2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct pt_regs;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't allow single-stepping an mtmsrd that would clear
|
|
|
|
* MSR_RI, since that would make the exception unrecoverable.
|
|
|
|
* Since we need to single-step to proceed from a breakpoint,
|
|
|
|
* we don't allow putting a breakpoint on an mtmsrd instruction.
|
|
|
|
* Similarly we don't allow breakpoints on rfid instructions.
|
|
|
|
* These macros tell us if an instruction is a mtmsrd or rfid.
|
2005-10-28 19:48:08 +07:00
|
|
|
* Note that IS_MTMSRD returns true for both an mtmsr (32-bit)
|
|
|
|
* and an mtmsrd (64-bit).
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2005-10-28 19:48:08 +07:00
|
|
|
#define IS_MTMSRD(instr) (((instr) & 0xfc0007be) == 0x7c000124)
|
2005-04-17 05:20:36 +07:00
|
|
|
#define IS_RFID(instr) (((instr) & 0xfc0007fe) == 0x4c000024)
|
2007-02-07 11:55:19 +07:00
|
|
|
#define IS_RFI(instr) (((instr) & 0xfc0007fe) == 0x4c000064)
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2014-09-02 11:35:07 +07:00
|
|
|
enum instruction_type {
|
|
|
|
COMPUTE, /* arith/logical/CR op, etc. */
|
|
|
|
LOAD,
|
|
|
|
LOAD_MULTI,
|
|
|
|
LOAD_FP,
|
|
|
|
LOAD_VMX,
|
|
|
|
LOAD_VSX,
|
|
|
|
STORE,
|
|
|
|
STORE_MULTI,
|
|
|
|
STORE_FP,
|
|
|
|
STORE_VMX,
|
|
|
|
STORE_VSX,
|
|
|
|
LARX,
|
|
|
|
STCX,
|
|
|
|
BRANCH,
|
|
|
|
MFSPR,
|
|
|
|
MTSPR,
|
|
|
|
CACHEOP,
|
|
|
|
BARRIER,
|
|
|
|
SYSCALL,
|
|
|
|
MFMSR,
|
|
|
|
MTMSR,
|
|
|
|
RFI,
|
|
|
|
INTERRUPT,
|
|
|
|
UNKNOWN
|
|
|
|
};
|
|
|
|
|
|
|
|
#define INSTR_TYPE_MASK 0x1f
|
|
|
|
|
2017-08-30 11:12:25 +07:00
|
|
|
/* Compute flags, ORed in with type */
|
|
|
|
#define SETREG 0x20
|
|
|
|
#define SETCC 0x40
|
|
|
|
#define SETXER 0x80
|
|
|
|
|
|
|
|
/* Branch flags, ORed in with type */
|
|
|
|
#define SETLK 0x20
|
|
|
|
#define BRTAKEN 0x40
|
|
|
|
#define DECCTR 0x80
|
|
|
|
|
2014-09-02 11:35:07 +07:00
|
|
|
/* Load/store flags, ORed in with type */
|
|
|
|
#define SIGNEXT 0x20
|
|
|
|
#define UPDATE 0x40 /* matches bit in opcode 31 instructions */
|
|
|
|
#define BYTEREV 0x80
|
|
|
|
|
2017-08-30 11:12:25 +07:00
|
|
|
/* Barrier type field, ORed in with type */
|
|
|
|
#define BARRIER_MASK 0xe0
|
|
|
|
#define BARRIER_SYNC 0x00
|
|
|
|
#define BARRIER_ISYNC 0x20
|
|
|
|
#define BARRIER_EIEIO 0x40
|
|
|
|
#define BARRIER_LWSYNC 0x60
|
|
|
|
#define BARRIER_PTESYNC 0x80
|
|
|
|
|
2014-09-02 11:35:07 +07:00
|
|
|
/* Cacheop values, ORed in with type */
|
|
|
|
#define CACHEOP_MASK 0x700
|
|
|
|
#define DCBST 0
|
|
|
|
#define DCBF 0x100
|
|
|
|
#define DCBTST 0x200
|
|
|
|
#define DCBT 0x300
|
2014-09-02 11:35:08 +07:00
|
|
|
#define ICBI 0x400
|
2014-09-02 11:35:07 +07:00
|
|
|
|
powerpc: Handle most loads and stores in instruction emulation code
This extends the instruction emulation infrastructure in sstep.c to
handle all the load and store instructions defined in the Power ISA
v3.0, except for the atomic memory operations, ldmx (which was never
implemented), lfdp/stfdp, and the vector element load/stores.
The instructions added are:
Integer loads and stores: lbarx, lharx, lqarx, stbcx., sthcx., stqcx.,
lq, stq.
VSX loads and stores: lxsiwzx, lxsiwax, stxsiwx, lxvx, lxvl, lxvll,
lxvdsx, lxvwsx, stxvx, stxvl, stxvll, lxsspx, lxsdx, stxsspx, stxsdx,
lxvw4x, lxsibzx, lxvh8x, lxsihzx, lxvb16x, stxvw4x, stxsibx, stxvh8x,
stxsihx, stxvb16x, lxsd, lxssp, lxv, stxsd, stxssp, stxv.
These instructions are handled both in the analyse_instr phase and in
the emulate_step phase.
The code for lxvd2ux and stxvd2ux has been taken out, as those
instructions were never implemented in any processor and have been
taken out of the architecture, and their opcodes have been reused for
other instructions in POWER9 (lxvb16x and stxvb16x).
The emulation for the VSX loads and stores uses helper functions
which don't access registers or memory directly, which can hopefully
be reused by KVM later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-30 11:12:27 +07:00
|
|
|
/* VSX flags values */
|
|
|
|
#define VSX_FPCONV 1 /* do floating point SP/DP conversion */
|
|
|
|
#define VSX_SPLAT 2 /* store loaded value into all elements */
|
|
|
|
#define VSX_LDLEFT 4 /* load VSX register from left */
|
|
|
|
#define VSX_CHECK_VEC 8 /* check MSR_VEC not MSR_VSX for reg >= 32 */
|
|
|
|
|
2014-09-02 11:35:07 +07:00
|
|
|
/* Size field in type word */
|
|
|
|
#define SIZE(n) ((n) << 8)
|
|
|
|
#define GETSIZE(w) ((w) >> 8)
|
|
|
|
|
|
|
|
#define MKOP(t, f, s) ((t) | (f) | SIZE(s))
|
|
|
|
|
|
|
|
struct instruction_op {
|
|
|
|
int type;
|
|
|
|
int reg;
|
|
|
|
unsigned long val;
|
|
|
|
/* For LOAD/STORE/LARX/STCX */
|
|
|
|
unsigned long ea;
|
|
|
|
int update_reg;
|
|
|
|
/* For MFSPR */
|
|
|
|
int spr;
|
2017-08-30 11:12:25 +07:00
|
|
|
u32 ccval;
|
|
|
|
u32 xerval;
|
powerpc: Handle most loads and stores in instruction emulation code
This extends the instruction emulation infrastructure in sstep.c to
handle all the load and store instructions defined in the Power ISA
v3.0, except for the atomic memory operations, ldmx (which was never
implemented), lfdp/stfdp, and the vector element load/stores.
The instructions added are:
Integer loads and stores: lbarx, lharx, lqarx, stbcx., sthcx., stqcx.,
lq, stq.
VSX loads and stores: lxsiwzx, lxsiwax, stxsiwx, lxvx, lxvl, lxvll,
lxvdsx, lxvwsx, stxvx, stxvl, stxvll, lxsspx, lxsdx, stxsspx, stxsdx,
lxvw4x, lxsibzx, lxvh8x, lxsihzx, lxvb16x, stxvw4x, stxsibx, stxvh8x,
stxsihx, stxvb16x, lxsd, lxssp, lxv, stxsd, stxssp, stxv.
These instructions are handled both in the analyse_instr phase and in
the emulate_step phase.
The code for lxvd2ux and stxvd2ux has been taken out, as those
instructions were never implemented in any processor and have been
taken out of the architecture, and their opcodes have been reused for
other instructions in POWER9 (lxvb16x and stxvb16x).
The emulation for the VSX loads and stores uses helper functions
which don't access registers or memory directly, which can hopefully
be reused by KVM later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-30 11:12:27 +07:00
|
|
|
u8 element_size; /* for VSX/VMX loads/stores */
|
|
|
|
u8 vsx_flags;
|
|
|
|
};
|
|
|
|
|
|
|
|
union vsx_reg {
|
|
|
|
u8 b[16];
|
|
|
|
u16 h[8];
|
|
|
|
u32 w[4];
|
|
|
|
unsigned long d[2];
|
|
|
|
float fp[4];
|
|
|
|
double dp[2];
|
2014-09-02 11:35:07 +07:00
|
|
|
};
|
|
|
|
|
2017-08-30 11:12:25 +07:00
|
|
|
/*
|
|
|
|
* Decode an instruction, and return information about it in *op
|
|
|
|
* without changing *regs.
|
|
|
|
*
|
|
|
|
* Return value is 1 if the instruction can be emulated just by
|
|
|
|
* updating *regs with the information in *op, -1 if we need the
|
|
|
|
* GPRs but *regs doesn't contain the full register set, or 0
|
|
|
|
* otherwise.
|
|
|
|
*/
|
|
|
|
extern int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
|
2014-09-02 11:35:07 +07:00
|
|
|
unsigned int instr);
|
2017-08-30 11:12:25 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Emulate an instruction that can be executed just by updating
|
|
|
|
* fields in *regs.
|
|
|
|
*/
|
|
|
|
void emulate_update_regs(struct pt_regs *reg, struct instruction_op *op);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Emulate instructions that cause a transfer of control,
|
|
|
|
* arithmetic/logical instructions, loads and stores,
|
|
|
|
* cache operations and barriers.
|
|
|
|
*
|
|
|
|
* Returns 1 if the instruction was emulated successfully,
|
|
|
|
* 0 if it could not be emulated, or -1 for an instruction that
|
|
|
|
* should not be emulated (rfid, mtmsrd clearing MSR_RI, etc.).
|
|
|
|
*/
|
|
|
|
extern int emulate_step(struct pt_regs *regs, unsigned int instr);
|
|
|
|
|
powerpc: Handle most loads and stores in instruction emulation code
This extends the instruction emulation infrastructure in sstep.c to
handle all the load and store instructions defined in the Power ISA
v3.0, except for the atomic memory operations, ldmx (which was never
implemented), lfdp/stfdp, and the vector element load/stores.
The instructions added are:
Integer loads and stores: lbarx, lharx, lqarx, stbcx., sthcx., stqcx.,
lq, stq.
VSX loads and stores: lxsiwzx, lxsiwax, stxsiwx, lxvx, lxvl, lxvll,
lxvdsx, lxvwsx, stxvx, stxvl, stxvll, lxsspx, lxsdx, stxsspx, stxsdx,
lxvw4x, lxsibzx, lxvh8x, lxsihzx, lxvb16x, stxvw4x, stxsibx, stxvh8x,
stxsihx, stxvb16x, lxsd, lxssp, lxv, stxsd, stxssp, stxv.
These instructions are handled both in the analyse_instr phase and in
the emulate_step phase.
The code for lxvd2ux and stxvd2ux has been taken out, as those
instructions were never implemented in any processor and have been
taken out of the architecture, and their opcodes have been reused for
other instructions in POWER9 (lxvb16x and stxvb16x).
The emulation for the VSX loads and stores uses helper functions
which don't access registers or memory directly, which can hopefully
be reused by KVM later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-30 11:12:27 +07:00
|
|
|
extern void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
|
|
|
|
const void *mem);
|
|
|
|
extern void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
|
|
|
|
void *mem);
|