linux_dsm_epyc7002/drivers/rtc/rtc-pm8xxx.c

561 lines
14 KiB
C
Raw Normal View History

/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/of.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
/* RTC Register offsets from RTC CTRL REG */
#define PM8XXX_ALARM_CTRL_OFFSET 0x01
#define PM8XXX_RTC_WRITE_OFFSET 0x02
#define PM8XXX_RTC_READ_OFFSET 0x06
#define PM8XXX_ALARM_RW_OFFSET 0x0A
/* RTC_CTRL register bit fields */
#define PM8xxx_RTC_ENABLE BIT(7)
#define PM8xxx_RTC_ALARM_CLEAR BIT(0)
#define NUM_8_BIT_RTC_REGS 0x4
/**
* struct pm8xxx_rtc_regs - describe RTC registers per PMIC versions
* @ctrl: base address of control register
* @write: base address of write register
* @read: base address of read register
* @alarm_ctrl: base address of alarm control register
* @alarm_ctrl2: base address of alarm control2 register
* @alarm_rw: base address of alarm read-write register
* @alarm_en: alarm enable mask
*/
struct pm8xxx_rtc_regs {
unsigned int ctrl;
unsigned int write;
unsigned int read;
unsigned int alarm_ctrl;
unsigned int alarm_ctrl2;
unsigned int alarm_rw;
unsigned int alarm_en;
};
/**
* struct pm8xxx_rtc - rtc driver internal structure
* @rtc: rtc device for this driver.
* @regmap: regmap used to access RTC registers
* @allow_set_time: indicates whether writing to the RTC is allowed
* @rtc_alarm_irq: rtc alarm irq number.
* @ctrl_reg: rtc control register.
* @rtc_dev: device structure.
* @ctrl_reg_lock: spinlock protecting access to ctrl_reg.
*/
struct pm8xxx_rtc {
struct rtc_device *rtc;
struct regmap *regmap;
bool allow_set_time;
int rtc_alarm_irq;
const struct pm8xxx_rtc_regs *regs;
struct device *rtc_dev;
spinlock_t ctrl_reg_lock;
};
/*
* Steps to write the RTC registers.
* 1. Disable alarm if enabled.
* 2. Disable rtc if enabled.
* 3. Write 0x00 to LSB.
* 4. Write Byte[1], Byte[2], Byte[3] then Byte[0].
* 5. Enable rtc if disabled in step 2.
* 6. Enable alarm if disabled in step 1.
*/
static int pm8xxx_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
int rc, i;
unsigned long secs, irq_flags;
u8 value[NUM_8_BIT_RTC_REGS], alarm_enabled = 0, rtc_disabled = 0;
unsigned int ctrl_reg, rtc_ctrl_reg;
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
if (!rtc_dd->allow_set_time)
return -EACCES;
rtc_tm_to_time(tm, &secs);
dev_dbg(dev, "Seconds value to be written to RTC = %lu\n", secs);
for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) {
value[i] = secs & 0xFF;
secs >>= 8;
}
spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
if (rc)
goto rtc_rw_fail;
if (ctrl_reg & regs->alarm_en) {
alarm_enabled = 1;
ctrl_reg &= ~regs->alarm_en;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC Alarm control register failed\n");
goto rtc_rw_fail;
}
}
/* Disable RTC H/w before writing on RTC register */
rc = regmap_read(rtc_dd->regmap, regs->ctrl, &rtc_ctrl_reg);
if (rc)
goto rtc_rw_fail;
if (rtc_ctrl_reg & PM8xxx_RTC_ENABLE) {
rtc_disabled = 1;
rtc_ctrl_reg &= ~PM8xxx_RTC_ENABLE;
rc = regmap_write(rtc_dd->regmap, regs->ctrl, rtc_ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC control register failed\n");
goto rtc_rw_fail;
}
}
/* Write 0 to Byte[0] */
rc = regmap_write(rtc_dd->regmap, regs->write, 0);
if (rc) {
dev_err(dev, "Write to RTC write data register failed\n");
goto rtc_rw_fail;
}
/* Write Byte[1], Byte[2], Byte[3] */
rc = regmap_bulk_write(rtc_dd->regmap, regs->write + 1,
&value[1], sizeof(value) - 1);
if (rc) {
dev_err(dev, "Write to RTC write data register failed\n");
goto rtc_rw_fail;
}
/* Write Byte[0] */
rc = regmap_write(rtc_dd->regmap, regs->write, value[0]);
if (rc) {
dev_err(dev, "Write to RTC write data register failed\n");
goto rtc_rw_fail;
}
/* Enable RTC H/w after writing on RTC register */
if (rtc_disabled) {
rtc_ctrl_reg |= PM8xxx_RTC_ENABLE;
rc = regmap_write(rtc_dd->regmap, regs->ctrl, rtc_ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC control register failed\n");
goto rtc_rw_fail;
}
}
if (alarm_enabled) {
ctrl_reg |= regs->alarm_en;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC Alarm control register failed\n");
goto rtc_rw_fail;
}
}
rtc_rw_fail:
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
return rc;
}
static int pm8xxx_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
int rc;
u8 value[NUM_8_BIT_RTC_REGS];
unsigned long secs;
unsigned int reg;
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
rc = regmap_bulk_read(rtc_dd->regmap, regs->read, value, sizeof(value));
if (rc) {
dev_err(dev, "RTC read data register failed\n");
return rc;
}
/*
* Read the LSB again and check if there has been a carry over.
* If there is, redo the read operation.
*/
rc = regmap_read(rtc_dd->regmap, regs->read, &reg);
if (rc < 0) {
dev_err(dev, "RTC read data register failed\n");
return rc;
}
if (unlikely(reg < value[0])) {
rc = regmap_bulk_read(rtc_dd->regmap, regs->read,
value, sizeof(value));
if (rc) {
dev_err(dev, "RTC read data register failed\n");
return rc;
}
}
secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24);
rtc_time_to_tm(secs, tm);
dev_dbg(dev, "secs = %lu, h:m:s == %ptRt, y-m-d = %ptRdr\n", secs, tm, tm);
return 0;
}
static int pm8xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc, i;
u8 value[NUM_8_BIT_RTC_REGS];
unsigned int ctrl_reg;
unsigned long secs, irq_flags;
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
rtc_tm_to_time(&alarm->time, &secs);
for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) {
value[i] = secs & 0xFF;
secs >>= 8;
}
spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
rc = regmap_bulk_write(rtc_dd->regmap, regs->alarm_rw, value,
sizeof(value));
if (rc) {
dev_err(dev, "Write to RTC ALARM register failed\n");
goto rtc_rw_fail;
}
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
if (rc)
goto rtc_rw_fail;
if (alarm->enabled)
ctrl_reg |= regs->alarm_en;
else
ctrl_reg &= ~regs->alarm_en;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC alarm control register failed\n");
goto rtc_rw_fail;
}
dev_dbg(dev, "Alarm Set for h:m:s=%ptRt, y-m-d=%ptRdr\n",
&alarm->time, &alarm->time);
rtc_rw_fail:
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
return rc;
}
static int pm8xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc;
u8 value[NUM_8_BIT_RTC_REGS];
unsigned long secs;
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
rc = regmap_bulk_read(rtc_dd->regmap, regs->alarm_rw, value,
sizeof(value));
if (rc) {
dev_err(dev, "RTC alarm time read failed\n");
return rc;
}
secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24);
rtc_time_to_tm(secs, &alarm->time);
rc = rtc_valid_tm(&alarm->time);
if (rc < 0) {
dev_err(dev, "Invalid alarm time read from RTC\n");
return rc;
}
dev_dbg(dev, "Alarm set for - h:m:s=%ptRt, y-m-d=%ptRdr\n",
&alarm->time, &alarm->time);
return 0;
}
static int pm8xxx_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
int rc;
unsigned long irq_flags;
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
unsigned int ctrl_reg;
spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
if (rc)
goto rtc_rw_fail;
if (enable)
ctrl_reg |= regs->alarm_en;
else
ctrl_reg &= ~regs->alarm_en;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
if (rc) {
dev_err(dev, "Write to RTC control register failed\n");
goto rtc_rw_fail;
}
rtc_rw_fail:
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
return rc;
}
static const struct rtc_class_ops pm8xxx_rtc_ops = {
.read_time = pm8xxx_rtc_read_time,
.set_time = pm8xxx_rtc_set_time,
.set_alarm = pm8xxx_rtc_set_alarm,
.read_alarm = pm8xxx_rtc_read_alarm,
.alarm_irq_enable = pm8xxx_rtc_alarm_irq_enable,
};
static irqreturn_t pm8xxx_alarm_trigger(int irq, void *dev_id)
{
struct pm8xxx_rtc *rtc_dd = dev_id;
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
unsigned int ctrl_reg;
int rc;
unsigned long irq_flags;
rtc_update_irq(rtc_dd->rtc, 1, RTC_IRQF | RTC_AF);
spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
/* Clear the alarm enable bit */
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
if (rc) {
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
goto rtc_alarm_handled;
}
ctrl_reg &= ~regs->alarm_en;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
if (rc) {
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
dev_err(rtc_dd->rtc_dev,
"Write to alarm control register failed\n");
goto rtc_alarm_handled;
}
spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
/* Clear RTC alarm register */
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl2, &ctrl_reg);
if (rc) {
dev_err(rtc_dd->rtc_dev,
"RTC Alarm control2 register read failed\n");
goto rtc_alarm_handled;
}
ctrl_reg |= PM8xxx_RTC_ALARM_CLEAR;
rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl2, ctrl_reg);
if (rc)
dev_err(rtc_dd->rtc_dev,
"Write to RTC Alarm control2 register failed\n");
rtc_alarm_handled:
return IRQ_HANDLED;
}
static int pm8xxx_rtc_enable(struct pm8xxx_rtc *rtc_dd)
{
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
unsigned int ctrl_reg;
int rc;
/* Check if the RTC is on, else turn it on */
rc = regmap_read(rtc_dd->regmap, regs->ctrl, &ctrl_reg);
if (rc)
return rc;
if (!(ctrl_reg & PM8xxx_RTC_ENABLE)) {
ctrl_reg |= PM8xxx_RTC_ENABLE;
rc = regmap_write(rtc_dd->regmap, regs->ctrl, ctrl_reg);
if (rc)
return rc;
}
return 0;
}
static const struct pm8xxx_rtc_regs pm8921_regs = {
.ctrl = 0x11d,
.write = 0x11f,
.read = 0x123,
.alarm_rw = 0x127,
.alarm_ctrl = 0x11d,
.alarm_ctrl2 = 0x11e,
.alarm_en = BIT(1),
};
static const struct pm8xxx_rtc_regs pm8058_regs = {
.ctrl = 0x1e8,
.write = 0x1ea,
.read = 0x1ee,
.alarm_rw = 0x1f2,
.alarm_ctrl = 0x1e8,
.alarm_ctrl2 = 0x1e9,
.alarm_en = BIT(1),
};
static const struct pm8xxx_rtc_regs pm8941_regs = {
.ctrl = 0x6046,
.write = 0x6040,
.read = 0x6048,
.alarm_rw = 0x6140,
.alarm_ctrl = 0x6146,
.alarm_ctrl2 = 0x6148,
.alarm_en = BIT(7),
};
/*
* Hardcoded RTC bases until IORESOURCE_REG mapping is figured out
*/
static const struct of_device_id pm8xxx_id_table[] = {
{ .compatible = "qcom,pm8921-rtc", .data = &pm8921_regs },
{ .compatible = "qcom,pm8018-rtc", .data = &pm8921_regs },
{ .compatible = "qcom,pm8058-rtc", .data = &pm8058_regs },
{ .compatible = "qcom,pm8941-rtc", .data = &pm8941_regs },
{ },
};
MODULE_DEVICE_TABLE(of, pm8xxx_id_table);
static int pm8xxx_rtc_probe(struct platform_device *pdev)
{
int rc;
struct pm8xxx_rtc *rtc_dd;
const struct of_device_id *match;
match = of_match_node(pm8xxx_id_table, pdev->dev.of_node);
if (!match)
return -ENXIO;
rtc_dd = devm_kzalloc(&pdev->dev, sizeof(*rtc_dd), GFP_KERNEL);
if (rtc_dd == NULL)
return -ENOMEM;
/* Initialise spinlock to protect RTC control register */
spin_lock_init(&rtc_dd->ctrl_reg_lock);
rtc_dd->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!rtc_dd->regmap) {
dev_err(&pdev->dev, "Parent regmap unavailable.\n");
return -ENXIO;
}
rtc_dd->rtc_alarm_irq = platform_get_irq(pdev, 0);
if (rtc_dd->rtc_alarm_irq < 0) {
dev_err(&pdev->dev, "Alarm IRQ resource absent!\n");
return -ENXIO;
}
rtc_dd->allow_set_time = of_property_read_bool(pdev->dev.of_node,
"allow-set-time");
rtc_dd->regs = match->data;
rtc_dd->rtc_dev = &pdev->dev;
rc = pm8xxx_rtc_enable(rtc_dd);
if (rc)
return rc;
platform_set_drvdata(pdev, rtc_dd);
device_init_wakeup(&pdev->dev, 1);
/* Register the RTC device */
rtc_dd->rtc = devm_rtc_device_register(&pdev->dev, "pm8xxx_rtc",
&pm8xxx_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc_dd->rtc)) {
dev_err(&pdev->dev, "%s: RTC registration failed (%ld)\n",
__func__, PTR_ERR(rtc_dd->rtc));
return PTR_ERR(rtc_dd->rtc);
}
/* Request the alarm IRQ */
rc = devm_request_any_context_irq(&pdev->dev, rtc_dd->rtc_alarm_irq,
pm8xxx_alarm_trigger,
IRQF_TRIGGER_RISING,
"pm8xxx_rtc_alarm", rtc_dd);
if (rc < 0) {
dev_err(&pdev->dev, "Request IRQ failed (%d)\n", rc);
return rc;
}
dev_dbg(&pdev->dev, "Probe success !!\n");
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int pm8xxx_rtc_resume(struct device *dev)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc_dd->rtc_alarm_irq);
return 0;
}
static int pm8xxx_rtc_suspend(struct device *dev)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc_dd->rtc_alarm_irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(pm8xxx_rtc_pm_ops,
pm8xxx_rtc_suspend,
pm8xxx_rtc_resume);
static struct platform_driver pm8xxx_rtc_driver = {
.probe = pm8xxx_rtc_probe,
.driver = {
.name = "rtc-pm8xxx",
.pm = &pm8xxx_rtc_pm_ops,
.of_match_table = pm8xxx_id_table,
},
};
module_platform_driver(pm8xxx_rtc_driver);
MODULE_ALIAS("platform:rtc-pm8xxx");
MODULE_DESCRIPTION("PMIC8xxx RTC driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Anirudh Ghayal <aghayal@codeaurora.org>");