linux_dsm_epyc7002/arch/arm64/kernel/cpu_errata.c

703 lines
17 KiB
C
Raw Normal View History

/*
* Contains CPU specific errata definitions
*
* Copyright (C) 2014 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/arm-smccc.h>
#include <linux/psci.h>
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/cpufeature.h>
static bool __maybe_unused
is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope)
{
const struct arm64_midr_revidr *fix;
u32 midr = read_cpuid_id(), revidr;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (!is_midr_in_range(midr, &entry->midr_range))
return false;
midr &= MIDR_REVISION_MASK | MIDR_VARIANT_MASK;
revidr = read_cpuid(REVIDR_EL1);
for (fix = entry->fixed_revs; fix && fix->revidr_mask; fix++)
if (midr == fix->midr_rv && (revidr & fix->revidr_mask))
return false;
return true;
}
static bool __maybe_unused
is_affected_midr_range_list(const struct arm64_cpu_capabilities *entry,
int scope)
{
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list);
}
static bool __maybe_unused
is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope)
{
u32 model;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
model = read_cpuid_id();
model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) |
MIDR_ARCHITECTURE_MASK;
return model == entry->midr_range.model;
}
static bool
has_mismatched_cache_type(const struct arm64_cpu_capabilities *entry,
int scope)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return (read_cpuid_cachetype() & mask) !=
(arm64_ftr_reg_ctrel0.sys_val & mask);
}
2018-03-26 21:12:28 +07:00
static void
cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *__unused)
{
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}
atomic_t arm64_el2_vector_last_slot = ATOMIC_INIT(-1);
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);
#ifdef CONFIG_KVM_INDIRECT_VECTORS
extern char __smccc_workaround_1_smc_start[];
extern char __smccc_workaround_1_smc_end[];
static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K);
int i;
for (i = 0; i < SZ_2K; i += 0x80)
memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start);
__flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K);
}
static void __install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
static DEFINE_SPINLOCK(bp_lock);
int cpu, slot = -1;
spin_lock(&bp_lock);
for_each_possible_cpu(cpu) {
if (per_cpu(bp_hardening_data.fn, cpu) == fn) {
slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu);
break;
}
}
if (slot == -1) {
slot = atomic_inc_return(&arm64_el2_vector_last_slot);
BUG_ON(slot >= BP_HARDEN_EL2_SLOTS);
__copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end);
}
__this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot);
__this_cpu_write(bp_hardening_data.fn, fn);
spin_unlock(&bp_lock);
}
#else
#define __smccc_workaround_1_smc_start NULL
#define __smccc_workaround_1_smc_end NULL
static void __install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
__this_cpu_write(bp_hardening_data.fn, fn);
}
#endif /* CONFIG_KVM_INDIRECT_VECTORS */
static void install_bp_hardening_cb(const struct arm64_cpu_capabilities *entry,
bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
u64 pfr0;
if (!entry->matches(entry, SCOPE_LOCAL_CPU))
return;
pfr0 = read_cpuid(ID_AA64PFR0_EL1);
if (cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_CSV2_SHIFT))
return;
__install_bp_hardening_cb(fn, hyp_vecs_start, hyp_vecs_end);
}
#include <uapi/linux/psci.h>
#include <linux/arm-smccc.h>
#include <linux/psci.h>
static void call_smc_arch_workaround_1(void)
{
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void call_hvc_arch_workaround_1(void)
{
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void qcom_link_stack_sanitization(void)
{
u64 tmp;
asm volatile("mov %0, x30 \n"
".rept 16 \n"
"bl . + 4 \n"
".endr \n"
"mov x30, %0 \n"
: "=&r" (tmp));
}
2018-03-26 21:12:28 +07:00
static void
enable_smccc_arch_workaround_1(const struct arm64_cpu_capabilities *entry)
{
bp_hardening_cb_t cb;
void *smccc_start, *smccc_end;
struct arm_smccc_res res;
u32 midr = read_cpuid_id();
if (!entry->matches(entry, SCOPE_LOCAL_CPU))
2018-03-26 21:12:28 +07:00
return;
if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
2018-03-26 21:12:28 +07:00
return;
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
if ((int)res.a0 < 0)
2018-03-26 21:12:28 +07:00
return;
cb = call_hvc_arch_workaround_1;
/* This is a guest, no need to patch KVM vectors */
smccc_start = NULL;
smccc_end = NULL;
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
if ((int)res.a0 < 0)
2018-03-26 21:12:28 +07:00
return;
cb = call_smc_arch_workaround_1;
smccc_start = __smccc_workaround_1_smc_start;
smccc_end = __smccc_workaround_1_smc_end;
break;
default:
2018-03-26 21:12:28 +07:00
return;
}
if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1))
cb = qcom_link_stack_sanitization;
install_bp_hardening_cb(entry, cb, smccc_start, smccc_end);
2018-03-26 21:12:28 +07:00
return;
}
#endif /* CONFIG_HARDEN_BRANCH_PREDICTOR */
#ifdef CONFIG_ARM64_SSBD
DEFINE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
int ssbd_state __read_mostly = ARM64_SSBD_KERNEL;
static const struct ssbd_options {
const char *str;
int state;
} ssbd_options[] = {
{ "force-on", ARM64_SSBD_FORCE_ENABLE, },
{ "force-off", ARM64_SSBD_FORCE_DISABLE, },
{ "kernel", ARM64_SSBD_KERNEL, },
};
static int __init ssbd_cfg(char *buf)
{
int i;
if (!buf || !buf[0])
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ssbd_options); i++) {
int len = strlen(ssbd_options[i].str);
if (strncmp(buf, ssbd_options[i].str, len))
continue;
ssbd_state = ssbd_options[i].state;
return 0;
}
return -EINVAL;
}
early_param("ssbd", ssbd_cfg);
void __init arm64_update_smccc_conduit(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
u32 insn;
BUG_ON(nr_inst != 1);
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
insn = aarch64_insn_get_hvc_value();
break;
case PSCI_CONDUIT_SMC:
insn = aarch64_insn_get_smc_value();
break;
default:
return;
}
*updptr = cpu_to_le32(insn);
}
void __init arm64_enable_wa2_handling(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
BUG_ON(nr_inst != 1);
/*
* Only allow mitigation on EL1 entry/exit and guest
* ARCH_WORKAROUND_2 handling if the SSBD state allows it to
* be flipped.
*/
if (arm64_get_ssbd_state() == ARM64_SSBD_KERNEL)
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
}
void arm64_set_ssbd_mitigation(bool state)
{
if (this_cpu_has_cap(ARM64_SSBS)) {
if (state)
asm volatile(SET_PSTATE_SSBS(0));
else
asm volatile(SET_PSTATE_SSBS(1));
return;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static bool has_ssbd_mitigation(const struct arm64_cpu_capabilities *entry,
int scope)
{
struct arm_smccc_res res;
bool required = true;
s32 val;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (this_cpu_has_cap(ARM64_SSBS)) {
required = false;
goto out_printmsg;
}
if (psci_ops.smccc_version == SMCCC_VERSION_1_0) {
ssbd_state = ARM64_SSBD_UNKNOWN;
return false;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
default:
ssbd_state = ARM64_SSBD_UNKNOWN;
return false;
}
val = (s32)res.a0;
switch (val) {
case SMCCC_RET_NOT_SUPPORTED:
ssbd_state = ARM64_SSBD_UNKNOWN;
return false;
case SMCCC_RET_NOT_REQUIRED:
pr_info_once("%s mitigation not required\n", entry->desc);
ssbd_state = ARM64_SSBD_MITIGATED;
return false;
case SMCCC_RET_SUCCESS:
required = true;
break;
case 1: /* Mitigation not required on this CPU */
required = false;
break;
default:
WARN_ON(1);
return false;
}
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
arm64_set_ssbd_mitigation(false);
required = false;
break;
case ARM64_SSBD_KERNEL:
if (required) {
__this_cpu_write(arm64_ssbd_callback_required, 1);
arm64_set_ssbd_mitigation(true);
}
break;
case ARM64_SSBD_FORCE_ENABLE:
arm64_set_ssbd_mitigation(true);
required = true;
break;
default:
WARN_ON(1);
break;
}
out_printmsg:
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
pr_info_once("%s disabled from command-line\n", entry->desc);
break;
case ARM64_SSBD_FORCE_ENABLE:
pr_info_once("%s forced from command-line\n", entry->desc);
break;
}
return required;
}
#endif /* CONFIG_ARM64_SSBD */
static void __maybe_unused
cpu_enable_cache_maint_trap(const struct arm64_cpu_capabilities *__unused)
{
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCI, 0);
}
#define CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_ALL_VERSIONS(model) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_ALL_VERSIONS(model)
#define MIDR_FIXED(rev, revidr_mask) \
.fixed_revs = (struct arm64_midr_revidr[]){{ (rev), (revidr_mask) }, {}}
#define ERRATA_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_RANGE_LIST(list) \
.matches = is_affected_midr_range_list, \
.midr_range_list = list
/* Errata affecting a range of revisions of given model variant */
#define ERRATA_MIDR_REV_RANGE(m, var, r_min, r_max) \
ERRATA_MIDR_RANGE(m, var, r_min, var, r_max)
/* Errata affecting a single variant/revision of a model */
#define ERRATA_MIDR_REV(model, var, rev) \
ERRATA_MIDR_RANGE(model, var, rev, var, rev)
/* Errata affecting all variants/revisions of a given a model */
#define ERRATA_MIDR_ALL_VERSIONS(model) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_ALL_VERSIONS(model)
/* Errata affecting a list of midr ranges, with same work around */
#define ERRATA_MIDR_RANGE_LIST(midr_list) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE_LIST(midr_list)
arm64: capabilities: Handle shared entries Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af41f2e6818ed ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:46 +07:00
/*
* Generic helper for handling capabilties with multiple (match,enable) pairs
* of call backs, sharing the same capability bit.
* Iterate over each entry to see if at least one matches.
*/
static bool __maybe_unused
multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, int scope)
arm64: capabilities: Handle shared entries Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af41f2e6818ed ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:46 +07:00
{
const struct arm64_cpu_capabilities *caps;
for (caps = entry->match_list; caps->matches; caps++)
if (caps->matches(caps, scope))
return true;
return false;
}
/*
* Take appropriate action for all matching entries in the shared capability
* entry.
*/
static void __maybe_unused
arm64: capabilities: Handle shared entries Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af41f2e6818ed ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:46 +07:00
multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
{
const struct arm64_cpu_capabilities *caps;
arm64: capabilities: Handle shared entries Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af41f2e6818ed ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:46 +07:00
for (caps = entry->match_list; caps->matches; caps++)
if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
caps->cpu_enable)
caps->cpu_enable(caps);
}
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
/*
* List of CPUs where we need to issue a psci call to
* harden the branch predictor.
*/
static const struct midr_range arm64_bp_harden_smccc_cpus[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A75),
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR_V1),
MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR),
MIDR_ALL_VERSIONS(MIDR_NVIDIA_DENVER),
{},
};
#endif
#ifdef CONFIG_HARDEN_EL2_VECTORS
static const struct midr_range arm64_harden_el2_vectors[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
{},
};
#endif
const struct arm64_cpu_capabilities arm64_errata[] = {
#if defined(CONFIG_ARM64_ERRATUM_826319) || \
defined(CONFIG_ARM64_ERRATUM_827319) || \
defined(CONFIG_ARM64_ERRATUM_824069)
{
/* Cortex-A53 r0p[012] */
.desc = "ARM errata 826319, 827319, 824069",
.capability = ARM64_WORKAROUND_CLEAN_CACHE,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 2),
2018-03-26 21:12:28 +07:00
.cpu_enable = cpu_enable_cache_maint_trap,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_819472
{
/* Cortex-A53 r0p[01] */
.desc = "ARM errata 819472",
.capability = ARM64_WORKAROUND_CLEAN_CACHE,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 1),
2018-03-26 21:12:28 +07:00
.cpu_enable = cpu_enable_cache_maint_trap,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_832075
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 832075",
.capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_834220
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 834220",
.capability = ARM64_WORKAROUND_834220,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_843419
{
/* Cortex-A53 r0p[01234] */
.desc = "ARM erratum 843419",
.capability = ARM64_WORKAROUND_843419,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
MIDR_FIXED(0x4, BIT(8)),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_845719
{
/* Cortex-A53 r0p[01234] */
.desc = "ARM erratum 845719",
.capability = ARM64_WORKAROUND_845719,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_23154
{
/* Cavium ThunderX, pass 1.x */
.desc = "Cavium erratum 23154",
.capability = ARM64_WORKAROUND_CAVIUM_23154,
ERRATA_MIDR_REV_RANGE(MIDR_THUNDERX, 0, 0, 1),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_27456
{
/* Cavium ThunderX, T88 pass 1.x - 2.1 */
.desc = "Cavium erratum 27456",
.capability = ARM64_WORKAROUND_CAVIUM_27456,
ERRATA_MIDR_RANGE(MIDR_THUNDERX,
0, 0,
1, 1),
},
{
/* Cavium ThunderX, T81 pass 1.0 */
.desc = "Cavium erratum 27456",
.capability = ARM64_WORKAROUND_CAVIUM_27456,
ERRATA_MIDR_REV(MIDR_THUNDERX_81XX, 0, 0),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_30115
{
/* Cavium ThunderX, T88 pass 1.x - 2.2 */
.desc = "Cavium erratum 30115",
.capability = ARM64_WORKAROUND_CAVIUM_30115,
ERRATA_MIDR_RANGE(MIDR_THUNDERX,
0, 0,
1, 2),
},
{
/* Cavium ThunderX, T81 pass 1.0 - 1.2 */
.desc = "Cavium erratum 30115",
.capability = ARM64_WORKAROUND_CAVIUM_30115,
ERRATA_MIDR_REV_RANGE(MIDR_THUNDERX_81XX, 0, 0, 2),
},
{
/* Cavium ThunderX, T83 pass 1.0 */
.desc = "Cavium erratum 30115",
.capability = ARM64_WORKAROUND_CAVIUM_30115,
ERRATA_MIDR_REV(MIDR_THUNDERX_83XX, 0, 0),
},
#endif
{
.desc = "Mismatched cache type (CTR_EL0)",
.capability = ARM64_MISMATCHED_CACHE_TYPE,
.matches = has_mismatched_cache_type,
arm64: capabilities: Add flags to handle the conflicts on late CPU When a CPU is brought up, it is checked against the caps that are known to be enabled on the system (via verify_local_cpu_capabilities()). Based on the state of the capability on the CPU vs. that of System we could have the following combinations of conflict. x-----------------------------x | Type | System | Late CPU | |-----------------------------| | a | y | n | |-----------------------------| | b | n | y | x-----------------------------x Case (a) is not permitted for caps which are system features, which the system expects all the CPUs to have (e.g VHE). While (a) is ignored for all errata work arounds. However, there could be exceptions to the plain filtering approach. e.g, KPTI is an optional feature for a late CPU as long as the system already enables it. Case (b) is not permitted for errata work arounds that cannot be activated after the kernel has finished booting.And we ignore (b) for features. Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we are too late to enable it (because we change the allocation of ASIDs etc). Add two different flags to indicate how the conflict should be handled. ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability. Now that we have the flags to describe the behavior of the errata and the features, as we treat them, define types for ERRATUM and FEATURE. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:32 +07:00
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
2018-03-26 21:12:28 +07:00
.cpu_enable = cpu_enable_trap_ctr_access,
},
arm64: Work around Falkor erratum 1003 The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum is triggered, page table entries using the new translation table base address (BADDR) will be allocated into the TLB using the old ASID. All circumstances leading to the incorrect ASID being cached in the TLB arise when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory operation is in the process of performing a translation using the specific TTBRx_EL1 being written, and the memory operation uses a translation table descriptor designated as non-global. EL2 and EL3 code changing the EL1&0 ASID is not subject to this erratum because hardware is prohibited from performing translations from an out-of-context translation regime. Consider the following pseudo code. write new BADDR and ASID values to TTBRx_EL1 Replacing the above sequence with the one below will ensure that no TLB entries with an incorrect ASID are used by software. write reserved value to TTBRx_EL1[ASID] ISB write new value to TTBRx_EL1[BADDR] ISB write new value to TTBRx_EL1[ASID] ISB When the above sequence is used, page table entries using the new BADDR value may still be incorrectly allocated into the TLB using the reserved ASID. Yet this will not reduce functionality, since TLB entries incorrectly tagged with the reserved ASID will never be hit by a later instruction. Based on work by Shanker Donthineni <shankerd@codeaurora.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Christopher Covington <cov@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-09 03:08:37 +07:00
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
{
.desc = "Qualcomm Technologies Falkor erratum 1003",
.capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0),
arm64: Work around Falkor erratum 1003 The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum is triggered, page table entries using the new translation table base address (BADDR) will be allocated into the TLB using the old ASID. All circumstances leading to the incorrect ASID being cached in the TLB arise when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory operation is in the process of performing a translation using the specific TTBRx_EL1 being written, and the memory operation uses a translation table descriptor designated as non-global. EL2 and EL3 code changing the EL1&0 ASID is not subject to this erratum because hardware is prohibited from performing translations from an out-of-context translation regime. Consider the following pseudo code. write new BADDR and ASID values to TTBRx_EL1 Replacing the above sequence with the one below will ensure that no TLB entries with an incorrect ASID are used by software. write reserved value to TTBRx_EL1[ASID] ISB write new value to TTBRx_EL1[BADDR] ISB write new value to TTBRx_EL1[ASID] ISB When the above sequence is used, page table entries using the new BADDR value may still be incorrectly allocated into the TLB using the reserved ASID. Yet this will not reduce functionality, since TLB entries incorrectly tagged with the reserved ASID will never be hit by a later instruction. Based on work by Shanker Donthineni <shankerd@codeaurora.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Christopher Covington <cov@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-09 03:08:37 +07:00
},
{
.desc = "Qualcomm Technologies Kryo erratum 1003",
.capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
arm64: capabilities: Add flags to handle the conflicts on late CPU When a CPU is brought up, it is checked against the caps that are known to be enabled on the system (via verify_local_cpu_capabilities()). Based on the state of the capability on the CPU vs. that of System we could have the following combinations of conflict. x-----------------------------x | Type | System | Late CPU | |-----------------------------| | a | y | n | |-----------------------------| | b | n | y | x-----------------------------x Case (a) is not permitted for caps which are system features, which the system expects all the CPUs to have (e.g VHE). While (a) is ignored for all errata work arounds. However, there could be exceptions to the plain filtering approach. e.g, KPTI is an optional feature for a late CPU as long as the system already enables it. Case (b) is not permitted for errata work arounds that cannot be activated after the kernel has finished booting.And we ignore (b) for features. Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we are too late to enable it (because we change the allocation of ASIDs etc). Add two different flags to indicate how the conflict should be handled. ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability. Now that we have the flags to describe the behavior of the errata and the features, as we treat them, define types for ERRATUM and FEATURE. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 21:12:32 +07:00
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.midr_range.model = MIDR_QCOM_KRYO,
.matches = is_kryo_midr,
},
arm64: Work around Falkor erratum 1003 The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum is triggered, page table entries using the new translation table base address (BADDR) will be allocated into the TLB using the old ASID. All circumstances leading to the incorrect ASID being cached in the TLB arise when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory operation is in the process of performing a translation using the specific TTBRx_EL1 being written, and the memory operation uses a translation table descriptor designated as non-global. EL2 and EL3 code changing the EL1&0 ASID is not subject to this erratum because hardware is prohibited from performing translations from an out-of-context translation regime. Consider the following pseudo code. write new BADDR and ASID values to TTBRx_EL1 Replacing the above sequence with the one below will ensure that no TLB entries with an incorrect ASID are used by software. write reserved value to TTBRx_EL1[ASID] ISB write new value to TTBRx_EL1[BADDR] ISB write new value to TTBRx_EL1[ASID] ISB When the above sequence is used, page table entries using the new BADDR value may still be incorrectly allocated into the TLB using the reserved ASID. Yet this will not reduce functionality, since TLB entries incorrectly tagged with the reserved ASID will never be hit by a later instruction. Based on work by Shanker Donthineni <shankerd@codeaurora.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Christopher Covington <cov@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-09 03:08:37 +07:00
#endif
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009
{
.desc = "Qualcomm Technologies Falkor erratum 1009",
.capability = ARM64_WORKAROUND_REPEAT_TLBI,
ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
/* Cortex-A73 all versions */
.desc = "ARM erratum 858921",
.capability = ARM64_WORKAROUND_858921,
ERRATA_MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
},
#endif
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
{
.capability = ARM64_HARDEN_BRANCH_PREDICTOR,
.cpu_enable = enable_smccc_arch_workaround_1,
ERRATA_MIDR_RANGE_LIST(arm64_bp_harden_smccc_cpus),
},
#endif
#ifdef CONFIG_HARDEN_EL2_VECTORS
{
.desc = "EL2 vector hardening",
.capability = ARM64_HARDEN_EL2_VECTORS,
ERRATA_MIDR_RANGE_LIST(arm64_harden_el2_vectors),
},
#endif
#ifdef CONFIG_ARM64_SSBD
{
.desc = "Speculative Store Bypass Disable",
.capability = ARM64_SSBD,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_ssbd_mitigation,
},
#endif
{
}
};