linux_dsm_epyc7002/arch/powerpc/kernel/vdso32/vdso32.lds.S

162 lines
3.8 KiB
ArmAsm
Raw Normal View History

/*
* This is the infamous ld script for the 32 bits vdso
* library
*/
#include <asm/vdso.h>
#ifdef __LITTLE_ENDIAN__
OUTPUT_FORMAT("elf32-powerpcle", "elf32-powerpcle", "elf32-powerpcle")
#else
OUTPUT_FORMAT("elf32-powerpc", "elf32-powerpc", "elf32-powerpc")
#endif
OUTPUT_ARCH(powerpc:common)
ENTRY(_start)
SECTIONS
{
. = VDSO32_LBASE + SIZEOF_HEADERS;
.hash : { *(.hash) } :text
.gnu.hash : { *(.gnu.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.note : { *(.note.*) } :text :note
. = ALIGN(16);
.text : {
powerpc: Introduce infrastructure for feature sections with alternatives The current feature section logic only supports nop'ing out code, this means if you want to choose at runtime between instruction sequences, one or both cases will have to execute the nop'ed out contents of the other section, eg: BEGIN_FTR_SECTION or 1,1,1 END_FTR_SECTION_IFSET(FOO) BEGIN_FTR_SECTION or 2,2,2 END_FTR_SECTION_IFCLR(FOO) and the resulting code will be either, or 1,1,1 nop or, nop or 2,2,2 For small code segments this is fine, but for larger code blocks and in performance criticial code segments, it would be nice to avoid the nops. This commit starts to implement logic to allow the following: BEGIN_FTR_SECTION or 1,1,1 FTR_SECTION_ELSE or 2,2,2 ALT_FTR_SECTION_END_IFSET(FOO) and the resulting code will be: or 1,1,1 or, or 2,2,2 We achieve this by extending the existing FTR macros. The current feature section semantic just becomes a special case, ie. if the else case is empty we nop out the default case. The key limitation is that the size of the else case must be less than or equal to the size of the default case. If the else case is smaller the remainder of the section is nop'ed. We let the linker put the else case code in with the rest of the text, so that relative branches from the else case are more likley to link, this has the disadvantage that we can't free the unused else cases. This commit introduces the required macro and linker script changes, but does not enable the patching of the alternative sections. We also need to update two hand-made section entries in reg.h and timex.h Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-06-24 08:32:54 +07:00
*(.text .stub .text.* .gnu.linkonce.t.* __ftr_alt_*)
} :text
PROVIDE(__etext = .);
PROVIDE(_etext = .);
PROVIDE(etext = .);
. = ALIGN(8);
__ftr_fixup : { *(__ftr_fixup) }
[POWERPC] Support feature fixups in vdso's This patch reworks the feature fixup mecanism so vdso's can be fixed up. The main issue was that the construct: .long label (or .llong on 64 bits) will not work in the case of a shared library like the vdso. It will generate an empty placeholder in the fixup table along with a reloc, which is not something we can deal with in the vdso. The idea here (thanks Alan Modra !) is to instead use something like: 1: .long label - 1b That is, the feature fixup tables no longer contain addresses of bits of code to patch, but offsets of such code from the fixup table entry itself. That is properly resolved by ld when building the .so's. I've modified the fixup mecanism generically to use that method for the rest of the kernel as well. Another trick is that the 32 bits vDSO included in the 64 bits kernel need to have a table in the 64 bits format. However, gas does not support 32 bits code with a statement of the form: .llong label - 1b (Or even just .llong label) That is, it cannot emit the right fixup/relocation for the linker to use to assign a 32 bits address to an .llong field. Thus, in the specific case of the 32 bits vdso built as part of the 64 bits kernel, we are using a modified macro that generates: .long 0xffffffff .llong label - 1b Note that is assumes that the value is negative which is enforced by the .lds (those offsets are always negative as the .text is always before the fixup table and gas doesn't support emiting the reloc the other way around). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-20 08:47:18 +07:00
. = ALIGN(8);
__mmu_ftr_fixup : { *(__mmu_ftr_fixup) }
. = ALIGN(8);
__lwsync_fixup : { *(__lwsync_fixup) }
[POWERPC] Support feature fixups in vdso's This patch reworks the feature fixup mecanism so vdso's can be fixed up. The main issue was that the construct: .long label (or .llong on 64 bits) will not work in the case of a shared library like the vdso. It will generate an empty placeholder in the fixup table along with a reloc, which is not something we can deal with in the vdso. The idea here (thanks Alan Modra !) is to instead use something like: 1: .long label - 1b That is, the feature fixup tables no longer contain addresses of bits of code to patch, but offsets of such code from the fixup table entry itself. That is properly resolved by ld when building the .so's. I've modified the fixup mecanism generically to use that method for the rest of the kernel as well. Another trick is that the 32 bits vDSO included in the 64 bits kernel need to have a table in the 64 bits format. However, gas does not support 32 bits code with a statement of the form: .llong label - 1b (Or even just .llong label) That is, it cannot emit the right fixup/relocation for the linker to use to assign a 32 bits address to an .llong field. Thus, in the specific case of the 32 bits vdso built as part of the 64 bits kernel, we are using a modified macro that generates: .long 0xffffffff .llong label - 1b Note that is assumes that the value is negative which is enforced by the .lds (those offsets are always negative as the .text is always before the fixup table and gas doesn't support emiting the reloc the other way around). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-20 08:47:18 +07:00
#ifdef CONFIG_PPC64
. = ALIGN(8);
__fw_ftr_fixup : { *(__fw_ftr_fixup) }
[POWERPC] Support feature fixups in vdso's This patch reworks the feature fixup mecanism so vdso's can be fixed up. The main issue was that the construct: .long label (or .llong on 64 bits) will not work in the case of a shared library like the vdso. It will generate an empty placeholder in the fixup table along with a reloc, which is not something we can deal with in the vdso. The idea here (thanks Alan Modra !) is to instead use something like: 1: .long label - 1b That is, the feature fixup tables no longer contain addresses of bits of code to patch, but offsets of such code from the fixup table entry itself. That is properly resolved by ld when building the .so's. I've modified the fixup mecanism generically to use that method for the rest of the kernel as well. Another trick is that the 32 bits vDSO included in the 64 bits kernel need to have a table in the 64 bits format. However, gas does not support 32 bits code with a statement of the form: .llong label - 1b (Or even just .llong label) That is, it cannot emit the right fixup/relocation for the linker to use to assign a 32 bits address to an .llong field. Thus, in the specific case of the 32 bits vdso built as part of the 64 bits kernel, we are using a modified macro that generates: .long 0xffffffff .llong label - 1b Note that is assumes that the value is negative which is enforced by the .lds (those offsets are always negative as the .text is always before the fixup table and gas doesn't support emiting the reloc the other way around). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-20 08:47:18 +07:00
#endif
/*
* Other stuff is appended to the text segment:
*/
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }
.rodata1 : { *(.rodata1) }
.eh_frame_hdr : { *(.eh_frame_hdr) } :text :eh_frame_hdr
.eh_frame : { KEEP (*(.eh_frame)) } :text
.gcc_except_table : { *(.gcc_except_table) }
.fixup : { *(.fixup) }
.dynamic : { *(.dynamic) } :text :dynamic
.got : { *(.got) } :text
.plt : { *(.plt) }
_end = .;
__end = .;
PROVIDE(end = .);
/*
* Stabs debugging sections are here too.
*/
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/*
* DWARF debug sections.
* Symbols in the DWARF debugging sections are relative to the beginning
* of the section so we begin them at 0.
*/
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/DISCARD/ : {
*(.note.GNU-stack)
*(.data .data.* .gnu.linkonce.d.* .sdata*)
*(.bss .sbss .dynbss .dynsbss)
}
}
/*
* Very old versions of ld do not recognize this name token; use the constant.
*/
#define PT_GNU_EH_FRAME 0x6474e550
/*
* We must supply the ELF program headers explicitly to get just one
* PT_LOAD segment, and set the flags explicitly to make segments read-only.
*/
PHDRS
{
text PT_LOAD FILEHDR PHDRS FLAGS(5); /* PF_R|PF_X */
dynamic PT_DYNAMIC FLAGS(4); /* PF_R */
note PT_NOTE FLAGS(4); /* PF_R */
eh_frame_hdr PT_GNU_EH_FRAME;
}
/*
* This controls what symbols we export from the DSO.
*/
VERSION
{
VDSO_VERSION_STRING {
global:
/*
* Has to be there for the kernel to find
*/
__kernel_datapage_offset;
__kernel_get_syscall_map;
__kernel_gettimeofday;
__kernel_clock_gettime;
__kernel_clock_getres;
__kernel_get_tbfreq;
__kernel_sync_dicache;
__kernel_sync_dicache_p5;
__kernel_sigtramp32;
__kernel_sigtramp_rt32;
#ifdef CONFIG_PPC64
__kernel_getcpu;
#endif
__kernel_time;
local: *;
};
}