linux_dsm_epyc7002/drivers/gpu/drm/vc4/vc4_hvs.c

356 lines
9.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 HVS module.
*
* The Hardware Video Scaler (HVS) is the piece of hardware that does
* translation, scaling, colorspace conversion, and compositing of
* pixels stored in framebuffers into a FIFO of pixels going out to
* the Pixel Valve (CRTC). It operates at the system clock rate (the
* system audio clock gate, specifically), which is much higher than
* the pixel clock rate.
*
* There is a single global HVS, with multiple output FIFOs that can
* be consumed by the PVs. This file just manages the resources for
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
* each CRTC.
*/
#include <linux/component.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_helper.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct debugfs_reg32 hvs_regs[] = {
VC4_REG32(SCALER_DISPCTRL),
VC4_REG32(SCALER_DISPSTAT),
VC4_REG32(SCALER_DISPID),
VC4_REG32(SCALER_DISPECTRL),
VC4_REG32(SCALER_DISPPROF),
VC4_REG32(SCALER_DISPDITHER),
VC4_REG32(SCALER_DISPEOLN),
VC4_REG32(SCALER_DISPLIST0),
VC4_REG32(SCALER_DISPLIST1),
VC4_REG32(SCALER_DISPLIST2),
VC4_REG32(SCALER_DISPLSTAT),
VC4_REG32(SCALER_DISPLACT0),
VC4_REG32(SCALER_DISPLACT1),
VC4_REG32(SCALER_DISPLACT2),
VC4_REG32(SCALER_DISPCTRL0),
VC4_REG32(SCALER_DISPBKGND0),
VC4_REG32(SCALER_DISPSTAT0),
VC4_REG32(SCALER_DISPBASE0),
VC4_REG32(SCALER_DISPCTRL1),
VC4_REG32(SCALER_DISPBKGND1),
VC4_REG32(SCALER_DISPSTAT1),
VC4_REG32(SCALER_DISPBASE1),
VC4_REG32(SCALER_DISPCTRL2),
VC4_REG32(SCALER_DISPBKGND2),
VC4_REG32(SCALER_DISPSTAT2),
VC4_REG32(SCALER_DISPBASE2),
VC4_REG32(SCALER_DISPALPHA2),
VC4_REG32(SCALER_OLEDOFFS),
VC4_REG32(SCALER_OLEDCOEF0),
VC4_REG32(SCALER_OLEDCOEF1),
VC4_REG32(SCALER_OLEDCOEF2),
};
void vc4_hvs_dump_state(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
int i;
drm_print_regset32(&p, &vc4->hvs->regset);
DRM_INFO("HVS ctx:\n");
for (i = 0; i < 64; i += 4) {
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
}
}
static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_printer p = drm_seq_file_printer(m);
drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
return 0;
}
/* The filter kernel is composed of dwords each containing 3 9-bit
* signed integers packed next to each other.
*/
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
((((c0) & 0x1ff) << 0) | \
(((c1) & 0x1ff) << 9) | \
(((c2) & 0x1ff) << 18))
/* The whole filter kernel is arranged as the coefficients 0-16 going
* up, then a pad, then 17-31 going down and reversed within the
* dwords. This means that a linear phase kernel (where it's
* symmetrical at the boundary between 15 and 16) has the last 5
* dwords matching the first 5, but reversed.
*/
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
c9, c10, c11, c12, c13, c14, c15) \
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
VC4_PPF_FILTER_WORD(c3, c4, c5), \
VC4_PPF_FILTER_WORD(c6, c7, c8), \
VC4_PPF_FILTER_WORD(c9, c10, c11), \
VC4_PPF_FILTER_WORD(c12, c13, c14), \
VC4_PPF_FILTER_WORD(c15, c15, 0)}
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*/
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
50, 82, 119, 155, 187, 213, 227);
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
struct drm_mm_node *space,
const u32 *kernel)
{
int ret, i;
u32 __iomem *dst_kernel;
drm: Improve drm_mm search (and fix topdown allocation) with rbtrees The drm_mm range manager claimed to support top-down insertion, but it was neither searching for the top-most hole that could fit the allocation request nor fitting the request to the hole correctly. In order to search the range efficiently, we create a secondary index for the holes using either their size or their address. This index allows us to find the smallest hole or the hole at the bottom or top of the range efficiently, whilst keeping the hole stack to rapidly service evictions. v2: Search for holes both high and low. Rename flags to mode. v3: Discover rb_entry_safe() and use it! v4: Kerneldoc for enum drm_mm_insert_mode. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: "Christian König" <christian.koenig@amd.com> Cc: David Airlie <airlied@linux.ie> Cc: Russell King <rmk+kernel@armlinux.org.uk> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Christian Gmeiner <christian.gmeiner@gmail.com> Cc: Rob Clark <robdclark@gmail.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Alexandre Courbot <gnurou@gmail.com> Cc: Eric Anholt <eric@anholt.net> Cc: Sinclair Yeh <syeh@vmware.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Reviewed-by: Sinclair Yeh <syeh@vmware.com> # vmwgfx Reviewed-by: Lucas Stach <l.stach@pengutronix.de> #etnaviv Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20170202210438.28702-1-chris@chris-wilson.co.uk
2017-02-03 04:04:38 +07:00
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
if (ret) {
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
ret);
return ret;
}
dst_kernel = hvs->dlist + space->start;
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
writel(kernel[i], &dst_kernel[i]);
else {
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
&dst_kernel[i]);
}
}
return 0;
}
void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
}
void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
HVS_WRITE(SCALER_DISPSTAT,
SCALER_DISPSTAT_EUFLOW(channel));
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
}
static void vc4_hvs_report_underrun(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
atomic_inc(&vc4->underrun);
DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
}
static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
{
struct drm_device *dev = data;
struct vc4_dev *vc4 = to_vc4_dev(dev);
irqreturn_t irqret = IRQ_NONE;
int channel;
u32 control;
u32 status;
status = HVS_READ(SCALER_DISPSTAT);
control = HVS_READ(SCALER_DISPCTRL);
for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
/* Interrupt masking is not always honored, so check it here. */
if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
vc4_hvs_mask_underrun(dev, channel);
vc4_hvs_report_underrun(dev);
irqret = IRQ_HANDLED;
}
}
/* Clear every per-channel interrupt flag. */
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
SCALER_DISPSTAT_IRQMASK(1) |
SCALER_DISPSTAT_IRQMASK(2));
return irqret;
}
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hvs *hvs = NULL;
int ret;
u32 dispctrl;
hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
if (!hvs)
return -ENOMEM;
hvs->pdev = pdev;
hvs->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(hvs->regs))
return PTR_ERR(hvs->regs);
hvs->regset.base = hvs->regs;
hvs->regset.regs = hvs_regs;
hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
hvs->dlist = hvs->regs + SCALER_DLIST_START;
spin_lock_init(&hvs->mm_lock);
/* Set up the HVS display list memory manager. We never
* overwrite the setup from the bootloader (just 128b out of
* our 16K), since we don't want to scramble the screen when
* transitioning from the firmware's boot setup to runtime.
*/
drm_mm_init(&hvs->dlist_mm,
HVS_BOOTLOADER_DLIST_END,
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
/* Set up the HVS LBM memory manager. We could have some more
* complicated data structure that allowed reuse of LBM areas
* between planes when they don't overlap on the screen, but
* for now we just allocate globally.
*/
drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
/* Upload filter kernels. We only have the one for now, so we
* keep it around for the lifetime of the driver.
*/
ret = vc4_hvs_upload_linear_kernel(hvs,
&hvs->mitchell_netravali_filter,
mitchell_netravali_1_3_1_3_kernel);
if (ret)
return ret;
vc4->hvs = hvs;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= SCALER_DISPCTRL_ENABLE;
dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
SCALER_DISPCTRL_DISPEIRQ(1) |
SCALER_DISPCTRL_DISPEIRQ(2);
/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
* be unused.
*/
dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
SCALER_DISPCTRL_SLVWREIRQ |
SCALER_DISPCTRL_SLVRDEIRQ |
SCALER_DISPCTRL_DSPEIEOF(0) |
SCALER_DISPCTRL_DSPEIEOF(1) |
SCALER_DISPCTRL_DSPEIEOF(2) |
SCALER_DISPCTRL_DSPEIEOLN(0) |
SCALER_DISPCTRL_DSPEIEOLN(1) |
SCALER_DISPCTRL_DSPEIEOLN(2) |
SCALER_DISPCTRL_DSPEISLUR(0) |
SCALER_DISPCTRL_DSPEISLUR(1) |
SCALER_DISPCTRL_DSPEISLUR(2) |
SCALER_DISPCTRL_SCLEIRQ);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
if (ret)
return ret;
vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
NULL);
return 0;
}
static void vc4_hvs_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
if (vc4->hvs->mitchell_netravali_filter.allocated)
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
drm_mm_takedown(&vc4->hvs->dlist_mm);
drm_mm_takedown(&vc4->hvs->lbm_mm);
vc4->hvs = NULL;
}
static const struct component_ops vc4_hvs_ops = {
.bind = vc4_hvs_bind,
.unbind = vc4_hvs_unbind,
};
static int vc4_hvs_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hvs_ops);
}
static int vc4_hvs_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hvs_ops);
return 0;
}
static const struct of_device_id vc4_hvs_dt_match[] = {
{ .compatible = "brcm,bcm2835-hvs" },
{}
};
struct platform_driver vc4_hvs_driver = {
.probe = vc4_hvs_dev_probe,
.remove = vc4_hvs_dev_remove,
.driver = {
.name = "vc4_hvs",
.of_match_table = vc4_hvs_dt_match,
},
};