linux_dsm_epyc7002/drivers/s390/net/ctcm_fsms.h

358 lines
8.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright IBM Corp. 2001, 2007
* Authors: Fritz Elfert (felfert@millenux.com)
* Peter Tiedemann (ptiedem@de.ibm.com)
* MPC additions :
* Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
*/
#ifndef _CTCM_FSMS_H_
#define _CTCM_FSMS_H_
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/bitops.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ctype.h>
#include <net/dst.h>
#include <linux/io.h>
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/uaccess.h>
#include <asm/idals.h>
#include "fsm.h"
#include "ctcm_main.h"
/*
* Definitions for the channel statemachine(s) for ctc and ctcmpc
*
* To allow better kerntyping, prefix-less definitions for channel states
* and channel events have been replaced :
* ch_event... -> ctc_ch_event...
* CH_EVENT... -> CTC_EVENT...
* ch_state... -> ctc_ch_state...
* CH_STATE... -> CTC_STATE...
*/
/*
* Events of the channel statemachine(s) for ctc and ctcmpc
*/
enum ctc_ch_events {
/*
* Events, representing return code of
* I/O operations (ccw_device_start, ccw_device_halt et al.)
*/
CTC_EVENT_IO_SUCCESS,
CTC_EVENT_IO_EBUSY,
CTC_EVENT_IO_ENODEV,
CTC_EVENT_IO_UNKNOWN,
CTC_EVENT_ATTNBUSY,
CTC_EVENT_ATTN,
CTC_EVENT_BUSY,
/*
* Events, representing unit-check
*/
CTC_EVENT_UC_RCRESET,
CTC_EVENT_UC_RSRESET,
CTC_EVENT_UC_TXTIMEOUT,
CTC_EVENT_UC_TXPARITY,
CTC_EVENT_UC_HWFAIL,
CTC_EVENT_UC_RXPARITY,
CTC_EVENT_UC_ZERO,
CTC_EVENT_UC_UNKNOWN,
/*
* Events, representing subchannel-check
*/
CTC_EVENT_SC_UNKNOWN,
/*
* Events, representing machine checks
*/
CTC_EVENT_MC_FAIL,
CTC_EVENT_MC_GOOD,
/*
* Event, representing normal IRQ
*/
CTC_EVENT_IRQ,
CTC_EVENT_FINSTAT,
/*
* Event, representing timer expiry.
*/
CTC_EVENT_TIMER,
/*
* Events, representing commands from upper levels.
*/
CTC_EVENT_START,
CTC_EVENT_STOP,
CTC_NR_EVENTS,
/*
* additional MPC events
*/
CTC_EVENT_SEND_XID = CTC_NR_EVENTS,
CTC_EVENT_RSWEEP_TIMER,
/*
* MUST be always the last element!!
*/
CTC_MPC_NR_EVENTS,
};
/*
* States of the channel statemachine(s) for ctc and ctcmpc.
*/
enum ctc_ch_states {
/*
* Channel not assigned to any device,
* initial state, direction invalid
*/
CTC_STATE_IDLE,
/*
* Channel assigned but not operating
*/
CTC_STATE_STOPPED,
CTC_STATE_STARTWAIT,
CTC_STATE_STARTRETRY,
CTC_STATE_SETUPWAIT,
CTC_STATE_RXINIT,
CTC_STATE_TXINIT,
CTC_STATE_RX,
CTC_STATE_TX,
CTC_STATE_RXIDLE,
CTC_STATE_TXIDLE,
CTC_STATE_RXERR,
CTC_STATE_TXERR,
CTC_STATE_TERM,
CTC_STATE_DTERM,
CTC_STATE_NOTOP,
CTC_NR_STATES, /* MUST be the last element of non-expanded states */
/*
* additional MPC states
*/
CH_XID0_PENDING = CTC_NR_STATES,
CH_XID0_INPROGRESS,
CH_XID7_PENDING,
CH_XID7_PENDING1,
CH_XID7_PENDING2,
CH_XID7_PENDING3,
CH_XID7_PENDING4,
CTC_MPC_NR_STATES, /* MUST be the last element of expanded mpc states */
};
extern const char *ctc_ch_event_names[];
extern const char *ctc_ch_state_names[];
void ctcm_ccw_check_rc(struct channel *ch, int rc, char *msg);
void ctcm_purge_skb_queue(struct sk_buff_head *q);
void fsm_action_nop(fsm_instance *fi, int event, void *arg);
/*
* ----- non-static actions for ctcm channel statemachine -----
*
*/
void ctcm_chx_txidle(fsm_instance *fi, int event, void *arg);
/*
* ----- FSM (state/event/action) of the ctcm channel statemachine -----
*/
extern const fsm_node ch_fsm[];
extern int ch_fsm_len;
/*
* ----- non-static actions for ctcmpc channel statemachine ----
*
*/
/* shared :
void ctcm_chx_txidle(fsm_instance * fi, int event, void *arg);
*/
void ctcmpc_chx_rxidle(fsm_instance *fi, int event, void *arg);
/*
* ----- FSM (state/event/action) of the ctcmpc channel statemachine -----
*/
extern const fsm_node ctcmpc_ch_fsm[];
extern int mpc_ch_fsm_len;
/*
* Definitions for the device interface statemachine for ctc and mpc
*/
/*
* States of the device interface statemachine.
*/
enum dev_states {
DEV_STATE_STOPPED,
DEV_STATE_STARTWAIT_RXTX,
DEV_STATE_STARTWAIT_RX,
DEV_STATE_STARTWAIT_TX,
DEV_STATE_STOPWAIT_RXTX,
DEV_STATE_STOPWAIT_RX,
DEV_STATE_STOPWAIT_TX,
DEV_STATE_RUNNING,
/*
* MUST be always the last element!!
*/
CTCM_NR_DEV_STATES
};
extern const char *dev_state_names[];
/*
* Events of the device interface statemachine.
* ctcm and ctcmpc
*/
enum dev_events {
DEV_EVENT_START,
DEV_EVENT_STOP,
DEV_EVENT_RXUP,
DEV_EVENT_TXUP,
DEV_EVENT_RXDOWN,
DEV_EVENT_TXDOWN,
DEV_EVENT_RESTART,
/*
* MUST be always the last element!!
*/
CTCM_NR_DEV_EVENTS
};
extern const char *dev_event_names[];
/*
* Actions for the device interface statemachine.
* ctc and ctcmpc
*/
/*
static void dev_action_start(fsm_instance * fi, int event, void *arg);
static void dev_action_stop(fsm_instance * fi, int event, void *arg);
static void dev_action_restart(fsm_instance *fi, int event, void *arg);
static void dev_action_chup(fsm_instance * fi, int event, void *arg);
static void dev_action_chdown(fsm_instance * fi, int event, void *arg);
*/
/*
* The (state/event/action) fsm table of the device interface statemachine.
* ctcm and ctcmpc
*/
extern const fsm_node dev_fsm[];
extern int dev_fsm_len;
/*
* Definitions for the MPC Group statemachine
*/
/*
* MPC Group Station FSM States
State Name When In This State
====================== =======================================
MPCG_STATE_RESET Initial State When Driver Loaded
We receive and send NOTHING
MPCG_STATE_INOP INOP Received.
Group level non-recoverable error
MPCG_STATE_READY XID exchanges for at least 1 write and
1 read channel have completed.
Group is ready for data transfer.
States from ctc_mpc_alloc_channel
==============================================================
MPCG_STATE_XID2INITW Awaiting XID2(0) Initiation
ATTN from other side will start
XID negotiations.
Y-side protocol only.
MPCG_STATE_XID2INITX XID2(0) negotiations are in progress.
At least 1, but not all, XID2(0)'s
have been received from partner.
MPCG_STATE_XID7INITW XID2(0) complete
No XID2(7)'s have yet been received.
XID2(7) negotiations pending.
MPCG_STATE_XID7INITX XID2(7) negotiations in progress.
At least 1, but not all, XID2(7)'s
have been received from partner.
MPCG_STATE_XID7INITF XID2(7) negotiations complete.
Transitioning to READY.
MPCG_STATE_READY Ready for Data Transfer.
States from ctc_mpc_establish_connectivity call
==============================================================
MPCG_STATE_XID0IOWAIT Initiating XID2(0) negotiations.
X-side protocol only.
ATTN-BUSY from other side will convert
this to Y-side protocol and the
ctc_mpc_alloc_channel flow will begin.
MPCG_STATE_XID0IOWAIX XID2(0) negotiations are in progress.
At least 1, but not all, XID2(0)'s
have been received from partner.
MPCG_STATE_XID7INITI XID2(0) complete
No XID2(7)'s have yet been received.
XID2(7) negotiations pending.
MPCG_STATE_XID7INITZ XID2(7) negotiations in progress.
At least 1, but not all, XID2(7)'s
have been received from partner.
MPCG_STATE_XID7INITF XID2(7) negotiations complete.
Transitioning to READY.
MPCG_STATE_READY Ready for Data Transfer.
*/
enum mpcg_events {
MPCG_EVENT_INOP,
MPCG_EVENT_DISCONC,
MPCG_EVENT_XID0DO,
MPCG_EVENT_XID2,
MPCG_EVENT_XID2DONE,
MPCG_EVENT_XID7DONE,
MPCG_EVENT_TIMER,
MPCG_EVENT_DOIO,
MPCG_NR_EVENTS,
};
enum mpcg_states {
MPCG_STATE_RESET,
MPCG_STATE_INOP,
MPCG_STATE_XID2INITW,
MPCG_STATE_XID2INITX,
MPCG_STATE_XID7INITW,
MPCG_STATE_XID7INITX,
MPCG_STATE_XID0IOWAIT,
MPCG_STATE_XID0IOWAIX,
MPCG_STATE_XID7INITI,
MPCG_STATE_XID7INITZ,
MPCG_STATE_XID7INITF,
MPCG_STATE_FLOWC,
MPCG_STATE_READY,
MPCG_NR_STATES,
};
#endif
/* --- This is the END my friend --- */