linux_dsm_epyc7002/drivers/hwmon/adt7462.c

1975 lines
59 KiB
C
Raw Normal View History

/*
* A hwmon driver for the Analog Devices ADT7462
* Copyright (C) 2008 IBM
*
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/log2.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x58, 0x5C, I2C_CLIENT_END };
/* ADT7462 registers */
#define ADT7462_REG_DEVICE 0x3D
#define ADT7462_REG_VENDOR 0x3E
#define ADT7462_REG_REVISION 0x3F
#define ADT7462_REG_MIN_TEMP_BASE_ADDR 0x44
#define ADT7462_REG_MIN_TEMP_MAX_ADDR 0x47
#define ADT7462_REG_MAX_TEMP_BASE_ADDR 0x48
#define ADT7462_REG_MAX_TEMP_MAX_ADDR 0x4B
#define ADT7462_REG_TEMP_BASE_ADDR 0x88
#define ADT7462_REG_TEMP_MAX_ADDR 0x8F
#define ADT7462_REG_FAN_BASE_ADDR 0x98
#define ADT7462_REG_FAN_MAX_ADDR 0x9F
#define ADT7462_REG_FAN2_BASE_ADDR 0xA2
#define ADT7462_REG_FAN2_MAX_ADDR 0xA9
#define ADT7462_REG_FAN_ENABLE 0x07
#define ADT7462_REG_FAN_MIN_BASE_ADDR 0x78
#define ADT7462_REG_FAN_MIN_MAX_ADDR 0x7F
#define ADT7462_REG_CFG2 0x02
#define ADT7462_FSPD_MASK 0x20
#define ADT7462_REG_PWM_BASE_ADDR 0xAA
#define ADT7462_REG_PWM_MAX_ADDR 0xAD
#define ADT7462_REG_PWM_MIN_BASE_ADDR 0x28
#define ADT7462_REG_PWM_MIN_MAX_ADDR 0x2B
#define ADT7462_REG_PWM_MAX 0x2C
#define ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR 0x5C
#define ADT7462_REG_PWM_TEMP_MIN_MAX_ADDR 0x5F
#define ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR 0x60
#define ADT7462_REG_PWM_TEMP_RANGE_MAX_ADDR 0x63
#define ADT7462_PWM_HYST_MASK 0x0F
#define ADT7462_PWM_RANGE_MASK 0xF0
#define ADT7462_PWM_RANGE_SHIFT 4
#define ADT7462_REG_PWM_CFG_BASE_ADDR 0x21
#define ADT7462_REG_PWM_CFG_MAX_ADDR 0x24
#define ADT7462_PWM_CHANNEL_MASK 0xE0
#define ADT7462_PWM_CHANNEL_SHIFT 5
#define ADT7462_REG_PIN_CFG_BASE_ADDR 0x10
#define ADT7462_REG_PIN_CFG_MAX_ADDR 0x13
#define ADT7462_PIN7_INPUT 0x01 /* cfg0 */
#define ADT7462_DIODE3_INPUT 0x20
#define ADT7462_DIODE1_INPUT 0x40
#define ADT7462_VID_INPUT 0x80
#define ADT7462_PIN22_INPUT 0x04 /* cfg1 */
#define ADT7462_PIN21_INPUT 0x08
#define ADT7462_PIN19_INPUT 0x10
#define ADT7462_PIN15_INPUT 0x20
#define ADT7462_PIN13_INPUT 0x40
#define ADT7462_PIN8_INPUT 0x80
#define ADT7462_PIN23_MASK 0x03
#define ADT7462_PIN23_SHIFT 0
#define ADT7462_PIN26_MASK 0x0C /* cfg2 */
#define ADT7462_PIN26_SHIFT 2
#define ADT7462_PIN25_MASK 0x30
#define ADT7462_PIN25_SHIFT 4
#define ADT7462_PIN24_MASK 0xC0
#define ADT7462_PIN24_SHIFT 6
#define ADT7462_PIN26_VOLT_INPUT 0x08
#define ADT7462_PIN25_VOLT_INPUT 0x20
#define ADT7462_PIN28_SHIFT 4 /* cfg3 */
#define ADT7462_PIN28_VOLT 0x5
#define ADT7462_REG_ALARM1 0xB8
#define ADT7462_LT_ALARM 0x02
#define ADT7462_R1T_ALARM 0x04
#define ADT7462_R2T_ALARM 0x08
#define ADT7462_R3T_ALARM 0x10
#define ADT7462_REG_ALARM2 0xBB
#define ADT7462_V0_ALARM 0x01
#define ADT7462_V1_ALARM 0x02
#define ADT7462_V2_ALARM 0x04
#define ADT7462_V3_ALARM 0x08
#define ADT7462_V4_ALARM 0x10
#define ADT7462_V5_ALARM 0x20
#define ADT7462_V6_ALARM 0x40
#define ADT7462_V7_ALARM 0x80
#define ADT7462_REG_ALARM3 0xBC
#define ADT7462_V8_ALARM 0x08
#define ADT7462_V9_ALARM 0x10
#define ADT7462_V10_ALARM 0x20
#define ADT7462_V11_ALARM 0x40
#define ADT7462_V12_ALARM 0x80
#define ADT7462_REG_ALARM4 0xBD
#define ADT7462_F0_ALARM 0x01
#define ADT7462_F1_ALARM 0x02
#define ADT7462_F2_ALARM 0x04
#define ADT7462_F3_ALARM 0x08
#define ADT7462_F4_ALARM 0x10
#define ADT7462_F5_ALARM 0x20
#define ADT7462_F6_ALARM 0x40
#define ADT7462_F7_ALARM 0x80
#define ADT7462_ALARM1 0x0000
#define ADT7462_ALARM2 0x0100
#define ADT7462_ALARM3 0x0200
#define ADT7462_ALARM4 0x0300
#define ADT7462_ALARM_REG_SHIFT 8
#define ADT7462_ALARM_FLAG_MASK 0x0F
#define ADT7462_TEMP_COUNT 4
#define ADT7462_TEMP_REG(x) (ADT7462_REG_TEMP_BASE_ADDR + ((x) * 2))
#define ADT7462_TEMP_MIN_REG(x) (ADT7462_REG_MIN_TEMP_BASE_ADDR + (x))
#define ADT7462_TEMP_MAX_REG(x) (ADT7462_REG_MAX_TEMP_BASE_ADDR + (x))
#define TEMP_FRAC_OFFSET 6
#define ADT7462_FAN_COUNT 8
#define ADT7462_REG_FAN_MIN(x) (ADT7462_REG_FAN_MIN_BASE_ADDR + (x))
#define ADT7462_PWM_COUNT 4
#define ADT7462_REG_PWM(x) (ADT7462_REG_PWM_BASE_ADDR + (x))
#define ADT7462_REG_PWM_MIN(x) (ADT7462_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TMIN(x) \
(ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TRANGE(x) \
(ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR + (x))
#define ADT7462_PIN_CFG_REG_COUNT 4
#define ADT7462_REG_PIN_CFG(x) (ADT7462_REG_PIN_CFG_BASE_ADDR + (x))
#define ADT7462_REG_PWM_CFG(x) (ADT7462_REG_PWM_CFG_BASE_ADDR + (x))
#define ADT7462_ALARM_REG_COUNT 4
/*
* The chip can measure 13 different voltage sources:
*
* 1. +12V1 (pin 7)
* 2. Vccp1/+2.5V/+1.8V/+1.5V (pin 23)
* 3. +12V3 (pin 22)
* 4. +5V (pin 21)
* 5. +1.25V/+0.9V (pin 19)
* 6. +2.5V/+1.8V (pin 15)
* 7. +3.3v (pin 13)
* 8. +12V2 (pin 8)
* 9. Vbatt/FSB_Vtt (pin 26)
* A. +3.3V/+1.2V1 (pin 25)
* B. Vccp2/+2.5V/+1.8V/+1.5V (pin 24)
* C. +1.5V ICH (only if BOTH pin 28/29 are set to +1.5V)
* D. +1.5V 3GPIO (only if BOTH pin 28/29 are set to +1.5V)
*
* Each of these 13 has a factor to convert raw to voltage. Even better,
* the pins can be connected to other sensors (tach/gpio/hot/etc), which
* makes the bookkeeping tricky.
*
* Some, but not all, of these voltages have low/high limits.
*/
#define ADT7462_VOLT_COUNT 13
#define ADT7462_VENDOR 0x41
#define ADT7462_DEVICE 0x62
/* datasheet only mentions a revision 4 */
#define ADT7462_REVISION 0x04
/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL (2 * HZ)
/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL (60 * HZ)
/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID 65535
#define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID)
#define MASK_AND_SHIFT(value, prefix) \
(((value) & prefix##_MASK) >> prefix##_SHIFT)
struct adt7462_data {
struct device *hwmon_dev;
struct attribute_group attrs;
struct mutex lock;
char sensors_valid;
char limits_valid;
unsigned long sensors_last_updated; /* In jiffies */
unsigned long limits_last_updated; /* In jiffies */
u8 temp[ADT7462_TEMP_COUNT];
/* bits 6-7 are quarter pieces of temp */
u8 temp_frac[ADT7462_TEMP_COUNT];
u8 temp_min[ADT7462_TEMP_COUNT];
u8 temp_max[ADT7462_TEMP_COUNT];
u16 fan[ADT7462_FAN_COUNT];
u8 fan_enabled;
u8 fan_min[ADT7462_FAN_COUNT];
u8 cfg2;
u8 pwm[ADT7462_PWM_COUNT];
u8 pin_cfg[ADT7462_PIN_CFG_REG_COUNT];
u8 voltages[ADT7462_VOLT_COUNT];
u8 volt_max[ADT7462_VOLT_COUNT];
u8 volt_min[ADT7462_VOLT_COUNT];
u8 pwm_min[ADT7462_PWM_COUNT];
u8 pwm_tmin[ADT7462_PWM_COUNT];
u8 pwm_trange[ADT7462_PWM_COUNT];
u8 pwm_max; /* only one per chip */
u8 pwm_cfg[ADT7462_PWM_COUNT];
u8 alarms[ADT7462_ALARM_REG_COUNT];
};
static int adt7462_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int adt7462_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int adt7462_remove(struct i2c_client *client);
static const struct i2c_device_id adt7462_id[] = {
{ "adt7462", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adt7462_id);
static struct i2c_driver adt7462_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7462",
},
.probe = adt7462_probe,
.remove = adt7462_remove,
.id_table = adt7462_id,
.detect = adt7462_detect,
.address_list = normal_i2c,
};
/*
* 16-bit registers on the ADT7462 are low-byte first. The data sheet says
* that the low byte must be read before the high byte.
*/
static inline int adt7462_read_word_data(struct i2c_client *client, u8 reg)
{
u16 foo;
foo = i2c_smbus_read_byte_data(client, reg);
foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
return foo;
}
/* For some reason these registers are not contiguous. */
static int ADT7462_REG_FAN(int fan)
{
if (fan < 4)
return ADT7462_REG_FAN_BASE_ADDR + (2 * fan);
return ADT7462_REG_FAN2_BASE_ADDR + (2 * (fan - 4));
}
/* Voltage registers are scattered everywhere */
static int ADT7462_REG_VOLT_MAX(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0x7C;
break;
case 1:
return 0x69;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0x7F;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0x7E;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x4B;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x49;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x68;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0x7D;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x6C;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x6B;
break;
case 10:
return 0x6A;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x50;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x4C;
break;
}
return 0;
}
static int ADT7462_REG_VOLT_MIN(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0x6D;
break;
case 1:
return 0x72;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0x6F;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0x71;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x47;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x45;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x70;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0x6E;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x75;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x74;
break;
case 10:
return 0x73;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x76;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x77;
break;
}
return 0;
}
static int ADT7462_REG_VOLT(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0xA3;
break;
case 1:
return 0x90;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0xA9;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0xA7;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x8F;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x8B;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x96;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0xA5;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x93;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x92;
break;
case 10:
return 0x91;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x94;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x95;
break;
}
return -ENODEV;
}
/* Provide labels for sysfs */
static const char *voltage_label(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return "+12V1";
break;
case 1:
switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
case 0:
return "Vccp1";
case 1:
return "+2.5V";
case 2:
return "+1.8V";
case 3:
return "+1.5V";
}
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return "+12V3";
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return "+5V";
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return "+0.9V";
return "+1.25V";
}
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return "+1.8V";
return "+2.5V";
}
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return "+3.3V";
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return "+12V2";
break;
case 8:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
case 0:
return "Vbatt";
case 1:
return "FSB_Vtt";
}
break;
case 9:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
case 0:
return "+3.3V";
case 1:
return "+1.2V1";
}
break;
case 10:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
case 0:
return "Vccp2";
case 1:
return "+2.5V";
case 2:
return "+1.8V";
case 3:
return "+1.5";
}
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return "+1.5V ICH";
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return "+1.5V 3GPIO";
break;
}
return "N/A";
}
/* Multipliers are actually in uV, not mV. */
static int voltage_multiplier(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 62500;
break;
case 1:
switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
case 0:
if (data->pin_cfg[0] & ADT7462_VID_INPUT)
return 12500;
return 6250;
case 1:
return 13000;
case 2:
return 9400;
case 3:
return 7800;
}
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 62500;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 26000;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return 4690;
return 6500;
}
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN15_INPUT)
return 9400;
return 13000;
}
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 17200;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 62500;
break;
case 8:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
case 0:
return 15600;
case 1:
return 6250;
}
break;
case 9:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
case 0:
return 17200;
case 1:
return 6250;
}
break;
case 10:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
case 0:
return 6250;
case 1:
return 13000;
case 2:
return 9400;
case 3:
return 7800;
}
case 11:
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 7800;
}
return 0;
}
static int temp_enabled(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
case 2:
return 1;
case 1:
if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
return 1;
break;
case 3:
if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
return 1;
break;
}
return 0;
}
static const char *temp_label(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
return "local";
case 1:
if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
return "remote1";
break;
case 2:
return "remote2";
case 3:
if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
return "remote3";
break;
}
return "N/A";
}
/* Map Trange register values to mC */
#define NUM_TRANGE_VALUES 16
static const int trange_values[NUM_TRANGE_VALUES] = {
2000,
2500,
3300,
4000,
5000,
6700,
8000,
10000,
13300,
16000,
20000,
26700,
32000,
40000,
53300,
80000
};
static int find_trange_value(int trange)
{
int i;
for (i = 0; i < NUM_TRANGE_VALUES; i++)
if (trange_values[i] == trange)
return i;
return -EINVAL;
}
static struct adt7462_data *adt7462_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
unsigned long local_jiffies = jiffies;
int i;
mutex_lock(&data->lock);
if (time_before(local_jiffies, data->sensors_last_updated +
SENSOR_REFRESH_INTERVAL)
&& data->sensors_valid)
goto no_sensor_update;
for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
/*
* Reading the fractional register locks the integral
* register until both have been read.
*/
data->temp_frac[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_REG(i));
data->temp[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_REG(i) + 1);
}
for (i = 0; i < ADT7462_FAN_COUNT; i++)
data->fan[i] = adt7462_read_word_data(client,
ADT7462_REG_FAN(i));
data->fan_enabled = i2c_smbus_read_byte_data(client,
ADT7462_REG_FAN_ENABLE);
for (i = 0; i < ADT7462_PWM_COUNT; i++)
data->pwm[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM(i));
for (i = 0; i < ADT7462_PIN_CFG_REG_COUNT; i++)
data->pin_cfg[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PIN_CFG(i));
for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
int reg = ADT7462_REG_VOLT(data, i);
if (!reg)
data->voltages[i] = 0;
else
data->voltages[i] = i2c_smbus_read_byte_data(client,
reg);
}
data->alarms[0] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM1);
data->alarms[1] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM2);
data->alarms[2] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM3);
data->alarms[3] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM4);
data->sensors_last_updated = local_jiffies;
data->sensors_valid = 1;
no_sensor_update:
if (time_before(local_jiffies, data->limits_last_updated +
LIMIT_REFRESH_INTERVAL)
&& data->limits_valid)
goto out;
for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_MIN_REG(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_MAX_REG(i));
}
for (i = 0; i < ADT7462_FAN_COUNT; i++)
data->fan_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_FAN_MIN(i));
for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
int reg = ADT7462_REG_VOLT_MAX(data, i);
data->volt_max[i] =
(reg ? i2c_smbus_read_byte_data(client, reg) : 0);
reg = ADT7462_REG_VOLT_MIN(data, i);
data->volt_min[i] =
(reg ? i2c_smbus_read_byte_data(client, reg) : 0);
}
for (i = 0; i < ADT7462_PWM_COUNT; i++) {
data->pwm_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_MIN(i));
data->pwm_tmin[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_TMIN(i));
data->pwm_trange[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_TRANGE(i));
data->pwm_cfg[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_CFG(i));
}
data->pwm_max = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_MAX);
data->cfg2 = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);
data->limits_last_updated = local_jiffies;
data->limits_valid = 1;
out:
mutex_unlock(&data->lock);
return data;
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp_min[attr->index] - 64));
}
static ssize_t set_temp_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->temp_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_TEMP_MIN_REG(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp_max[attr->index] - 64));
}
static ssize_t set_temp_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->temp_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_TEMP_MAX_REG(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
u8 frac = data->temp_frac[attr->index] >> TEMP_FRAC_OFFSET;
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp[attr->index] - 64) +
250 * frac);
}
static ssize_t show_temp_label(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%s\n", temp_label(data, attr->index));
}
static ssize_t show_volt_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->volt_max[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t set_volt_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
int x = voltage_multiplier(data, attr->index);
long temp;
if (kstrtol(buf, 10, &temp) || !x)
return -EINVAL;
temp *= 1000; /* convert mV to uV */
temp = DIV_ROUND_CLOSEST(temp, x);
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->volt_max[attr->index] = temp;
i2c_smbus_write_byte_data(client,
ADT7462_REG_VOLT_MAX(data, attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->volt_min[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t set_volt_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
int x = voltage_multiplier(data, attr->index);
long temp;
if (kstrtol(buf, 10, &temp) || !x)
return -EINVAL;
temp *= 1000; /* convert mV to uV */
temp = DIV_ROUND_CLOSEST(temp, x);
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->volt_min[attr->index] = temp;
i2c_smbus_write_byte_data(client,
ADT7462_REG_VOLT_MIN(data, attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_voltage(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->voltages[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t show_voltage_label(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%s\n", voltage_label(data, attr->index));
}
static ssize_t show_alarm(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int reg = attr->index >> ADT7462_ALARM_REG_SHIFT;
int mask = attr->index & ADT7462_ALARM_FLAG_MASK;
if (data->alarms[reg] & mask)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static int fan_enabled(struct adt7462_data *data, int fan)
{
return data->fan_enabled & (1 << fan);
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
u16 temp;
/* Only the MSB of the min fan period is stored... */
temp = data->fan_min[attr->index];
temp <<= 8;
if (!fan_enabled(data, attr->index) ||
!FAN_DATA_VALID(temp))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(temp));
}
static ssize_t set_fan_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp) || !temp ||
!fan_enabled(data, attr->index))
return -EINVAL;
temp = FAN_RPM_TO_PERIOD(temp);
temp >>= 8;
temp = clamp_val(temp, 1, 255);
mutex_lock(&data->lock);
data->fan_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_FAN_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!fan_enabled(data, attr->index) ||
!FAN_DATA_VALID(data->fan[attr->index]))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan[attr->index]));
}
static ssize_t show_force_pwm_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", (data->cfg2 & ADT7462_FSPD_MASK ? 1 : 0));
}
static ssize_t set_force_pwm_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
u8 reg;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);
if (temp)
reg |= ADT7462_FSPD_MASK;
else
reg &= ~ADT7462_FSPD_MASK;
data->cfg2 = reg;
i2c_smbus_write_byte_data(client, ADT7462_REG_CFG2, reg);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[attr->index]);
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_max);
}
static ssize_t set_pwm_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_max = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MAX, temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}
static ssize_t set_pwm_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_hyst(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", 1000 *
(data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK));
}
static ssize_t set_pwm_hyst(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000);
temp = clamp_val(temp, 0, 15);
/* package things up */
temp &= ADT7462_PWM_HYST_MASK;
temp |= data->pwm_trange[attr->index] & ADT7462_PWM_RANGE_MASK;
mutex_lock(&data->lock);
data->pwm_trange[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_tmax(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
/* tmax = tmin + trange */
int trange = trange_values[data->pwm_trange[attr->index] >>
ADT7462_PWM_RANGE_SHIFT];
int tmin = (data->pwm_tmin[attr->index] - 64) * 1000;
return sprintf(buf, "%d\n", tmin + trange);
}
static ssize_t set_pwm_tmax(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
int temp;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
int tmin, trange_value;
long trange;
if (kstrtol(buf, 10, &trange))
return -EINVAL;
/* trange = tmax - tmin */
tmin = (data->pwm_tmin[attr->index] - 64) * 1000;
trange_value = find_trange_value(trange - tmin);
if (trange_value < 0)
return trange_value;
temp = trange_value << ADT7462_PWM_RANGE_SHIFT;
temp |= data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK;
mutex_lock(&data->lock);
data->pwm_trange[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_tmin(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", 1000 * (data->pwm_tmin[attr->index] - 64));
}
static ssize_t set_pwm_tmin(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_tmin[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TMIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_auto(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int cfg = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;
switch (cfg) {
case 4: /* off */
return sprintf(buf, "0\n");
case 7: /* manual */
return sprintf(buf, "1\n");
default: /* automatic */
return sprintf(buf, "2\n");
}
}
static void set_pwm_channel(struct i2c_client *client,
struct adt7462_data *data,
int which,
int value)
{
int temp = data->pwm_cfg[which] & ~ADT7462_PWM_CHANNEL_MASK;
temp |= value << ADT7462_PWM_CHANNEL_SHIFT;
mutex_lock(&data->lock);
data->pwm_cfg[which] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_CFG(which), temp);
mutex_unlock(&data->lock);
}
static ssize_t set_pwm_auto(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
switch (temp) {
case 0: /* off */
set_pwm_channel(client, data, attr->index, 4);
return count;
case 1: /* manual */
set_pwm_channel(client, data, attr->index, 7);
return count;
default:
return -EINVAL;
}
}
static ssize_t show_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int channel = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;
switch (channel) {
case 0: /* temp[1234] only */
case 1:
case 2:
case 3:
return sprintf(buf, "%d\n", (1 << channel));
case 5: /* temp1 & temp4 */
return sprintf(buf, "9\n");
case 6:
return sprintf(buf, "15\n");
default:
return sprintf(buf, "0\n");
}
}
static int cvt_auto_temp(int input)
{
if (input == 0xF)
return 6;
if (input == 0x9)
return 5;
if (input < 1 || !is_power_of_2(input))
return -EINVAL;
return ilog2(input);
}
static ssize_t set_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7462_data *data = i2c_get_clientdata(client);
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = cvt_auto_temp(temp);
if (temp < 0)
return temp;
set_pwm_channel(client, data, attr->index, temp);
return count;
}
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 2);
static SENSOR_DEVICE_ATTR(temp4_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 3);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 2);
static SENSOR_DEVICE_ATTR(temp4_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 3);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, show_temp_label, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, show_temp_label, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, show_temp_label, NULL, 2);
static SENSOR_DEVICE_ATTR(temp4_label, S_IRUGO, show_temp_label, NULL, 3);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM1 | ADT7462_LT_ALARM);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM1 | ADT7462_R1T_ALARM);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM1 | ADT7462_R2T_ALARM);
static SENSOR_DEVICE_ATTR(temp4_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM1 | ADT7462_R3T_ALARM);
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 0);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 1);
static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 2);
static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 3);
static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 4);
static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 5);
static SENSOR_DEVICE_ATTR(in7_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 6);
static SENSOR_DEVICE_ATTR(in8_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 7);
static SENSOR_DEVICE_ATTR(in9_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 8);
static SENSOR_DEVICE_ATTR(in10_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 9);
static SENSOR_DEVICE_ATTR(in11_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 10);
static SENSOR_DEVICE_ATTR(in12_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 11);
static SENSOR_DEVICE_ATTR(in13_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 12);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 0);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 1);
static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 2);
static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 3);
static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 4);
static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 5);
static SENSOR_DEVICE_ATTR(in7_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 6);
static SENSOR_DEVICE_ATTR(in8_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 7);
static SENSOR_DEVICE_ATTR(in9_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 8);
static SENSOR_DEVICE_ATTR(in10_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 9);
static SENSOR_DEVICE_ATTR(in11_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 10);
static SENSOR_DEVICE_ATTR(in12_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 11);
static SENSOR_DEVICE_ATTR(in13_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 12);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 1);
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 2);
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 3);
static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 4);
static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 5);
static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 6);
static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_voltage, NULL, 7);
static SENSOR_DEVICE_ATTR(in9_input, S_IRUGO, show_voltage, NULL, 8);
static SENSOR_DEVICE_ATTR(in10_input, S_IRUGO, show_voltage, NULL, 9);
static SENSOR_DEVICE_ATTR(in11_input, S_IRUGO, show_voltage, NULL, 10);
static SENSOR_DEVICE_ATTR(in12_input, S_IRUGO, show_voltage, NULL, 11);
static SENSOR_DEVICE_ATTR(in13_input, S_IRUGO, show_voltage, NULL, 12);
static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, show_voltage_label, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_label, S_IRUGO, show_voltage_label, NULL, 1);
static SENSOR_DEVICE_ATTR(in3_label, S_IRUGO, show_voltage_label, NULL, 2);
static SENSOR_DEVICE_ATTR(in4_label, S_IRUGO, show_voltage_label, NULL, 3);
static SENSOR_DEVICE_ATTR(in5_label, S_IRUGO, show_voltage_label, NULL, 4);
static SENSOR_DEVICE_ATTR(in6_label, S_IRUGO, show_voltage_label, NULL, 5);
static SENSOR_DEVICE_ATTR(in7_label, S_IRUGO, show_voltage_label, NULL, 6);
static SENSOR_DEVICE_ATTR(in8_label, S_IRUGO, show_voltage_label, NULL, 7);
static SENSOR_DEVICE_ATTR(in9_label, S_IRUGO, show_voltage_label, NULL, 8);
static SENSOR_DEVICE_ATTR(in10_label, S_IRUGO, show_voltage_label, NULL, 9);
static SENSOR_DEVICE_ATTR(in11_label, S_IRUGO, show_voltage_label, NULL, 10);
static SENSOR_DEVICE_ATTR(in12_label, S_IRUGO, show_voltage_label, NULL, 11);
static SENSOR_DEVICE_ATTR(in13_label, S_IRUGO, show_voltage_label, NULL, 12);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V0_ALARM);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V7_ALARM);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V2_ALARM);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V6_ALARM);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V5_ALARM);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V4_ALARM);
static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V3_ALARM);
static SENSOR_DEVICE_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM2 | ADT7462_V1_ALARM);
static SENSOR_DEVICE_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM3 | ADT7462_V10_ALARM);
static SENSOR_DEVICE_ATTR(in10_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM3 | ADT7462_V9_ALARM);
static SENSOR_DEVICE_ATTR(in11_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM3 | ADT7462_V8_ALARM);
static SENSOR_DEVICE_ATTR(in12_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM3 | ADT7462_V11_ALARM);
static SENSOR_DEVICE_ATTR(in13_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM3 | ADT7462_V12_ALARM);
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 3);
static SENSOR_DEVICE_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 4);
static SENSOR_DEVICE_ATTR(fan6_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 5);
static SENSOR_DEVICE_ATTR(fan7_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 6);
static SENSOR_DEVICE_ATTR(fan8_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 7);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3);
static SENSOR_DEVICE_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4);
static SENSOR_DEVICE_ATTR(fan6_input, S_IRUGO, show_fan, NULL, 5);
static SENSOR_DEVICE_ATTR(fan7_input, S_IRUGO, show_fan, NULL, 6);
static SENSOR_DEVICE_ATTR(fan8_input, S_IRUGO, show_fan, NULL, 7);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F0_ALARM);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F1_ALARM);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F2_ALARM);
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F3_ALARM);
static SENSOR_DEVICE_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F4_ALARM);
static SENSOR_DEVICE_ATTR(fan6_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F5_ALARM);
static SENSOR_DEVICE_ATTR(fan7_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F6_ALARM);
static SENSOR_DEVICE_ATTR(fan8_alarm, S_IRUGO, show_alarm, NULL,
ADT7462_ALARM4 | ADT7462_F7_ALARM);
static SENSOR_DEVICE_ATTR(force_pwm_max, S_IWUSR | S_IRUGO,
show_force_pwm_max, set_force_pwm_max, 0);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 2);
static SENSOR_DEVICE_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 2);
static SENSOR_DEVICE_ATTR(pwm4_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 2);
static SENSOR_DEVICE_ATTR(pwm4_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 3);
static SENSOR_DEVICE_ATTR(temp1_auto_point1_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point1_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point1_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 2);
static SENSOR_DEVICE_ATTR(temp4_auto_point1_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 3);
static SENSOR_DEVICE_ATTR(temp1_auto_point2_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point2_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point2_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 2);
static SENSOR_DEVICE_ATTR(temp4_auto_point2_hyst, S_IWUSR | S_IRUGO,
show_pwm_hyst, set_pwm_hyst, 3);
static SENSOR_DEVICE_ATTR(temp1_auto_point1_temp, S_IWUSR | S_IRUGO,
show_pwm_tmin, set_pwm_tmin, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point1_temp, S_IWUSR | S_IRUGO,
show_pwm_tmin, set_pwm_tmin, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point1_temp, S_IWUSR | S_IRUGO,
show_pwm_tmin, set_pwm_tmin, 2);
static SENSOR_DEVICE_ATTR(temp4_auto_point1_temp, S_IWUSR | S_IRUGO,
show_pwm_tmin, set_pwm_tmin, 3);
static SENSOR_DEVICE_ATTR(temp1_auto_point2_temp, S_IWUSR | S_IRUGO,
show_pwm_tmax, set_pwm_tmax, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point2_temp, S_IWUSR | S_IRUGO,
show_pwm_tmax, set_pwm_tmax, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point2_temp, S_IWUSR | S_IRUGO,
show_pwm_tmax, set_pwm_tmax, 2);
static SENSOR_DEVICE_ATTR(temp4_auto_point2_temp, S_IWUSR | S_IRUGO,
show_pwm_tmax, set_pwm_tmax, 3);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_auto,
set_pwm_auto, 0);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_auto,
set_pwm_auto, 1);
static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_auto,
set_pwm_auto, 2);
static SENSOR_DEVICE_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_auto,
set_pwm_auto, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 2);
static SENSOR_DEVICE_ATTR(pwm4_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 3);
static struct attribute *adt7462_attr[] = {
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_temp4_label.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_alarm.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in11_max.dev_attr.attr,
&sensor_dev_attr_in12_max.dev_attr.attr,
&sensor_dev_attr_in13_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in11_min.dev_attr.attr,
&sensor_dev_attr_in12_min.dev_attr.attr,
&sensor_dev_attr_in13_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_in12_input.dev_attr.attr,
&sensor_dev_attr_in13_input.dev_attr.attr,
&sensor_dev_attr_in1_label.dev_attr.attr,
&sensor_dev_attr_in2_label.dev_attr.attr,
&sensor_dev_attr_in3_label.dev_attr.attr,
&sensor_dev_attr_in4_label.dev_attr.attr,
&sensor_dev_attr_in5_label.dev_attr.attr,
&sensor_dev_attr_in6_label.dev_attr.attr,
&sensor_dev_attr_in7_label.dev_attr.attr,
&sensor_dev_attr_in8_label.dev_attr.attr,
&sensor_dev_attr_in9_label.dev_attr.attr,
&sensor_dev_attr_in10_label.dev_attr.attr,
&sensor_dev_attr_in11_label.dev_attr.attr,
&sensor_dev_attr_in12_label.dev_attr.attr,
&sensor_dev_attr_in13_label.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
&sensor_dev_attr_in8_alarm.dev_attr.attr,
&sensor_dev_attr_in9_alarm.dev_attr.attr,
&sensor_dev_attr_in10_alarm.dev_attr.attr,
&sensor_dev_attr_in11_alarm.dev_attr.attr,
&sensor_dev_attr_in12_alarm.dev_attr.attr,
&sensor_dev_attr_in13_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan5_min.dev_attr.attr,
&sensor_dev_attr_fan6_min.dev_attr.attr,
&sensor_dev_attr_fan7_min.dev_attr.attr,
&sensor_dev_attr_fan8_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan8_input.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_fan5_alarm.dev_attr.attr,
&sensor_dev_attr_fan6_alarm.dev_attr.attr,
&sensor_dev_attr_fan7_alarm.dev_attr.attr,
&sensor_dev_attr_fan8_alarm.dev_attr.attr,
&sensor_dev_attr_force_pwm_max.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm4.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm4_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_channels_temp.dev_attr.attr,
NULL
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adt7462_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int vendor, device, revision;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
vendor = i2c_smbus_read_byte_data(client, ADT7462_REG_VENDOR);
if (vendor != ADT7462_VENDOR)
return -ENODEV;
device = i2c_smbus_read_byte_data(client, ADT7462_REG_DEVICE);
if (device != ADT7462_DEVICE)
return -ENODEV;
revision = i2c_smbus_read_byte_data(client, ADT7462_REG_REVISION);
if (revision != ADT7462_REVISION)
return -ENODEV;
strlcpy(info->type, "adt7462", I2C_NAME_SIZE);
return 0;
}
static int adt7462_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adt7462_data *data;
int err;
data = devm_kzalloc(&client->dev, sizeof(struct adt7462_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->lock);
dev_info(&client->dev, "%s chip found\n", client->name);
/* Register sysfs hooks */
data->attrs.attrs = adt7462_attr;
err = sysfs_create_group(&client->dev.kobj, &data->attrs);
if (err)
return err;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &data->attrs);
return err;
}
static int adt7462_remove(struct i2c_client *client)
{
struct adt7462_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &data->attrs);
return 0;
}
module_i2c_driver(adt7462_driver);
MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>");
MODULE_DESCRIPTION("ADT7462 driver");
MODULE_LICENSE("GPL");