linux_dsm_epyc7002/arch/blackfin/kernel/kgdb.c

422 lines
12 KiB
C
Raw Normal View History

/*
* File: arch/blackfin/kernel/kgdb.c
* Based on:
* Author: Sonic Zhang
*
* Created:
* Description:
*
* Rev: $Id: kgdb_bfin_linux-2.6.x.patch 4934 2007-02-13 09:32:11Z sonicz $
*
* Modified:
* Copyright 2005-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ptrace.h> /* for linux pt_regs struct */
#include <linux/kgdb.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/debugger.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/blackfin.h>
/* Put the error code here just in case the user cares. */
int gdb_bf533errcode;
/* Likewise, the vector number here (since GDB only gets the signal
number through the usual means, and that's not very specific). */
int gdb_bf533vector = -1;
#if KGDB_MAX_NO_CPUS != 8
#error change the definition of slavecpulocks
#endif
void regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
gdb_regs[BFIN_R0] = regs->r0;
gdb_regs[BFIN_R1] = regs->r1;
gdb_regs[BFIN_R2] = regs->r2;
gdb_regs[BFIN_R3] = regs->r3;
gdb_regs[BFIN_R4] = regs->r4;
gdb_regs[BFIN_R5] = regs->r5;
gdb_regs[BFIN_R6] = regs->r6;
gdb_regs[BFIN_R7] = regs->r7;
gdb_regs[BFIN_P0] = regs->p0;
gdb_regs[BFIN_P1] = regs->p1;
gdb_regs[BFIN_P2] = regs->p2;
gdb_regs[BFIN_P3] = regs->p3;
gdb_regs[BFIN_P4] = regs->p4;
gdb_regs[BFIN_P5] = regs->p5;
gdb_regs[BFIN_SP] = regs->reserved;
gdb_regs[BFIN_FP] = regs->fp;
gdb_regs[BFIN_I0] = regs->i0;
gdb_regs[BFIN_I1] = regs->i1;
gdb_regs[BFIN_I2] = regs->i2;
gdb_regs[BFIN_I3] = regs->i3;
gdb_regs[BFIN_M0] = regs->m0;
gdb_regs[BFIN_M1] = regs->m1;
gdb_regs[BFIN_M2] = regs->m2;
gdb_regs[BFIN_M3] = regs->m3;
gdb_regs[BFIN_B0] = regs->b0;
gdb_regs[BFIN_B1] = regs->b1;
gdb_regs[BFIN_B2] = regs->b2;
gdb_regs[BFIN_B3] = regs->b3;
gdb_regs[BFIN_L0] = regs->l0;
gdb_regs[BFIN_L1] = regs->l1;
gdb_regs[BFIN_L2] = regs->l2;
gdb_regs[BFIN_L3] = regs->l3;
gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
gdb_regs[BFIN_ASTAT] = regs->astat;
gdb_regs[BFIN_RETS] = regs->rets;
gdb_regs[BFIN_LC0] = regs->lc0;
gdb_regs[BFIN_LT0] = regs->lt0;
gdb_regs[BFIN_LB0] = regs->lb0;
gdb_regs[BFIN_LC1] = regs->lc1;
gdb_regs[BFIN_LT1] = regs->lt1;
gdb_regs[BFIN_LB1] = regs->lb1;
gdb_regs[BFIN_CYCLES] = 0;
gdb_regs[BFIN_CYCLES2] = 0;
gdb_regs[BFIN_USP] = regs->usp;
gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
gdb_regs[BFIN_SYSCFG] = regs->syscfg;
gdb_regs[BFIN_RETI] = regs->pc;
gdb_regs[BFIN_RETX] = regs->retx;
gdb_regs[BFIN_RETN] = regs->retn;
gdb_regs[BFIN_RETE] = regs->rete;
gdb_regs[BFIN_PC] = regs->pc;
gdb_regs[BFIN_CC] = 0;
gdb_regs[BFIN_EXTRA1] = 0;
gdb_regs[BFIN_EXTRA2] = 0;
gdb_regs[BFIN_EXTRA3] = 0;
gdb_regs[BFIN_IPEND] = regs->ipend;
}
/*
* Extracts ebp, esp and eip values understandable by gdb from the values
* saved by switch_to.
* thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
* prior to entering switch_to is 8 greater then the value that is saved.
* If switch_to changes, change following code appropriately.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
gdb_regs[BFIN_SP] = p->thread.ksp;
gdb_regs[BFIN_PC] = p->thread.pc;
gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
}
void gdb_regs_to_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
regs->r0 = gdb_regs[BFIN_R0];
regs->r1 = gdb_regs[BFIN_R1];
regs->r2 = gdb_regs[BFIN_R2];
regs->r3 = gdb_regs[BFIN_R3];
regs->r4 = gdb_regs[BFIN_R4];
regs->r5 = gdb_regs[BFIN_R5];
regs->r6 = gdb_regs[BFIN_R6];
regs->r7 = gdb_regs[BFIN_R7];
regs->p0 = gdb_regs[BFIN_P0];
regs->p1 = gdb_regs[BFIN_P1];
regs->p2 = gdb_regs[BFIN_P2];
regs->p3 = gdb_regs[BFIN_P3];
regs->p4 = gdb_regs[BFIN_P4];
regs->p5 = gdb_regs[BFIN_P5];
regs->fp = gdb_regs[BFIN_FP];
regs->i0 = gdb_regs[BFIN_I0];
regs->i1 = gdb_regs[BFIN_I1];
regs->i2 = gdb_regs[BFIN_I2];
regs->i3 = gdb_regs[BFIN_I3];
regs->m0 = gdb_regs[BFIN_M0];
regs->m1 = gdb_regs[BFIN_M1];
regs->m2 = gdb_regs[BFIN_M2];
regs->m3 = gdb_regs[BFIN_M3];
regs->b0 = gdb_regs[BFIN_B0];
regs->b1 = gdb_regs[BFIN_B1];
regs->b2 = gdb_regs[BFIN_B2];
regs->b3 = gdb_regs[BFIN_B3];
regs->l0 = gdb_regs[BFIN_L0];
regs->l1 = gdb_regs[BFIN_L1];
regs->l2 = gdb_regs[BFIN_L2];
regs->l3 = gdb_regs[BFIN_L3];
regs->a0x = gdb_regs[BFIN_A0_DOT_X];
regs->a0w = gdb_regs[BFIN_A0_DOT_W];
regs->a1x = gdb_regs[BFIN_A1_DOT_X];
regs->a1w = gdb_regs[BFIN_A1_DOT_W];
regs->rets = gdb_regs[BFIN_RETS];
regs->lc0 = gdb_regs[BFIN_LC0];
regs->lt0 = gdb_regs[BFIN_LT0];
regs->lb0 = gdb_regs[BFIN_LB0];
regs->lc1 = gdb_regs[BFIN_LC1];
regs->lt1 = gdb_regs[BFIN_LT1];
regs->lb1 = gdb_regs[BFIN_LB1];
regs->usp = gdb_regs[BFIN_USP];
regs->syscfg = gdb_regs[BFIN_SYSCFG];
regs->retx = gdb_regs[BFIN_PC];
regs->retn = gdb_regs[BFIN_RETN];
regs->rete = gdb_regs[BFIN_RETE];
regs->pc = gdb_regs[BFIN_PC];
#if 0 /* can't change these */
regs->astat = gdb_regs[BFIN_ASTAT];
regs->seqstat = gdb_regs[BFIN_SEQSTAT];
regs->ipend = gdb_regs[BFIN_IPEND];
#endif
}
struct hw_breakpoint {
unsigned int occupied:1;
unsigned int skip:1;
unsigned int enabled:1;
unsigned int type:1;
unsigned int dataacc:2;
unsigned short count;
unsigned int addr;
} breakinfo[HW_BREAKPOINT_NUM];
int kgdb_arch_init(void)
{
kgdb_remove_all_hw_break();
return 0;
}
int kgdb_set_hw_break(unsigned long addr)
{
int breakno;
for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
if (!breakinfo[breakno].occupied) {
breakinfo[breakno].occupied = 1;
breakinfo[breakno].enabled = 1;
breakinfo[breakno].type = 1;
breakinfo[breakno].addr = addr;
return 0;
}
return -ENOSPC;
}
int kgdb_remove_hw_break(unsigned long addr)
{
int breakno;
for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
if (breakinfo[breakno].addr == addr)
memset(&(breakinfo[breakno]), 0, sizeof(struct hw_breakpoint));
return 0;
}
void kgdb_remove_all_hw_break(void)
{
memset(breakinfo, 0, sizeof(struct hw_breakpoint)*8);
}
/*
void kgdb_show_info(void)
{
printk(KERN_DEBUG "hwd: wpia0=0x%x, wpiacnt0=%d, wpiactl=0x%x, wpstat=0x%x\n",
bfin_read_WPIA0(), bfin_read_WPIACNT0(),
bfin_read_WPIACTL(), bfin_read_WPSTAT());
}
*/
void kgdb_correct_hw_break(void)
{
int breakno;
int correctit;
uint32_t wpdactl = bfin_read_WPDACTL();
correctit = 0;
for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++) {
if (breakinfo[breakno].type == 1) {
switch (breakno) {
case 0:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN0)) {
correctit = 1;
wpdactl &= ~(WPIREN01|EMUSW0);
wpdactl |= WPIAEN0|WPICNTEN0;
bfin_write_WPIA0(breakinfo[breakno].addr);
bfin_write_WPIACNT0(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN0)) {
correctit = 1;
wpdactl &= ~WPIAEN0;
}
break;
case 1:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN1)) {
correctit = 1;
wpdactl &= ~(WPIREN01|EMUSW1);
wpdactl |= WPIAEN1|WPICNTEN1;
bfin_write_WPIA1(breakinfo[breakno].addr);
bfin_write_WPIACNT1(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN1)) {
correctit = 1;
wpdactl &= ~WPIAEN1;
}
break;
case 2:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN2)) {
correctit = 1;
wpdactl &= ~(WPIREN23|EMUSW2);
wpdactl |= WPIAEN2|WPICNTEN2;
bfin_write_WPIA2(breakinfo[breakno].addr);
bfin_write_WPIACNT2(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN2)) {
correctit = 1;
wpdactl &= ~WPIAEN2;
}
break;
case 3:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN3)) {
correctit = 1;
wpdactl &= ~(WPIREN23|EMUSW3);
wpdactl |= WPIAEN3|WPICNTEN3;
bfin_write_WPIA3(breakinfo[breakno].addr);
bfin_write_WPIACNT3(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN3)) {
correctit = 1;
wpdactl &= ~WPIAEN3;
}
break;
case 4:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN4)) {
correctit = 1;
wpdactl &= ~(WPIREN45|EMUSW4);
wpdactl |= WPIAEN4|WPICNTEN4;
bfin_write_WPIA4(breakinfo[breakno].addr);
bfin_write_WPIACNT4(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN4)) {
correctit = 1;
wpdactl &= ~WPIAEN4;
}
break;
case 5:
if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN5)) {
correctit = 1;
wpdactl &= ~(WPIREN45|EMUSW5);
wpdactl |= WPIAEN5|WPICNTEN5;
bfin_write_WPIA5(breakinfo[breakno].addr);
bfin_write_WPIACNT5(breakinfo[breakno].skip);
} else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN5)) {
correctit = 1;
wpdactl &= ~WPIAEN5;
}
break;
}
}
}
if (correctit) {
wpdactl &= ~WPAND;
wpdactl |= WPPWR;
/*printk("correct_hw_break: wpdactl=0x%x\n", wpdactl);*/
bfin_write_WPDACTL(wpdactl);
CSYNC();
/*kgdb_show_info();*/
}
}
void kgdb_disable_hw_debug(struct pt_regs *regs)
{
/* Disable hardware debugging while we are in kgdb */
bfin_write_WPIACTL(bfin_read_WPIACTL() & ~0x1);
CSYNC();
}
void kgdb_post_master_code(struct pt_regs *regs, int eVector, int err_code)
{
/* Master processor is completely in the debugger */
gdb_bf533vector = eVector;
gdb_bf533errcode = err_code;
}
int kgdb_arch_handle_exception(int exceptionVector, int signo,
int err_code, char *remcom_in_buffer,
char *remcom_out_buffer,
struct pt_regs *linux_regs)
{
long addr;
long breakno;
char *ptr;
int newPC;
int wp_status;
switch (remcom_in_buffer[0]) {
case 'c':
case 's':
if (kgdb_contthread && kgdb_contthread != current) {
strcpy(remcom_out_buffer, "E00");
break;
}
kgdb_contthread = NULL;
/* try to read optional parameter, pc unchanged if no parm */
ptr = &remcom_in_buffer[1];
if (kgdb_hex2long(&ptr, &addr)) {
linux_regs->retx = addr;
}
newPC = linux_regs->retx;
/* clear the trace bit */
linux_regs->syscfg &= 0xfffffffe;
/* set the trace bit if we're stepping */
if (remcom_in_buffer[0] == 's') {
linux_regs->syscfg |= 0x1;
debugger_step = 1;
}
wp_status = bfin_read_WPSTAT();
CSYNC();
if (exceptionVector == VEC_WATCH) {
for (breakno = 0; breakno < 6; ++breakno) {
if (wp_status & (1 << breakno)) {
breakinfo->skip = 1;
break;
}
}
}
kgdb_correct_hw_break();
bfin_write_WPSTAT(0);
return 0;
} /* switch */
return -1; /* this means that we do not want to exit from the handler */
}
struct kgdb_arch arch_kgdb_ops = {
.gdb_bpt_instr = {0xa1},
.flags = KGDB_HW_BREAKPOINT,
};