; may or may not be necessary, and we should update script_asm.pl
; to handle multiple pieces.
CLEAR ATN
at 0x00000012 : */ 0x60000008,0x00000000,
/*
CLEAR ACK
at 0x00000014 : */ 0x60000040,0x00000000,
/*
; Replace second operand with address of JUMP instruction dest operand
; in schedule table for this DSA. Becomes dsa_jump_dest in 53c7,8xx.c.
ENTRY dsa_code_fix_jump
dsa_code_fix_jump:
MOVE MEMORY 4, NOP_insn, 0
at 0x00000016 : */ 0xc0000004,0x00000000,0x00000000,
/*
JUMP select_done
at 0x00000019 : */ 0x80080000,0x00000230,
/*
; wrong_dsa loads the DSA register with the value of the dsa_next
; field.
;
wrong_dsa:
; NOTE DSA is corrupt when we arrive here!
; Patch the MOVE MEMORY INSTRUCTION such that
; the destination address is the address of the OLD
; next pointer.
;
MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok_patch + 8
at 0x0000001b : */ 0xc0000004,0x00000000,0x000007ec,
/*
;
; Move the _contents_ of the next pointer into the DSA register as
; the next I_T_L or I_T_L_Q tupple to check against the established
; nexus.
;
MOVE MEMORY 4, dsa_temp_next, addr_scratch
at 0x0000001e : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, saved_dsa
at 0x00000021 : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x00000024 : */ 0xc0000004,0x00000000,0x00000000,
/*
JUMP reselected_check_next
at 0x00000027 : */ 0x80080000,0x000006f0,
/*
ABSOLUTE dsa_save_data_pointer = 0
ENTRY dsa_code_save_data_pointer
dsa_code_save_data_pointer:
; When we get here, TEMP has been saved in jump_temp+4, DSA is corrupt
; We MUST return with DSA correct
MOVE MEMORY 4, jump_temp+4, dsa_temp_addr_saved_pointer
at 0x00000029 : */ 0xc0000004,0x000009c8,0x00000000,
/*
; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h
MOVE MEMORY 24, dsa_temp_addr_residual, dsa_temp_addr_saved_residual
at 0x0000002c : */ 0xc0000018,0x00000000,0x00000000,
/*
CLEAR ACK
at 0x0000002f : */ 0x60000040,0x00000000,
/*
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x00000031 : */ 0xc0000004,0x00000000,0x00000000,
/*
JUMP jump_temp
at 0x00000034 : */ 0x80080000,0x000009c4,
/*
ABSOLUTE dsa_restore_pointers = 0
ENTRY dsa_code_restore_pointers
dsa_code_restore_pointers:
; TEMP and DSA are corrupt when we get here, but who cares!
MOVE MEMORY 4, dsa_temp_addr_saved_pointer, jump_temp + 4
at 0x00000036 : */ 0xc0000004,0x00000000,0x000009c8,
/*
; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h
MOVE MEMORY 24, dsa_temp_addr_saved_residual, dsa_temp_addr_residual
at 0x00000039 : */ 0xc0000018,0x00000000,0x00000000,
/*
CLEAR ACK
at 0x0000003c : */ 0x60000040,0x00000000,
/*
; Restore DSA, note we don't care about TEMP
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x0000003e : */ 0xc0000004,0x00000000,0x00000000,
/*
JUMP jump_temp
at 0x00000041 : */ 0x80080000,0x000009c4,
/*
ABSOLUTE dsa_check_reselect = 0
; dsa_check_reselect determines whether or not the current target and
; lun match the current DSA
ENTRY dsa_code_check_reselect
dsa_code_check_reselect:
MOVE LCRC TO SFBR ; LCRC has our ID and his ID bits set
at 0x00000043 : */ 0x72230000,0x00000000,
/*
JUMP REL (wrong_dsa), IF NOT dsa_temp_target, AND MASK 0x80
at 0x00000045 : */ 0x80848000,0x00ffff50,
/*
;
; Hack - move to scratch first, since SFBR is not writeable
; via the CPU and hence a MOVE MEMORY instruction.
;
MOVE MEMORY 1, reselected_identify, addr_scratch
at 0x00000047 : */ 0xc0000001,0x00000000,0x00000000,
/*
; BIG ENDIAN ON MVME16x
MOVE SCRATCH3 TO SFBR
at 0x0000004a : */ 0x72370000,0x00000000,
/*
; FIXME : we need to accommodate bit fielded and binary here for '7xx/'8xx chips
; Are you sure about that? richard@sleepie.demon.co.uk
JUMP REL (wrong_dsa), IF NOT dsa_temp_lun, AND MASK 0xf8
at 0x0000004c : */ 0x8084f800,0x00ffff34,
/*
; Patch the MOVE MEMORY INSTRUCTION such that
; the source address is the address of this dsa's
; next pointer.
MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok_patch + 4
at 0x0000004e : */ 0xc0000004,0x00000000,0x000007e8,
/*
CALL reselected_ok
at 0x00000051 : */ 0x88080000,0x00000798,
/*
; Restore DSA following memory moves in reselected_ok
; dsa_temp_sync doesn't really care about DSA, but it has an
; optional debug INT so a valid DSA is a good idea.
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x00000053 : */ 0xc0000004,0x00000000,0x00000000,
/*
CALL dsa_temp_sync
at 0x00000056 : */ 0x88080000,0x00000000,
/*
; Release ACK on the IDENTIFY message _after_ we've set the synchronous
; transfer parameters!
CLEAR ACK
at 0x00000058 : */ 0x60000040,0x00000000,
/*
; Implicitly restore pointers on reselection, so a RETURN
; will transfer control back to the right spot.
CALL REL (dsa_code_restore_pointers)
at 0x0000005a : */ 0x88880000,0x00ffff68,
/*
RETURN
at 0x0000005c : */ 0x90080000,0x00000000,
/*
ENTRY dsa_zero
dsa_zero:
ENTRY dsa_code_template_end
dsa_code_template_end:
; Perform sanity check for dsa_fields_start == dsa_code_template_end -
; dsa_zero, puke.
ABSOLUTE dsa_fields_start = 0 ; Sanity marker
; pad 48 bytes (fix this RSN)
ABSOLUTE dsa_next = 48 ; len 4 Next DSA
; del 4 Previous DSA address
ABSOLUTE dsa_cmnd = 56 ; len 4 Scsi_Cmnd * for this thread.
ABSOLUTE dsa_select = 60 ; len 4 Device ID, Period, Offset for
; table indirect select
ABSOLUTE dsa_msgout = 64 ; len 8 table indirect move parameter for
; select message
ABSOLUTE dsa_cmdout = 72 ; len 8 table indirect move parameter for
; command
ABSOLUTE dsa_dataout = 80 ; len 4 code pointer for dataout
ABSOLUTE dsa_datain = 84 ; len 4 code pointer for datain
ABSOLUTE dsa_msgin = 88 ; len 8 table indirect move for msgin
ABSOLUTE dsa_status = 96 ; len 8 table indirect move for status byte
ABSOLUTE dsa_msgout_other = 104 ; len 8 table indirect for normal message out
; (Synchronous transfer negotiation, etc).
ABSOLUTE dsa_end = 112
ABSOLUTE schedule = 0 ; Array of JUMP dsa_begin or JUMP (next),
; terminated by a call to JUMP wait_reselect
; Linked lists of DSA structures
ABSOLUTE reconnect_dsa_head = 0 ; Link list of DSAs which can reconnect
ABSOLUTE addr_reconnect_dsa_head = 0 ; Address of variable containing
; address of reconnect_dsa_head
; These select the source and destination of a MOVE MEMORY instruction
ABSOLUTE dmode_memory_to_memory = 0x0
ABSOLUTE dmode_memory_to_ncr = 0x0
ABSOLUTE dmode_ncr_to_memory = 0x0
ABSOLUTE addr_scratch = 0x0
ABSOLUTE addr_temp = 0x0
ABSOLUTE saved_dsa = 0x0
ABSOLUTE emulfly = 0x0
ABSOLUTE addr_dsa = 0x0
; Interrupts -
; MSB indicates type
; 0 handle error condition
; 1 handle message
; 2 handle normal condition
; 3 debugging interrupt
; 4 testing interrupt
; Next byte indicates specific error
; XXX not yet implemented, I'm not sure if I want to -
; Next byte indicates the routine the error occurred in
; The LSB indicates the specific place the error occurred
ABSOLUTE int_err_unexpected_phase = 0x00000000 ; Unexpected phase encountered
ABSOLUTE int_err_selected = 0x00010000 ; SELECTED (nee RESELECTED)
ABSOLUTE int_err_unexpected_reselect = 0x00020000
ABSOLUTE int_err_check_condition = 0x00030000
ABSOLUTE int_err_no_phase = 0x00040000
ABSOLUTE int_msg_wdtr = 0x01000000 ; WDTR message received
ABSOLUTE int_msg_sdtr = 0x01010000 ; SDTR received
ABSOLUTE int_msg_1 = 0x01020000 ; single byte special message
; received
ABSOLUTE int_norm_select_complete = 0x02000000 ; Select complete, reprogram
; registers.
ABSOLUTE int_norm_reselect_complete = 0x02010000 ; Nexus established
ABSOLUTE int_norm_command_complete = 0x02020000 ; Command complete
ABSOLUTE int_norm_disconnected = 0x02030000 ; Disconnected
ABSOLUTE int_norm_aborted =0x02040000 ; Aborted *dsa
ABSOLUTE int_norm_reset = 0x02050000 ; Generated BUS reset.
ABSOLUTE int_norm_emulateintfly = 0x02060000 ; 53C710 Emulated intfly
ABSOLUTE int_debug_break = 0x03000000 ; Break point
ABSOLUTE int_debug_panic = 0x030b0000 ; Panic driver
ABSOLUTE int_test_1 = 0x04000000 ; Test 1 complete
ABSOLUTE int_test_2 = 0x04010000 ; Test 2 complete
ABSOLUTE int_test_3 = 0x04020000 ; Test 3 complete
; These should start with 0x05000000, with low bits incrementing for
; each one.
ABSOLUTE NCR53c7xx_msg_abort = 0 ; Pointer to abort message
ABSOLUTE NCR53c7xx_msg_reject = 0 ; Pointer to reject message
ABSOLUTE NCR53c7xx_zero = 0 ; long with zero in it, use for source
ABSOLUTE NCR53c7xx_sink = 0 ; long to dump worthless data in
ABSOLUTE NOP_insn = 0 ; NOP instruction
; Pointer to message, potentially multi-byte
ABSOLUTE msg_buf = 0
; Pointer to holding area for reselection information
ABSOLUTE reselected_identify = 0
ABSOLUTE reselected_tag = 0
; Request sense command pointer, it's a 6 byte command, should
; be constant for all commands since we always want 16 bytes of
; sense and we don't need to change any fields as we did under
; SCSI-I when we actually cared about the LUN field.
;EXTERNAL NCR53c7xx_sense ; Request sense command
; dsa_schedule
; PURPOSE : after a DISCONNECT message has been received, and pointers
; saved, insert the current DSA structure at the head of the
; disconnected queue and fall through to the scheduler.
;
; CALLS : OK
;
; INPUTS : dsa - current DSA structure, reconnect_dsa_head - list
; of disconnected commands
;
; MODIFIES : SCRATCH, reconnect_dsa_head
;
; EXITS : always passes control to schedule
ENTRY dsa_schedule
dsa_schedule:
;
; Calculate the address of the next pointer within the DSA
; structure of the command that is currently disconnecting
;
; Read what should be the current DSA from memory - actual DSA
; register is probably corrupt
MOVE MEMORY 4, saved_dsa, addr_scratch
at 0x0000005e : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE SCRATCH0 + dsa_next TO SCRATCH0
at 0x00000061 : */ 0x7e343000,0x00000000,
/*
MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY
at 0x00000063 : */ 0x7f350000,0x00000000,
/*
MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY
at 0x00000065 : */ 0x7f360000,0x00000000,
/*
MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY
at 0x00000067 : */ 0x7f370000,0x00000000,
/*
; Point the next field of this DSA structure at the current disconnected
; list
MOVE MEMORY 4, addr_scratch, dsa_schedule_insert + 8
at 0x00000069 : */ 0xc0000004,0x00000000,0x000001b8,
/*
dsa_schedule_insert:
MOVE MEMORY 4, reconnect_dsa_head, 0
at 0x0000006c : */ 0xc0000004,0x00000000,0x00000000,
/*
; And update the head pointer.
; Read what should be the current DSA from memory - actual DSA
; register is probably corrupt
MOVE MEMORY 4, saved_dsa, addr_scratch
at 0x0000006f : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, reconnect_dsa_head
at 0x00000072 : */ 0xc0000004,0x00000000,0x00000000,
/*
CLEAR ACK
at 0x00000075 : */ 0x60000040,0x00000000,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x00000077 : */ 0xc0000004,0x00000000,0x00000000,
/*
WAIT DISCONNECT
at 0x0000007a : */ 0x48000000,0x00000000,
/*
JUMP schedule
at 0x0000007c : */ 0x80080000,0x00000000,
/*
;
; select
;
; PURPOSE : establish a nexus for the SCSI command referenced by DSA.
; On success, the current DSA structure is removed from the issue
; queue. Usually, this is entered as a fall-through from schedule,
; although the contingent allegiance handling code will write
; the select entry address to the DSP to restart a command as a
; REQUEST SENSE. A message is sent (usually IDENTIFY, although
; additional SDTR or WDTR messages may be sent). COMMAND OUT
; is handled.
;
; INPUTS : DSA - SCSI command, issue_dsa_head
;
; CALLS : NOT OK
;
; MODIFIES : SCRATCH, issue_dsa_head
;
; EXITS : on reselection or selection, go to select_failed
; otherwise, RETURN so control is passed back to
; dsa_begin.
;
ENTRY select
select:
CLEAR TARGET
at 0x0000007e : */ 0x60000200,0x00000000,
/*
; XXX
;
; In effect, SELECTION operations are backgrounded, with execution
; continuing until code which waits for REQ or a fatal interrupt is
; encountered.
;
; So, for more performance, we could overlap the code which removes
; the command from the NCRs issue queue with the selection, but
; at this point I don't want to deal with the error recovery.
;
; Enable selection timer
MOVE CTEST7 & 0xef TO CTEST7
at 0x00000080 : */ 0x7c1bef00,0x00000000,
/*
SELECT ATN FROM dsa_select, select_failed
at 0x00000082 : */ 0x4300003c,0x00000828,
/*
JUMP select_msgout, WHEN MSG_OUT
at 0x00000084 : */ 0x860b0000,0x00000218,
/*
ENTRY select_msgout
select_msgout:
; Disable selection timer
MOVE CTEST7 | 0x10 TO CTEST7
at 0x00000086 : */ 0x7a1b1000,0x00000000,
/*
MOVE FROM dsa_msgout, WHEN MSG_OUT
at 0x00000088 : */ 0x1e000000,0x00000040,
/*
RETURN
at 0x0000008a : */ 0x90080000,0x00000000,
/*
;
; select_done
;
; PURPOSE: continue on to normal data transfer; called as the exit
; point from dsa_begin.
;
; INPUTS: dsa
;
; CALLS: OK
;
;
select_done:
; NOTE DSA is corrupt when we arrive here!
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x0000008c : */ 0xc0000004,0x00000000,0x00000000,
/*
; After a successful selection, we should get either a CMD phase or
; some transfer request negotiation message.
JUMP cmdout, WHEN CMD
at 0x0000008f : */ 0x820b0000,0x0000025c,
/*
INT int_err_unexpected_phase, WHEN NOT MSG_IN
at 0x00000091 : */ 0x9f030000,0x00000000,
/*
select_msg_in:
CALL msg_in, WHEN MSG_IN
at 0x00000093 : */ 0x8f0b0000,0x0000041c,
/*
JUMP select_msg_in, WHEN MSG_IN
at 0x00000095 : */ 0x870b0000,0x0000024c,
/*
cmdout:
INT int_err_unexpected_phase, WHEN NOT CMD
at 0x00000097 : */ 0x9a030000,0x00000000,
/*
ENTRY cmdout_cmdout
cmdout_cmdout:
MOVE FROM dsa_cmdout, WHEN CMD
at 0x00000099 : */ 0x1a000000,0x00000048,
/*
;
; data_transfer
; other_out
; other_in
; other_transfer
;
; PURPOSE : handle the main data transfer for a SCSI command in
; several parts. In the first part, data_transfer, DATA_IN
; and DATA_OUT phases are allowed, with the user provided
; code (usually dynamically generated based on the scatter/gather
; list associated with a SCSI command) called to handle these
; phases.
;
; After control has passed to one of the user provided
; DATA_IN or DATA_OUT routines, back calls are made to
; other_transfer_in or other_transfer_out to handle non-DATA IN
; and DATA OUT phases respectively, with the state of the active
; data pointer being preserved in TEMP.
;
; On completion, the user code passes control to other_transfer
; which causes DATA_IN and DATA_OUT to result in unexpected_phase
; interrupts so that data overruns may be trapped.
;
; INPUTS : DSA - SCSI command
;
; CALLS : OK in data_transfer_start, not ok in other_out and other_in, ok in
; other_transfer
;
; MODIFIES : SCRATCH
;
; EXITS : if STATUS IN is detected, signifying command completion,
; the NCR jumps to command_complete. If MSG IN occurs, a
; CALL is made to msg_in. Otherwise, other_transfer runs in
; an infinite loop.
;
ENTRY data_transfer
data_transfer:
JUMP cmdout_cmdout, WHEN CMD
at 0x0000009b : */ 0x820b0000,0x00000264,
/*
CALL msg_in, WHEN MSG_IN
at 0x0000009d : */ 0x8f0b0000,0x0000041c,
/*
INT int_err_unexpected_phase, WHEN MSG_OUT
at 0x0000009f : */ 0x9e0b0000,0x00000000,
/*
JUMP do_dataout, WHEN DATA_OUT
at 0x000000a1 : */ 0x800b0000,0x000002a4,
/*
JUMP do_datain, WHEN DATA_IN
at 0x000000a3 : */ 0x810b0000,0x000002fc,
/*
JUMP command_complete, WHEN STATUS
at 0x000000a5 : */ 0x830b0000,0x0000065c,
/*
JUMP data_transfer
at 0x000000a7 : */ 0x80080000,0x0000026c,
/*
ENTRY end_data_transfer
end_data_transfer:
;
; FIXME: On NCR53c700 and NCR53c700-66 chips, do_dataout/do_datain
; should be fixed up whenever the nexus changes so it can point to the
; correct routine for that command.
;
; Nasty jump to dsa->dataout
do_dataout:
MOVE MEMORY 4, saved_dsa, addr_scratch
at 0x000000a9 : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE SCRATCH0 + dsa_dataout TO SCRATCH0
at 0x000000ac : */ 0x7e345000,0x00000000,
/*
MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY
at 0x000000ae : */ 0x7f350000,0x00000000,
/*
MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY
at 0x000000b0 : */ 0x7f360000,0x00000000,
/*
MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY
at 0x000000b2 : */ 0x7f370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, dataout_to_jump + 4
at 0x000000b4 : */ 0xc0000004,0x00000000,0x000002e0,
/*
dataout_to_jump:
MOVE MEMORY 4, 0, dataout_jump + 4
at 0x000000b7 : */ 0xc0000004,0x00000000,0x000002f8,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x000000ba : */ 0xc0000004,0x00000000,0x00000000,
/*
dataout_jump:
JUMP 0
at 0x000000bd : */ 0x80080000,0x00000000,
/*
; Nasty jump to dsa->dsain
do_datain:
MOVE MEMORY 4, saved_dsa, addr_scratch
at 0x000000bf : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE SCRATCH0 + dsa_datain TO SCRATCH0
at 0x000000c2 : */ 0x7e345400,0x00000000,
/*
MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY
at 0x000000c4 : */ 0x7f350000,0x00000000,
/*
MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY
at 0x000000c6 : */ 0x7f360000,0x00000000,
/*
MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY
at 0x000000c8 : */ 0x7f370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, datain_to_jump + 4
at 0x000000ca : */ 0xc0000004,0x00000000,0x00000338,
/*
ENTRY datain_to_jump
datain_to_jump:
MOVE MEMORY 4, 0, datain_jump + 4
at 0x000000cd : */ 0xc0000004,0x00000000,0x00000350,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x000000d0 : */ 0xc0000004,0x00000000,0x00000000,
/*
datain_jump:
JUMP 0
at 0x000000d3 : */ 0x80080000,0x00000000,
/*
; Note that other_out and other_in loop until a non-data phase
; is discovered, so we only execute return statements when we
; can go on to the next data phase block move statement.
ENTRY other_out
other_out:
INT int_err_unexpected_phase, WHEN CMD
at 0x000000d5 : */ 0x9a0b0000,0x00000000,
/*
JUMP msg_in_restart, WHEN MSG_IN
at 0x000000d7 : */ 0x870b0000,0x000003fc,
/*
INT int_err_unexpected_phase, WHEN MSG_OUT
at 0x000000d9 : */ 0x9e0b0000,0x00000000,
/*
INT int_err_unexpected_phase, WHEN DATA_IN
at 0x000000db : */ 0x990b0000,0x00000000,
/*
JUMP command_complete, WHEN STATUS
at 0x000000dd : */ 0x830b0000,0x0000065c,
/*
JUMP other_out, WHEN NOT DATA_OUT
at 0x000000df : */ 0x80030000,0x00000354,
/*
; TEMP should be OK, as we got here from a call in the user dataout code.
RETURN
at 0x000000e1 : */ 0x90080000,0x00000000,
/*
ENTRY other_in
other_in:
INT int_err_unexpected_phase, WHEN CMD
at 0x000000e3 : */ 0x9a0b0000,0x00000000,
/*
JUMP msg_in_restart, WHEN MSG_IN
at 0x000000e5 : */ 0x870b0000,0x000003fc,
/*
INT int_err_unexpected_phase, WHEN MSG_OUT
at 0x000000e7 : */ 0x9e0b0000,0x00000000,
/*
INT int_err_unexpected_phase, WHEN DATA_OUT
at 0x000000e9 : */ 0x980b0000,0x00000000,
/*
JUMP command_complete, WHEN STATUS
at 0x000000eb : */ 0x830b0000,0x0000065c,
/*
JUMP other_in, WHEN NOT DATA_IN
at 0x000000ed : */ 0x81030000,0x0000038c,
/*
; TEMP should be OK, as we got here from a call in the user datain code.
RETURN
at 0x000000ef : */ 0x90080000,0x00000000,
/*
ENTRY other_transfer
other_transfer:
INT int_err_unexpected_phase, WHEN CMD
at 0x000000f1 : */ 0x9a0b0000,0x00000000,
/*
CALL msg_in, WHEN MSG_IN
at 0x000000f3 : */ 0x8f0b0000,0x0000041c,
/*
INT int_err_unexpected_phase, WHEN MSG_OUT
at 0x000000f5 : */ 0x9e0b0000,0x00000000,
/*
INT int_err_unexpected_phase, WHEN DATA_OUT
at 0x000000f7 : */ 0x980b0000,0x00000000,
/*
INT int_err_unexpected_phase, WHEN DATA_IN
at 0x000000f9 : */ 0x990b0000,0x00000000,
/*
JUMP command_complete, WHEN STATUS
at 0x000000fb : */ 0x830b0000,0x0000065c,
/*
JUMP other_transfer
at 0x000000fd : */ 0x80080000,0x000003c4,
/*
;
; msg_in_restart
; msg_in
; munge_msg
;
; PURPOSE : process messages from a target. msg_in is called when the
; caller hasn't read the first byte of the message. munge_message
; is called when the caller has read the first byte of the message,
; and left it in SFBR. msg_in_restart is called when the caller
; hasn't read the first byte of the message, and wishes RETURN
; to transfer control back to the address of the conditional
; CALL instruction rather than to the instruction after it.
;
; Various int_* interrupts are generated when the host system
; needs to intervene, as is the case with SDTR, WDTR, and
; INITIATE RECOVERY messages.
;
; When the host system handles one of these interrupts,
; it can respond by reentering at reject_message,
; which rejects the message and returns control to
; the caller of msg_in or munge_msg, accept_message
; which clears ACK and returns control, or reply_message
; which sends the message pointed to by the DSA
; msgout_other table indirect field.
;
; DISCONNECT messages are handled by moving the command
; to the reconnect_dsa_queue.
; NOTE: DSA should be valid when we get here - we cannot save both it
; and TEMP in this routine.
;
; INPUTS : DSA - SCSI COMMAND, SFBR - first byte of message (munge_msg
; only)
;
; CALLS : NO. The TEMP register isn't backed up to allow nested calls.
;
; MODIFIES : SCRATCH, DSA on DISCONNECT
;
; EXITS : On receipt of SAVE DATA POINTER, RESTORE POINTERS,
; and normal return from message handlers running under
; Linux, control is returned to the caller. Receipt
; of DISCONNECT messages pass control to dsa_schedule.
;
ENTRY msg_in_restart
msg_in_restart:
; XXX - hackish
;
; Since it's easier to debug changes to the statically
; compiled code, rather than the dynamically generated
; stuff, such as
;
; MOVE x, y, WHEN data_phase
; CALL other_z, WHEN NOT data_phase
; MOVE x, y, WHEN data_phase
;
; I'd like to have certain routines (notably the message handler)
; restart on the conditional call rather than the next instruction.
;
; So, subtract 8 from the return address
MOVE TEMP0 + 0xf8 TO TEMP0
at 0x000000ff : */ 0x7e1cf800,0x00000000,
/*
MOVE TEMP1 + 0xff TO TEMP1 WITH CARRY
at 0x00000101 : */ 0x7f1dff00,0x00000000,
/*
MOVE TEMP2 + 0xff TO TEMP2 WITH CARRY
at 0x00000103 : */ 0x7f1eff00,0x00000000,
/*
MOVE TEMP3 + 0xff TO TEMP3 WITH CARRY
at 0x00000105 : */ 0x7f1fff00,0x00000000,
/*
ENTRY msg_in
msg_in:
MOVE 1, msg_buf, WHEN MSG_IN
at 0x00000107 : */ 0x0f000001,0x00000000,
/*
munge_msg:
JUMP munge_extended, IF 0x01 ; EXTENDED MESSAGE
at 0x00000109 : */ 0x800c0001,0x00000574,
/*
JUMP munge_2, IF 0x20, AND MASK 0xdf ; two byte message
at 0x0000010b : */ 0x800cdf20,0x00000464,
/*
;
; XXX - I've seen a handful of broken SCSI devices which fail to issue
; a SAVE POINTERS message before disconnecting in the middle of
; a transfer, assuming that the DATA POINTER will be implicitly
; restored.
;
; Historically, I've often done an implicit save when the DISCONNECT
; message is processed. We may want to consider having the option of
; doing that here.
;
JUMP munge_save_data_pointer, IF 0x02 ; SAVE DATA POINTER
at 0x0000010d : */ 0x800c0002,0x0000046c,
/*
JUMP munge_restore_pointers, IF 0x03 ; RESTORE POINTERS
at 0x0000010f : */ 0x800c0003,0x00000518,
/*
JUMP munge_disconnect, IF 0x04 ; DISCONNECT
at 0x00000111 : */ 0x800c0004,0x0000056c,
/*
INT int_msg_1, IF 0x07 ; MESSAGE REJECT
at 0x00000113 : */ 0x980c0007,0x01020000,
/*
INT int_msg_1, IF 0x0f ; INITIATE RECOVERY
at 0x00000115 : */ 0x980c000f,0x01020000,
/*
JUMP reject_message
at 0x00000117 : */ 0x80080000,0x00000604,
/*
munge_2:
JUMP reject_message
at 0x00000119 : */ 0x80080000,0x00000604,
/*
;
; The SCSI standard allows targets to recover from transient
; error conditions by backing up the data pointer with a
; RESTORE POINTERS message.
;
; So, we must save and restore the _residual_ code as well as
; the current instruction pointer. Because of this messiness,
; it is simpler to put dynamic code in the dsa for this and to
; just do a simple jump down there.
;
munge_save_data_pointer:
; We have something in TEMP here, so first we must save that
MOVE TEMP0 TO SFBR
at 0x0000011b : */ 0x721c0000,0x00000000,
/*
MOVE SFBR TO SCRATCH0
at 0x0000011d : */ 0x6a340000,0x00000000,
/*
MOVE TEMP1 TO SFBR
at 0x0000011f : */ 0x721d0000,0x00000000,
/*
MOVE SFBR TO SCRATCH1
at 0x00000121 : */ 0x6a350000,0x00000000,
/*
MOVE TEMP2 TO SFBR
at 0x00000123 : */ 0x721e0000,0x00000000,
/*
MOVE SFBR TO SCRATCH2
at 0x00000125 : */ 0x6a360000,0x00000000,
/*
MOVE TEMP3 TO SFBR
at 0x00000127 : */ 0x721f0000,0x00000000,
/*
MOVE SFBR TO SCRATCH3
at 0x00000129 : */ 0x6a370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, jump_temp + 4
at 0x0000012b : */ 0xc0000004,0x00000000,0x000009c8,
/*
; Now restore DSA
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x0000012e : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE DSA0 + dsa_save_data_pointer TO SFBR
at 0x00000131 : */ 0x76100000,0x00000000,
/*
MOVE SFBR TO SCRATCH0
at 0x00000133 : */ 0x6a340000,0x00000000,
/*
MOVE DSA1 + 0xff TO SFBR WITH CARRY
at 0x00000135 : */ 0x7711ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH1
at 0x00000137 : */ 0x6a350000,0x00000000,
/*
MOVE DSA2 + 0xff TO SFBR WITH CARRY
at 0x00000139 : */ 0x7712ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH2
at 0x0000013b : */ 0x6a360000,0x00000000,
/*
MOVE DSA3 + 0xff TO SFBR WITH CARRY
at 0x0000013d : */ 0x7713ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH3
at 0x0000013f : */ 0x6a370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, jump_dsa_save + 4
at 0x00000141 : */ 0xc0000004,0x00000000,0x00000514,
/*
jump_dsa_save:
JUMP 0
at 0x00000144 : */ 0x80080000,0x00000000,
/*
munge_restore_pointers:
; The code at dsa_restore_pointers will RETURN, but we don't care
; about TEMP here, as it will overwrite it anyway.
MOVE DSA0 + dsa_restore_pointers TO SFBR
at 0x00000146 : */ 0x76100000,0x00000000,
/*
MOVE SFBR TO SCRATCH0
at 0x00000148 : */ 0x6a340000,0x00000000,
/*
MOVE DSA1 + 0xff TO SFBR WITH CARRY
at 0x0000014a : */ 0x7711ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH1
at 0x0000014c : */ 0x6a350000,0x00000000,
/*
MOVE DSA2 + 0xff TO SFBR WITH CARRY
at 0x0000014e : */ 0x7712ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH2
at 0x00000150 : */ 0x6a360000,0x00000000,
/*
MOVE DSA3 + 0xff TO SFBR WITH CARRY
at 0x00000152 : */ 0x7713ff00,0x00000000,
/*
MOVE SFBR TO SCRATCH3
at 0x00000154 : */ 0x6a370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, jump_dsa_restore + 4
at 0x00000156 : */ 0xc0000004,0x00000000,0x00000568,
/*
jump_dsa_restore:
JUMP 0
at 0x00000159 : */ 0x80080000,0x00000000,
/*
munge_disconnect:
JUMP dsa_schedule
at 0x0000015b : */ 0x80080000,0x00000178,
/*
munge_extended:
CLEAR ACK
at 0x0000015d : */ 0x60000040,0x00000000,
/*
INT int_err_unexpected_phase, WHEN NOT MSG_IN
at 0x0000015f : */ 0x9f030000,0x00000000,
/*
MOVE 1, msg_buf + 1, WHEN MSG_IN
at 0x00000161 : */ 0x0f000001,0x00000001,
/*
JUMP munge_extended_2, IF 0x02
at 0x00000163 : */ 0x800c0002,0x000005a4,
/*
JUMP munge_extended_3, IF 0x03
at 0x00000165 : */ 0x800c0003,0x000005d4,
/*
JUMP reject_message
at 0x00000167 : */ 0x80080000,0x00000604,
/*
munge_extended_2:
CLEAR ACK
at 0x00000169 : */ 0x60000040,0x00000000,
/*
MOVE 1, msg_buf + 2, WHEN MSG_IN
at 0x0000016b : */ 0x0f000001,0x00000002,
/*
JUMP reject_message, IF NOT 0x02 ; Must be WDTR
at 0x0000016d : */ 0x80040002,0x00000604,
/*
CLEAR ACK
at 0x0000016f : */ 0x60000040,0x00000000,
/*
MOVE 1, msg_buf + 3, WHEN MSG_IN
at 0x00000171 : */ 0x0f000001,0x00000003,
/*
INT int_msg_wdtr
at 0x00000173 : */ 0x98080000,0x01000000,
/*
munge_extended_3:
CLEAR ACK
at 0x00000175 : */ 0x60000040,0x00000000,
/*
MOVE 1, msg_buf + 2, WHEN MSG_IN
at 0x00000177 : */ 0x0f000001,0x00000002,
/*
JUMP reject_message, IF NOT 0x01 ; Must be SDTR
at 0x00000179 : */ 0x80040001,0x00000604,
/*
CLEAR ACK
at 0x0000017b : */ 0x60000040,0x00000000,
/*
MOVE 2, msg_buf + 3, WHEN MSG_IN
at 0x0000017d : */ 0x0f000002,0x00000003,
/*
INT int_msg_sdtr
at 0x0000017f : */ 0x98080000,0x01010000,
/*
ENTRY reject_message
reject_message:
SET ATN
at 0x00000181 : */ 0x58000008,0x00000000,
/*
CLEAR ACK
at 0x00000183 : */ 0x60000040,0x00000000,
/*
MOVE 1, NCR53c7xx_msg_reject, WHEN MSG_OUT
at 0x00000185 : */ 0x0e000001,0x00000000,
/*
RETURN
at 0x00000187 : */ 0x90080000,0x00000000,
/*
ENTRY accept_message
accept_message:
CLEAR ATN
at 0x00000189 : */ 0x60000008,0x00000000,
/*
CLEAR ACK
at 0x0000018b : */ 0x60000040,0x00000000,
/*
RETURN
at 0x0000018d : */ 0x90080000,0x00000000,
/*
ENTRY respond_message
respond_message:
SET ATN
at 0x0000018f : */ 0x58000008,0x00000000,
/*
CLEAR ACK
at 0x00000191 : */ 0x60000040,0x00000000,
/*
MOVE FROM dsa_msgout_other, WHEN MSG_OUT
at 0x00000193 : */ 0x1e000000,0x00000068,
/*
RETURN
at 0x00000195 : */ 0x90080000,0x00000000,
/*
;
; command_complete
;
; PURPOSE : handle command termination when STATUS IN is detected by reading
; a status byte followed by a command termination message.
;
; Normal termination results in an INTFLY instruction, and
; the host system can pick out which command terminated by
; examining the MESSAGE and STATUS buffers of all currently
; executing commands;
;
; Abnormal (CHECK_CONDITION) termination results in an
; int_err_check_condition interrupt so that a REQUEST SENSE
; command can be issued out-of-order so that no other command
; clears the contingent allegiance condition.
;
;
; INPUTS : DSA - command
;
; CALLS : OK
;
; EXITS : On successful termination, control is passed to schedule.
; On abnormal termination, the user will usually modify the
; DSA fields and corresponding buffers and return control
; to select.
;
ENTRY command_complete
command_complete:
MOVE FROM dsa_status, WHEN STATUS
at 0x00000197 : */ 0x1b000000,0x00000060,
/*
MOVE SFBR TO SCRATCH0 ; Save status
at 0x00000199 : */ 0x6a340000,0x00000000,
/*
ENTRY command_complete_msgin
command_complete_msgin:
MOVE FROM dsa_msgin, WHEN MSG_IN
at 0x0000019b : */ 0x1f000000,0x00000058,
/*
; Indicate that we should be expecting a disconnect
; Above code cleared the Unexpected Disconnect bit, what do we do?
CLEAR ACK
at 0x0000019d : */ 0x60000040,0x00000000,
/*
WAIT DISCONNECT
at 0x0000019f : */ 0x48000000,0x00000000,
/*
;
; The SCSI specification states that when a UNIT ATTENTION condition
; is pending, as indicated by a CHECK CONDITION status message,
; the target shall revert to asynchronous transfers. Since
; synchronous transfers parameters are maintained on a per INITIATOR/TARGET
; basis, and returning control to our scheduler could work on a command
; running on another lun on that target using the old parameters, we must
; interrupt the host processor to get them changed, or change them ourselves.
;
; Once SCSI-II tagged queueing is implemented, things will be even more
; hairy, since contingent allegiance conditions exist on a per-target/lun
; basis, and issuing a new command with a different tag would clear it.
; In these cases, we must interrupt the host processor to get a request
; added to the HEAD of the queue with the request sense command, or we
; must automatically issue the request sense command.
INT int_norm_emulateintfly
at 0x000001a1 : */ 0x98080000,0x02060000,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x000001a3 : */ 0xc0000004,0x00000000,0x00000000,
/*
JUMP schedule
at 0x000001a6 : */ 0x80080000,0x00000000,
/*
command_failed:
INT int_err_check_condition
at 0x000001a8 : */ 0x98080000,0x00030000,
/*
;
; wait_reselect
;
; PURPOSE : This is essentially the idle routine, where control lands
; when there are no new processes to schedule. wait_reselect
; waits for reselection, selection, and new commands.
;
; When a successful reselection occurs, with the aid
; of fixed up code in each DSA, wait_reselect walks the
; reconnect_dsa_queue, asking each dsa if the target ID
; and LUN match its.
;
; If a match is found, a call is made back to reselected_ok,
; which through the miracles of self modifying code, extracts
; the found DSA from the reconnect_dsa_queue and then
; returns control to the DSAs thread of execution.
;
; INPUTS : NONE
;
; CALLS : OK
;
; MODIFIES : DSA,
;
; EXITS : On successful reselection, control is returned to the
; DSA which called reselected_ok. If the WAIT RESELECT
; was interrupted by a new commands arrival signaled by
; SIG_P, control is passed to schedule. If the NCR is
; selected, the host system is interrupted with an
; int_err_selected which is usually responded to by
; setting DSP to the target_abort address.
ENTRY wait_reselect
wait_reselect:
WAIT RESELECT wait_reselect_failed
at 0x000001aa : */ 0x50000000,0x00000800,
/*
reselected:
CLEAR TARGET
at 0x000001ac : */ 0x60000200,0x00000000,
/*
; Read all data needed to reestablish the nexus -
MOVE 1, reselected_identify, WHEN MSG_IN
at 0x000001ae : */ 0x0f000001,0x00000000,
/*
; We used to CLEAR ACK here.
; Point DSA at the current head of the disconnected queue.
MOVE MEMORY 4, reconnect_dsa_head, addr_scratch
at 0x000001b0 : */ 0xc0000004,0x00000000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, saved_dsa
at 0x000001b3 : */ 0xc0000004,0x00000000,0x00000000,
/*
; Fix the update-next pointer so that the reconnect_dsa_head
; pointer is the one that will be updated if this DSA is a hit
; and we remove it from the queue.
MOVE MEMORY 4, addr_reconnect_dsa_head, reselected_ok_patch + 8
at 0x000001b6 : */ 0xc0000004,0x00000000,0x000007ec,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x000001b9 : */ 0xc0000004,0x00000000,0x00000000,
/*
ENTRY reselected_check_next
reselected_check_next:
; Check for a NULL pointer.
MOVE DSA0 TO SFBR
at 0x000001bc : */ 0x72100000,0x00000000,
/*
JUMP reselected_not_end, IF NOT 0
at 0x000001be : */ 0x80040000,0x00000738,
/*
MOVE DSA1 TO SFBR
at 0x000001c0 : */ 0x72110000,0x00000000,
/*
JUMP reselected_not_end, IF NOT 0
at 0x000001c2 : */ 0x80040000,0x00000738,
/*
MOVE DSA2 TO SFBR
at 0x000001c4 : */ 0x72120000,0x00000000,
/*
JUMP reselected_not_end, IF NOT 0
at 0x000001c6 : */ 0x80040000,0x00000738,
/*
MOVE DSA3 TO SFBR
at 0x000001c8 : */ 0x72130000,0x00000000,
/*
JUMP reselected_not_end, IF NOT 0
at 0x000001ca : */ 0x80040000,0x00000738,
/*
INT int_err_unexpected_reselect
at 0x000001cc : */ 0x98080000,0x00020000,
/*
reselected_not_end:
;
; XXX the ALU is only eight bits wide, and the assembler
; wont do the dirt work for us. As long as dsa_check_reselect
; is negative, we need to sign extend with 1 bits to the full
; 32 bit width of the address.
;
; A potential work around would be to have a known alignment
; of the DSA structure such that the base address plus
; dsa_check_reselect doesn't require carrying from bytes
; higher than the LSB.
;
MOVE DSA0 TO SFBR
at 0x000001ce : */ 0x72100000,0x00000000,
/*
MOVE SFBR + dsa_check_reselect TO SCRATCH0
at 0x000001d0 : */ 0x6e340000,0x00000000,
/*
MOVE DSA1 TO SFBR
at 0x000001d2 : */ 0x72110000,0x00000000,
/*
MOVE SFBR + 0xff TO SCRATCH1 WITH CARRY
at 0x000001d4 : */ 0x6f35ff00,0x00000000,
/*
MOVE DSA2 TO SFBR
at 0x000001d6 : */ 0x72120000,0x00000000,
/*
MOVE SFBR + 0xff TO SCRATCH2 WITH CARRY
at 0x000001d8 : */ 0x6f36ff00,0x00000000,
/*
MOVE DSA3 TO SFBR
at 0x000001da : */ 0x72130000,0x00000000,
/*
MOVE SFBR + 0xff TO SCRATCH3 WITH CARRY
at 0x000001dc : */ 0x6f37ff00,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, reselected_check + 4
at 0x000001de : */ 0xc0000004,0x00000000,0x00000794,
/*
; Time to correct DSA following memory move
MOVE MEMORY 4, saved_dsa, addr_dsa
at 0x000001e1 : */ 0xc0000004,0x00000000,0x00000000,
/*
reselected_check:
JUMP 0
at 0x000001e4 : */ 0x80080000,0x00000000,
/*
;
;
; We have problems here - the memory move corrupts TEMP and DSA. This
; routine is called from DSA code, and patched from many places. Scratch
; is probably free when it is called.
; We have to:
; copy temp to scratch, one byte at a time
; write scratch to patch a jump in place of the return
; do the move memory
; jump to the patched in return address
; DSA is corrupt when we get here, and can be left corrupt
ENTRY reselected_ok
reselected_ok:
MOVE TEMP0 TO SFBR
at 0x000001e6 : */ 0x721c0000,0x00000000,
/*
MOVE SFBR TO SCRATCH0
at 0x000001e8 : */ 0x6a340000,0x00000000,
/*
MOVE TEMP1 TO SFBR
at 0x000001ea : */ 0x721d0000,0x00000000,
/*
MOVE SFBR TO SCRATCH1
at 0x000001ec : */ 0x6a350000,0x00000000,
/*
MOVE TEMP2 TO SFBR
at 0x000001ee : */ 0x721e0000,0x00000000,
/*
MOVE SFBR TO SCRATCH2
at 0x000001f0 : */ 0x6a360000,0x00000000,
/*
MOVE TEMP3 TO SFBR
at 0x000001f2 : */ 0x721f0000,0x00000000,
/*
MOVE SFBR TO SCRATCH3
at 0x000001f4 : */ 0x6a370000,0x00000000,
/*
MOVE MEMORY 4, addr_scratch, reselected_ok_jump + 4
at 0x000001f6 : */ 0xc0000004,0x00000000,0x000007f4,
/*
reselected_ok_patch:
MOVE MEMORY 4, 0, 0
at 0x000001f9 : */ 0xc0000004,0x00000000,0x00000000,
/*
reselected_ok_jump:
JUMP 0
at 0x000001fc : */ 0x80080000,0x00000000,
/*
selected:
INT int_err_selected;
at 0x000001fe : */ 0x98080000,0x00010000,
/*
;
; A select or reselect failure can be caused by one of two conditions :
; 1. SIG_P was set. This will be the case if the user has written
; a new value to a previously NULL head of the issue queue.
;
; 2. The NCR53c810 was selected or reselected by another device.
;
; 3. The bus was already busy since we were selected or reselected
; before starting the command.
wait_reselect_failed:
; Check selected bit.
; Must work out how to tell if we are selected....
; Reading CTEST2 clears the SIG_P bit in the ISTAT register.
MOVE CTEST2 & 0x40 TO SFBR
at 0x00000200 : */ 0x74164000,0x00000000,
/*
JUMP schedule, IF 0x40
at 0x00000202 : */ 0x800c0040,0x00000000,
/*
; Check connected bit.
; FIXME: this needs to change if we support target mode
MOVE ISTAT & 0x08 TO SFBR
at 0x00000204 : */ 0x74210800,0x00000000,
/*
JUMP reselected, IF 0x08
at 0x00000206 : */ 0x800c0008,0x000006b0,
/*
; FIXME : Something bogus happened, and we shouldn't fail silently.
INT int_debug_panic
at 0x00000208 : */ 0x98080000,0x030b0000,
/*
select_failed:
; Disable selection timer
MOVE CTEST7 | 0x10 TO CTEST7
at 0x0000020a : */ 0x7a1b1000,0x00000000,
/*
; Otherwise, mask the selected and reselected bits off SIST0
; Let's assume we don't get selected for now
MOVE SSTAT0 & 0x10 TO SFBR
at 0x0000020c : */ 0x740d1000,0x00000000,
/*
JUMP reselected, IF 0x10
at 0x0000020e : */ 0x800c0010,0x000006b0,
/*
; If SIGP is set, the user just gave us another command, and
; we should restart or return to the scheduler.
; Reading CTEST2 clears the SIG_P bit in the ISTAT register.
MOVE CTEST2 & 0x40 TO SFBR
at 0x00000210 : */ 0x74164000,0x00000000,
/*
JUMP select, IF 0x40
at 0x00000212 : */ 0x800c0040,0x000001f8,
/*
; Check connected bit.
; FIXME: this needs to change if we support target mode
; FIXME: is this really necessary?
MOVE ISTAT & 0x08 TO SFBR
at 0x00000214 : */ 0x74210800,0x00000000,
/*
JUMP reselected, IF 0x08
at 0x00000216 : */ 0x800c0008,0x000006b0,
/*
; FIXME : Something bogus happened, and we shouldn't fail silently.
INT int_debug_panic
at 0x00000218 : */ 0x98080000,0x030b0000,
/*
;
; test_1
; test_2
;
; PURPOSE : run some verification tests on the NCR. test_1
; copies test_src to test_dest and interrupts the host
; processor, testing for cache coherency and interrupt
; problems in the processes.
;
; test_2 runs a command with offsets relative to the
; DSA on entry, and is useful for miscellaneous experimentation.
;
; Verify that interrupts are working correctly and that we don't
; have a cache invalidation problem.
ABSOLUTE test_src = 0, test_dest = 0
ENTRY test_1
test_1:
MOVE MEMORY 4, test_src, test_dest
at 0x0000021a : */ 0xc0000004,0x00000000,0x00000000,
/*
INT int_test_1
at 0x0000021d : */ 0x98080000,0x04000000,
/*
;
; Run arbitrary commands, with test code establishing a DSA
;
ENTRY test_2
test_2:
CLEAR TARGET
at 0x0000021f : */ 0x60000200,0x00000000,
/*
; Enable selection timer
MOVE CTEST7 & 0xef TO CTEST7
at 0x00000221 : */ 0x7c1bef00,0x00000000,
/*
SELECT ATN FROM 0, test_2_fail
at 0x00000223 : */ 0x43000000,0x000008dc,
/*
JUMP test_2_msgout, WHEN MSG_OUT
at 0x00000225 : */ 0x860b0000,0x0000089c,
/*
ENTRY test_2_msgout
test_2_msgout:
; Disable selection timer
MOVE CTEST7 | 0x10 TO CTEST7
at 0x00000227 : */ 0x7a1b1000,0x00000000,
/*
MOVE FROM 8, WHEN MSG_OUT
at 0x00000229 : */ 0x1e000000,0x00000008,
/*
MOVE FROM 16, WHEN CMD
at 0x0000022b : */ 0x1a000000,0x00000010,
/*
MOVE FROM 24, WHEN DATA_IN
at 0x0000022d : */ 0x19000000,0x00000018,
/*
MOVE FROM 32, WHEN STATUS
at 0x0000022f : */ 0x1b000000,0x00000020,
/*
MOVE FROM 40, WHEN MSG_IN
at 0x00000231 : */ 0x1f000000,0x00000028,
/*
CLEAR ACK
at 0x00000233 : */ 0x60000040,0x00000000,
/*
WAIT DISCONNECT
at 0x00000235 : */ 0x48000000,0x00000000,
/*
test_2_fail:
; Disable selection timer
MOVE CTEST7 | 0x10 TO CTEST7
at 0x00000237 : */ 0x7a1b1000,0x00000000,
/*
INT int_test_2
at 0x00000239 : */ 0x98080000,0x04010000,
/*
ENTRY debug_break
debug_break:
INT int_debug_break
at 0x0000023b : */ 0x98080000,0x03000000,
/*
;
; initiator_abort
; target_abort
;
; PURPOSE : Abort the currently established nexus from with initiator
; or target mode.
;
;
ENTRY target_abort
target_abort:
SET TARGET
at 0x0000023d : */ 0x58000200,0x00000000,
/*
DISCONNECT
at 0x0000023f : */ 0x48000000,0x00000000,
/*
CLEAR TARGET
at 0x00000241 : */ 0x60000200,0x00000000,
/*
JUMP schedule
at 0x00000243 : */ 0x80080000,0x00000000,
/*
ENTRY initiator_abort
initiator_abort:
SET ATN
at 0x00000245 : */ 0x58000008,0x00000000,
/*
;
; The SCSI-I specification says that targets may go into MSG out at
; their leisure upon receipt of the ATN single. On all versions of the
; specification, we can't change phases until REQ transitions true->false,
; so we need to sink/source one byte of data to allow the transition.
;
; For the sake of safety, we'll only source one byte of data in all
; cases, but to accommodate the SCSI-I dain bramage, we'll sink an
; arbitrary number of bytes.
JUMP spew_cmd, WHEN CMD
at 0x00000247 : */ 0x820b0000,0x0000094c,
/*
JUMP eat_msgin, WHEN MSG_IN
at 0x00000249 : */ 0x870b0000,0x0000095c,
/*
JUMP eat_datain, WHEN DATA_IN
at 0x0000024b : */ 0x810b0000,0x0000098c,
/*
JUMP eat_status, WHEN STATUS
at 0x0000024d : */ 0x830b0000,0x00000974,
/*
JUMP spew_dataout, WHEN DATA_OUT
at 0x0000024f : */ 0x800b0000,0x000009a4,
/*
JUMP sated
at 0x00000251 : */ 0x80080000,0x000009ac,
/*
spew_cmd:
MOVE 1, NCR53c7xx_zero, WHEN CMD
at 0x00000253 : */ 0x0a000001,0x00000000,
/*
JUMP sated
at 0x00000255 : */ 0x80080000,0x000009ac,
/*
eat_msgin:
MOVE 1, NCR53c7xx_sink, WHEN MSG_IN
at 0x00000257 : */ 0x0f000001,0x00000000,
/*
JUMP eat_msgin, WHEN MSG_IN
at 0x00000259 : */ 0x870b0000,0x0000095c,
/*
JUMP sated
at 0x0000025b : */ 0x80080000,0x000009ac,
/*
eat_status:
MOVE 1, NCR53c7xx_sink, WHEN STATUS
at 0x0000025d : */ 0x0b000001,0x00000000,
/*
JUMP eat_status, WHEN STATUS
at 0x0000025f : */ 0x830b0000,0x00000974,
/*
JUMP sated
at 0x00000261 : */ 0x80080000,0x000009ac,
/*
eat_datain:
MOVE 1, NCR53c7xx_sink, WHEN DATA_IN
at 0x00000263 : */ 0x09000001,0x00000000,
/*
JUMP eat_datain, WHEN DATA_IN
at 0x00000265 : */ 0x810b0000,0x0000098c,
/*
JUMP sated
at 0x00000267 : */ 0x80080000,0x000009ac,
/*
spew_dataout:
MOVE 1, NCR53c7xx_zero, WHEN DATA_OUT
at 0x00000269 : */ 0x08000001,0x00000000,
/*
sated:
MOVE 1, NCR53c7xx_msg_abort, WHEN MSG_OUT
at 0x0000026b : */ 0x0e000001,0x00000000,
/*
WAIT DISCONNECT
at 0x0000026d : */ 0x48000000,0x00000000,
/*
INT int_norm_aborted
at 0x0000026f : */ 0x98080000,0x02040000,
/*
; Little patched jump, used to overcome problems with TEMP getting
; corrupted on memory moves.
jump_temp:
JUMP 0
at 0x00000271 : */ 0x80080000,0x00000000,
};
#define A_NCR53c7xx_msg_abort 0x00000000
static u32 A_NCR53c7xx_msg_abort_used[] __attribute((unused)) = {
0x0000026c,
};
#define A_NCR53c7xx_msg_reject 0x00000000
static u32 A_NCR53c7xx_msg_reject_used[] __attribute((unused)) = {
0x00000186,
};
#define A_NCR53c7xx_sink 0x00000000
static u32 A_NCR53c7xx_sink_used[] __attribute((unused)) = {
0x00000258,
0x0000025e,
0x00000264,
};
#define A_NCR53c7xx_zero 0x00000000
static u32 A_NCR53c7xx_zero_used[] __attribute((unused)) = {
0x00000254,
0x0000026a,
};
#define A_NOP_insn 0x00000000
static u32 A_NOP_insn_used[] __attribute((unused)) = {
0x00000017,
};
#define A_addr_dsa 0x00000000
static u32 A_addr_dsa_used[] __attribute((unused)) = {
0x0000000f,
0x00000026,
0x00000033,
0x00000040,
0x00000055,
0x00000079,
0x0000008e,
0x000000bc,
0x000000d2,
0x00000130,
0x000001a5,
0x000001bb,
0x000001e3,
};
#define A_addr_reconnect_dsa_head 0x00000000
static u32 A_addr_reconnect_dsa_head_used[] __attribute((unused)) = {
0x000001b7,
};
#define A_addr_scratch 0x00000000
static u32 A_addr_scratch_used[] __attribute((unused)) = {
0x00000002,
0x00000004,
0x00000008,
0x00000020,
0x00000022,
0x00000049,
0x00000060,
0x0000006a,
0x00000071,
0x00000073,
0x000000ab,
0x000000b5,
0x000000c1,
0x000000cb,
0x0000012c,
0x00000142,
0x00000157,
0x000001b2,
0x000001b4,
0x000001df,
0x000001f7,
};
#define A_addr_temp 0x00000000
static u32 A_addr_temp_used[] __attribute((unused)) = {
};
#define A_dmode_memory_to_memory 0x00000000
static u32 A_dmode_memory_to_memory_used[] __attribute((unused)) = {
};
#define A_dmode_memory_to_ncr 0x00000000
static u32 A_dmode_memory_to_ncr_used[] __attribute((unused)) = {
};
#define A_dmode_ncr_to_memory 0x00000000
static u32 A_dmode_ncr_to_memory_used[] __attribute((unused)) = {
};
#define A_dsa_check_reselect 0x00000000
static u32 A_dsa_check_reselect_used[] __attribute((unused)) = {
0x000001d0,
};
#define A_dsa_cmdout 0x00000048
static u32 A_dsa_cmdout_used[] __attribute((unused)) = {
0x0000009a,
};
#define A_dsa_cmnd 0x00000038
static u32 A_dsa_cmnd_used[] __attribute((unused)) = {
};
#define A_dsa_datain 0x00000054
static u32 A_dsa_datain_used[] __attribute((unused)) = {
0x000000c2,
};
#define A_dsa_dataout 0x00000050
static u32 A_dsa_dataout_used[] __attribute((unused)) = {
0x000000ac,
};
#define A_dsa_end 0x00000070
static u32 A_dsa_end_used[] __attribute((unused)) = {
};
#define A_dsa_fields_start 0x00000000
static u32 A_dsa_fields_start_used[] __attribute((unused)) = {
};
#define A_dsa_msgin 0x00000058
static u32 A_dsa_msgin_used[] __attribute((unused)) = {
0x0000019c,
};
#define A_dsa_msgout 0x00000040
static u32 A_dsa_msgout_used[] __attribute((unused)) = {
0x00000089,
};
#define A_dsa_msgout_other 0x00000068
static u32 A_dsa_msgout_other_used[] __attribute((unused)) = {
0x00000194,
};
#define A_dsa_next 0x00000030
static u32 A_dsa_next_used[] __attribute((unused)) = {
0x00000061,
};
#define A_dsa_restore_pointers 0x00000000
static u32 A_dsa_restore_pointers_used[] __attribute((unused)) = {
0x00000146,
};
#define A_dsa_save_data_pointer 0x00000000
static u32 A_dsa_save_data_pointer_used[] __attribute((unused)) = {
0x00000131,
};
#define A_dsa_select 0x0000003c
static u32 A_dsa_select_used[] __attribute((unused)) = {
0x00000082,
};
#define A_dsa_sscf_710 0x00000000
static u32 A_dsa_sscf_710_used[] __attribute((unused)) = {
0x00000007,
};
#define A_dsa_status 0x00000060
static u32 A_dsa_status_used[] __attribute((unused)) = {
0x00000198,
};
#define A_dsa_temp_addr_array_value 0x00000000
static u32 A_dsa_temp_addr_array_value_used[] __attribute((unused)) = {
};
#define A_dsa_temp_addr_dsa_value 0x00000000
static u32 A_dsa_temp_addr_dsa_value_used[] __attribute((unused)) = {
0x00000001,
};
#define A_dsa_temp_addr_new_value 0x00000000
static u32 A_dsa_temp_addr_new_value_used[] __attribute((unused)) = {
};
#define A_dsa_temp_addr_next 0x00000000
static u32 A_dsa_temp_addr_next_used[] __attribute((unused)) = {
0x0000001c,
0x0000004f,
};
#define A_dsa_temp_addr_residual 0x00000000
static u32 A_dsa_temp_addr_residual_used[] __attribute((unused)) = {
0x0000002d,
0x0000003b,
};
#define A_dsa_temp_addr_saved_pointer 0x00000000
static u32 A_dsa_temp_addr_saved_pointer_used[] __attribute((unused)) = {
0x0000002b,
0x00000037,
};
#define A_dsa_temp_addr_saved_residual 0x00000000
static u32 A_dsa_temp_addr_saved_residual_used[] __attribute((unused)) = {
0x0000002e,
0x0000003a,
};
#define A_dsa_temp_lun 0x00000000
static u32 A_dsa_temp_lun_used[] __attribute((unused)) = {
0x0000004c,
};
#define A_dsa_temp_next 0x00000000
static u32 A_dsa_temp_next_used[] __attribute((unused)) = {
0x0000001f,
};
#define A_dsa_temp_sync 0x00000000
static u32 A_dsa_temp_sync_used[] __attribute((unused)) = {
0x00000057,
};
#define A_dsa_temp_target 0x00000000
static u32 A_dsa_temp_target_used[] __attribute((unused)) = {
0x00000045,
};
#define A_emulfly 0x00000000
static u32 A_emulfly_used[] __attribute((unused)) = {
};
#define A_int_debug_break 0x03000000
static u32 A_int_debug_break_used[] __attribute((unused)) = {
0x0000023c,
};
#define A_int_debug_panic 0x030b0000
static u32 A_int_debug_panic_used[] __attribute((unused)) = {
0x00000209,
0x00000219,
};
#define A_int_err_check_condition 0x00030000
static u32 A_int_err_check_condition_used[] __attribute((unused)) = {
0x000001a9,
};
#define A_int_err_no_phase 0x00040000
static u32 A_int_err_no_phase_used[] __attribute((unused)) = {
};
#define A_int_err_selected 0x00010000
static u32 A_int_err_selected_used[] __attribute((unused)) = {
0x000001ff,
};
#define A_int_err_unexpected_phase 0x00000000
static u32 A_int_err_unexpected_phase_used[] __attribute((unused)) = {
0x00000092,
0x00000098,
0x000000a0,
0x000000d6,
0x000000da,
0x000000dc,
0x000000e4,
0x000000e8,
0x000000ea,
0x000000f2,
0x000000f6,
0x000000f8,
0x000000fa,
0x00000160,
};
#define A_int_err_unexpected_reselect 0x00020000
static u32 A_int_err_unexpected_reselect_used[] __attribute((unused)) = {
0x000001cd,
};
#define A_int_msg_1 0x01020000
static u32 A_int_msg_1_used[] __attribute((unused)) = {
0x00000114,
0x00000116,
};
#define A_int_msg_sdtr 0x01010000
static u32 A_int_msg_sdtr_used[] __attribute((unused)) = {
0x00000180,
};
#define A_int_msg_wdtr 0x01000000
static u32 A_int_msg_wdtr_used[] __attribute((unused)) = {
0x00000174,
};
#define A_int_norm_aborted 0x02040000
static u32 A_int_norm_aborted_used[] __attribute((unused)) = {
0x00000270,
};
#define A_int_norm_command_complete 0x02020000
static u32 A_int_norm_command_complete_used[] __attribute((unused)) = {
};
#define A_int_norm_disconnected 0x02030000
static u32 A_int_norm_disconnected_used[] __attribute((unused)) = {
};
#define A_int_norm_emulateintfly 0x02060000
static u32 A_int_norm_emulateintfly_used[] __attribute((unused)) = {
0x000001a2,
};
#define A_int_norm_reselect_complete 0x02010000
static u32 A_int_norm_reselect_complete_used[] __attribute((unused)) = {
};
#define A_int_norm_reset 0x02050000
static u32 A_int_norm_reset_used[] __attribute((unused)) = {
};
#define A_int_norm_select_complete 0x02000000
static u32 A_int_norm_select_complete_used[] __attribute((unused)) = {
};
#define A_int_test_1 0x04000000
static u32 A_int_test_1_used[] __attribute((unused)) = {
0x0000021e,
};
#define A_int_test_2 0x04010000
static u32 A_int_test_2_used[] __attribute((unused)) = {
0x0000023a,
};
#define A_int_test_3 0x04020000
static u32 A_int_test_3_used[] __attribute((unused)) = {
};
#define A_msg_buf 0x00000000
static u32 A_msg_buf_used[] __attribute((unused)) = {
0x00000108,
0x00000162,
0x0000016c,
0x00000172,
0x00000178,
0x0000017e,
};
#define A_reconnect_dsa_head 0x00000000
static u32 A_reconnect_dsa_head_used[] __attribute((unused)) = {
0x0000006d,
0x00000074,
0x000001b1,
};
#define A_reselected_identify 0x00000000
static u32 A_reselected_identify_used[] __attribute((unused)) = {
0x00000048,
0x000001af,
};
#define A_reselected_tag 0x00000000
static u32 A_reselected_tag_used[] __attribute((unused)) = {
};
#define A_saved_dsa 0x00000000
static u32 A_saved_dsa_used[] __attribute((unused)) = {
0x00000005,
0x0000000e,
0x00000023,
0x00000025,
0x00000032,
0x0000003f,
0x00000054,
0x0000005f,
0x00000070,
0x00000078,
0x0000008d,
0x000000aa,
0x000000bb,
0x000000c0,
0x000000d1,
0x0000012f,
0x000001a4,
0x000001b5,
0x000001ba,
0x000001e2,
};
#define A_schedule 0x00000000
static u32 A_schedule_used[] __attribute((unused)) = {
0x0000007d,
0x000001a7,
0x00000203,
0x00000244,
};
#define A_test_dest 0x00000000
static u32 A_test_dest_used[] __attribute((unused)) = {
0x0000021c,
};
#define A_test_src 0x00000000
static u32 A_test_src_used[] __attribute((unused)) = {
0x0000021b,
};
#define Ent_accept_message 0x00000624
#define Ent_cmdout_cmdout 0x00000264
#define Ent_command_complete 0x0000065c
#define Ent_command_complete_msgin 0x0000066c
#define Ent_data_transfer 0x0000026c
#define Ent_datain_to_jump 0x00000334
#define Ent_debug_break 0x000008ec
#define Ent_dsa_code_begin 0x00000000
#define Ent_dsa_code_check_reselect 0x0000010c
#define Ent_dsa_code_fix_jump 0x00000058
#define Ent_dsa_code_restore_pointers 0x000000d8
#define Ent_dsa_code_save_data_pointer 0x000000a4
#define Ent_dsa_code_template 0x00000000
#define Ent_dsa_code_template_end 0x00000178
#define Ent_dsa_schedule 0x00000178
#define Ent_dsa_zero 0x00000178
#define Ent_end_data_transfer 0x000002a4
#define Ent_initiator_abort 0x00000914
#define Ent_msg_in 0x0000041c
#define Ent_msg_in_restart 0x000003fc
#define Ent_other_in 0x0000038c
#define Ent_other_out 0x00000354
#define Ent_other_transfer 0x000003c4
#define Ent_reject_message 0x00000604
#define Ent_reselected_check_next 0x000006f0
#define Ent_reselected_ok 0x00000798
#define Ent_respond_message 0x0000063c
#define Ent_select 0x000001f8
#define Ent_select_msgout 0x00000218
#define Ent_target_abort 0x000008f4
#define Ent_test_1 0x00000868
#define Ent_test_2 0x0000087c
#define Ent_test_2_msgout 0x0000089c
#define Ent_wait_reselect 0x000006a8
static u32 LABELPATCHES[] __attribute((unused)) = {
0x00000011,
0x0000001a,
0x0000001d,
0x00000028,
0x0000002a,
0x00000035,
0x00000038,
0x00000042,
0x00000050,
0x00000052,
0x0000006b,
0x00000083,
0x00000085,
0x00000090,
0x00000094,
0x00000096,
0x0000009c,
0x0000009e,
0x000000a2,
0x000000a4,
0x000000a6,
0x000000a8,
0x000000b6,
0x000000b9,
0x000000cc,
0x000000cf,
0x000000d8,
0x000000de,
0x000000e0,
0x000000e6,
0x000000ec,
0x000000ee,
0x000000f4,
0x000000fc,
0x000000fe,
0x0000010a,
0x0000010c,
0x0000010e,
0x00000110,
0x00000112,
0x00000118,
0x0000011a,
0x0000012d,
0x00000143,
0x00000158,
0x0000015c,
0x00000164,
0x00000166,
0x00000168,
0x0000016e,
0x0000017a,
0x000001ab,
0x000001b8,
0x000001bf,
0x000001c3,
0x000001c7,
0x000001cb,
0x000001e0,
0x000001f8,
0x00000207,
0x0000020f,
0x00000213,
0x00000217,
0x00000224,
0x00000226,
0x00000248,
0x0000024a,
0x0000024c,
0x0000024e,
0x00000250,
0x00000252,
0x00000256,
0x0000025a,
0x0000025c,
0x00000260,
0x00000262,
0x00000266,
0x00000268,
};
static struct {
u32 offset;
void *address;
} EXTERNAL_PATCHES[] __attribute((unused)) = {
};
static u32 INSTRUCTIONS __attribute((unused)) = 290;
static u32 PATCHES __attribute((unused)) = 78;
static u32 EXTERNAL_PATCHES_LEN __attribute((unused)) = 0;