linux_dsm_epyc7002/arch/powerpc/platforms/cell/io-workarounds.c

344 lines
9.0 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006 Benjamin Herrenschmidt <benh@kernel.crashing.org>
* IBM, Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#define SPIDER_PCI_REG_BASE 0xd000
#define SPIDER_PCI_VCI_CNTL_STAT 0x0110
#define SPIDER_PCI_DUMMY_READ 0x0810
#define SPIDER_PCI_DUMMY_READ_BASE 0x0814
/* Undefine that to re-enable bogus prefetch
*
* Without that workaround, the chip will do bogus prefetch past
* page boundary from system memory. This setting will disable that,
* though the documentation is unclear as to the consequences of doing
* so, either purely performances, or possible misbehaviour... It's not
* clear wether the chip can handle unaligned accesses at all without
* prefetching enabled.
*
* For now, things appear to be behaving properly with that prefetching
* disabled and IDE, possibly because IDE isn't doing any unaligned
* access.
*/
#define SPIDER_DISABLE_PREFETCH
#define MAX_SPIDERS 3
static struct spider_pci_bus {
void __iomem *regs;
unsigned long mmio_start;
unsigned long mmio_end;
unsigned long pio_vstart;
unsigned long pio_vend;
} spider_pci_busses[MAX_SPIDERS];
static int spider_pci_count;
static struct spider_pci_bus *spider_pci_find(unsigned long vaddr,
unsigned long paddr)
{
int i;
for (i = 0; i < spider_pci_count; i++) {
struct spider_pci_bus *bus = &spider_pci_busses[i];
if (paddr && paddr >= bus->mmio_start && paddr < bus->mmio_end)
return bus;
if (vaddr && vaddr >= bus->pio_vstart && vaddr < bus->pio_vend)
return bus;
}
return NULL;
}
static void spider_io_flush(const volatile void __iomem *addr)
{
struct spider_pci_bus *bus;
int token;
/* Get platform token (set by ioremap) from address */
token = PCI_GET_ADDR_TOKEN(addr);
/* Fast path if we have a non-0 token, it indicates which bus we
* are on.
*
* If the token is 0, that means either that the ioremap was done
* before we initialized this layer, or it's a PIO operation. We
* fallback to a low path in this case. Hopefully, internal devices
* which are ioremap'ed early should use in_XX/out_XX functions
* instead of the PCI ones and thus not suffer from the slowdown.
*
* Also note that currently, the workaround will not work for areas
* that are not mapped with PTEs (bolted in the hash table). This
* is the case for ioremaps done very early at boot (before
* mem_init_done) and includes the mapping of the ISA IO space.
*
* Fortunately, none of the affected devices is expected to do DMA
* and thus there should be no problem in practice.
*
* In order to improve performances, we only do the PTE search for
* addresses falling in the PHB IO space area. That means it will
* not work for hotplug'ed PHBs but those don't exist with Spider.
*/
if (token && token <= spider_pci_count)
bus = &spider_pci_busses[token - 1];
else {
unsigned long vaddr, paddr;
pte_t *ptep;
/* Fixup physical address */
vaddr = (unsigned long)PCI_FIX_ADDR(addr);
/* Check if it's in allowed range for PIO */
[POWERPC] Rewrite IO allocation & mapping on powerpc64 This rewrites pretty much from scratch the handling of MMIO and PIO space allocations on powerpc64. The main goals are: - Get rid of imalloc and use more common code where possible - Simplify the current mess so that PIO space is allocated and mapped in a single place for PCI bridges - Handle allocation constraints of PIO for all bridges including hot plugged ones within the 2GB space reserved for IO ports, so that devices on hotplugged busses will now work with drivers that assume IO ports fit in an int. - Cleanup and separate tracking of the ISA space in the reserved low 64K of IO space. No ISA -> Nothing mapped there. I booted a cell blade with IDE on PIO and MMIO and a dual G5 so far, that's it :-) With this patch, all allocations are done using the code in mm/vmalloc.c, though we use the low level __get_vm_area with explicit start/stop constraints in order to manage separate areas for vmalloc/vmap, ioremap, and PCI IOs. This greatly simplifies a lot of things, as you can see in the diffstat of that patch :-) A new pair of functions pcibios_map/unmap_io_space() now replace all of the previous code that used to manipulate PCI IOs space. The allocation is done at mapping time, which is now called from scan_phb's, just before the devices are probed (instead of after, which is by itself a bug fix). The only other caller is the PCI hotplug code for hot adding PCI-PCI bridges (slots). imalloc is gone, as is the "sub-allocation" thing, but I do beleive that hotplug should still work in the sense that the space allocation is always done by the PHB, but if you unmap a child bus of this PHB (which seems to be possible), then the code should properly tear down all the HPTE mappings for that area of the PHB allocated IO space. I now always reserve the first 64K of IO space for the bridge with the ISA bus on it. I have moved the code for tracking ISA in a separate file which should also make it smarter if we ever are capable of hot unplugging or re-plugging an ISA bridge. This should have a side effect on platforms like powermac where VGA IOs will no longer work. This is done on purpose though as they would have worked semi-randomly before. The idea at this point is to isolate drivers that might need to access those and fix them by providing a proper function to obtain an offset to the legacy IOs of a given bus. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-06-04 12:15:36 +07:00
if (vaddr < PHB_IO_BASE || vaddr > PHB_IO_END)
return;
/* Try to find a PTE. If not, clear the paddr, we'll do
* a vaddr only lookup (PIO only)
*/
ptep = find_linux_pte(init_mm.pgd, vaddr);
if (ptep == NULL)
paddr = 0;
else
paddr = pte_pfn(*ptep) << PAGE_SHIFT;
bus = spider_pci_find(vaddr, paddr);
if (bus == NULL)
return;
}
/* Now do the workaround
*/
(void)in_be32(bus->regs + SPIDER_PCI_DUMMY_READ);
}
static u8 spider_readb(const volatile void __iomem *addr)
{
u8 val = __do_readb(addr);
spider_io_flush(addr);
return val;
}
static u16 spider_readw(const volatile void __iomem *addr)
{
u16 val = __do_readw(addr);
spider_io_flush(addr);
return val;
}
static u32 spider_readl(const volatile void __iomem *addr)
{
u32 val = __do_readl(addr);
spider_io_flush(addr);
return val;
}
static u64 spider_readq(const volatile void __iomem *addr)
{
u64 val = __do_readq(addr);
spider_io_flush(addr);
return val;
}
static u16 spider_readw_be(const volatile void __iomem *addr)
{
u16 val = __do_readw_be(addr);
spider_io_flush(addr);
return val;
}
static u32 spider_readl_be(const volatile void __iomem *addr)
{
u32 val = __do_readl_be(addr);
spider_io_flush(addr);
return val;
}
static u64 spider_readq_be(const volatile void __iomem *addr)
{
u64 val = __do_readq_be(addr);
spider_io_flush(addr);
return val;
}
static void spider_readsb(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
__do_readsb(addr, buf, count);
spider_io_flush(addr);
}
static void spider_readsw(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
__do_readsw(addr, buf, count);
spider_io_flush(addr);
}
static void spider_readsl(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
__do_readsl(addr, buf, count);
spider_io_flush(addr);
}
static void spider_memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n)
{
__do_memcpy_fromio(dest, src, n);
spider_io_flush(src);
}
static void __iomem * spider_ioremap(unsigned long addr, unsigned long size,
unsigned long flags)
{
struct spider_pci_bus *bus;
void __iomem *res = __ioremap(addr, size, flags);
int busno;
pr_debug("spider_ioremap(0x%lx, 0x%lx, 0x%lx) -> 0x%p\n",
addr, size, flags, res);
bus = spider_pci_find(0, addr);
if (bus != NULL) {
busno = bus - spider_pci_busses;
pr_debug(" found bus %d, setting token\n", busno);
PCI_SET_ADDR_TOKEN(res, busno + 1);
}
pr_debug(" result=0x%p\n", res);
return res;
}
static void __init spider_pci_setup_chip(struct spider_pci_bus *bus)
{
#ifdef SPIDER_DISABLE_PREFETCH
u32 val = in_be32(bus->regs + SPIDER_PCI_VCI_CNTL_STAT);
pr_debug(" PVCI_Control_Status was 0x%08x\n", val);
out_be32(bus->regs + SPIDER_PCI_VCI_CNTL_STAT, val | 0x8);
#endif
/* Configure the dummy address for the workaround */
out_be32(bus->regs + SPIDER_PCI_DUMMY_READ_BASE, 0x80000000);
}
static void __init spider_pci_add_one(struct pci_controller *phb)
{
struct spider_pci_bus *bus = &spider_pci_busses[spider_pci_count];
struct device_node *np = phb->dn;
struct resource rsrc;
void __iomem *regs;
if (spider_pci_count >= MAX_SPIDERS) {
printk(KERN_ERR "Too many spider bridges, workarounds"
" disabled for %s\n", np->full_name);
return;
}
/* Get the registers for the beast */
if (of_address_to_resource(np, 0, &rsrc)) {
printk(KERN_ERR "Failed to get registers for spider %s"
" workarounds disabled\n", np->full_name);
return;
}
/* Mask out some useless bits in there to get to the base of the
* spider chip
*/
rsrc.start &= ~0xfffffffful;
/* Map them */
regs = ioremap(rsrc.start + SPIDER_PCI_REG_BASE, 0x1000);
if (regs == NULL) {
printk(KERN_ERR "Failed to map registers for spider %s"
" workarounds disabled\n", np->full_name);
return;
}
spider_pci_count++;
/* We assume spiders only have one MMIO resource */
bus->mmio_start = phb->mem_resources[0].start;
bus->mmio_end = phb->mem_resources[0].end + 1;
bus->pio_vstart = (unsigned long)phb->io_base_virt;
bus->pio_vend = bus->pio_vstart + phb->pci_io_size;
bus->regs = regs;
printk(KERN_INFO "PCI: Spider MMIO workaround for %s\n",np->full_name);
pr_debug(" mmio (P) = 0x%016lx..0x%016lx\n",
bus->mmio_start, bus->mmio_end);
pr_debug(" pio (V) = 0x%016lx..0x%016lx\n",
bus->pio_vstart, bus->pio_vend);
pr_debug(" regs (P) = 0x%016lx (V) = 0x%p\n",
rsrc.start + SPIDER_PCI_REG_BASE, bus->regs);
spider_pci_setup_chip(bus);
}
static struct ppc_pci_io __initdata spider_pci_io = {
.readb = spider_readb,
.readw = spider_readw,
.readl = spider_readl,
.readq = spider_readq,
.readw_be = spider_readw_be,
.readl_be = spider_readl_be,
.readq_be = spider_readq_be,
.readsb = spider_readsb,
.readsw = spider_readsw,
.readsl = spider_readsl,
.memcpy_fromio = spider_memcpy_fromio,
};
static int __init spider_pci_workaround_init(void)
{
struct pci_controller *phb;
/* Find spider bridges. We assume they have been all probed
* in setup_arch(). If that was to change, we would need to
* update this code to cope with dynamically added busses
*/
list_for_each_entry(phb, &hose_list, list_node) {
struct device_node *np = phb->dn;
const char *model = of_get_property(np, "model", NULL);
/* If no model property or name isn't exactly "pci", skip */
if (model == NULL || strcmp(np->name, "pci"))
continue;
/* If model is not "Spider", skip */
if (strcmp(model, "Spider"))
continue;
spider_pci_add_one(phb);
}
/* No Spider PCI found, exit */
if (spider_pci_count == 0)
return 0;
/* Setup IO callbacks. We only setup MMIO reads. PIO reads will
* fallback to MMIO reads (though without a token, thus slower)
*/
ppc_pci_io = spider_pci_io;
/* Setup ioremap callback */
ppc_md.ioremap = spider_ioremap;
return 0;
}
machine_arch_initcall(cell, spider_pci_workaround_init);