linux_dsm_epyc7002/drivers/i2c/busses/i2c-rcar.c

1033 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Renesas R-Car I2C unit
*
* Copyright (C) 2014-15 Wolfram Sang <wsa@sang-engineering.com>
* Copyright (C) 2011-2015 Renesas Electronics Corporation
*
* Copyright (C) 2012-14 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This file is based on the drivers/i2c/busses/i2c-sh7760.c
* (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
/* register offsets */
#define ICSCR 0x00 /* slave ctrl */
#define ICMCR 0x04 /* master ctrl */
#define ICSSR 0x08 /* slave status */
#define ICMSR 0x0C /* master status */
#define ICSIER 0x10 /* slave irq enable */
#define ICMIER 0x14 /* master irq enable */
#define ICCCR 0x18 /* clock dividers */
#define ICSAR 0x1C /* slave address */
#define ICMAR 0x20 /* master address */
#define ICRXTX 0x24 /* data port */
#define ICDMAER 0x3c /* DMA enable */
#define ICFBSCR 0x38 /* first bit setup cycle */
/* ICSCR */
#define SDBS (1 << 3) /* slave data buffer select */
#define SIE (1 << 2) /* slave interface enable */
#define GCAE (1 << 1) /* general call address enable */
#define FNA (1 << 0) /* forced non acknowledgment */
/* ICMCR */
#define MDBS (1 << 7) /* non-fifo mode switch */
#define FSCL (1 << 6) /* override SCL pin */
#define FSDA (1 << 5) /* override SDA pin */
#define OBPC (1 << 4) /* override pins */
#define MIE (1 << 3) /* master if enable */
#define TSBE (1 << 2)
#define FSB (1 << 1) /* force stop bit */
#define ESG (1 << 0) /* enable start bit gen */
/* ICSSR (also for ICSIER) */
#define GCAR (1 << 6) /* general call received */
#define STM (1 << 5) /* slave transmit mode */
#define SSR (1 << 4) /* stop received */
#define SDE (1 << 3) /* slave data empty */
#define SDT (1 << 2) /* slave data transmitted */
#define SDR (1 << 1) /* slave data received */
#define SAR (1 << 0) /* slave addr received */
/* ICMSR (also for ICMIE) */
#define MNR (1 << 6) /* nack received */
#define MAL (1 << 5) /* arbitration lost */
#define MST (1 << 4) /* sent a stop */
#define MDE (1 << 3)
#define MDT (1 << 2)
#define MDR (1 << 1)
#define MAT (1 << 0) /* slave addr xfer done */
/* ICDMAER */
#define RSDMAE (1 << 3) /* DMA Slave Received Enable */
#define TSDMAE (1 << 2) /* DMA Slave Transmitted Enable */
#define RMDMAE (1 << 1) /* DMA Master Received Enable */
#define TMDMAE (1 << 0) /* DMA Master Transmitted Enable */
/* ICFBSCR */
#define TCYC06 0x04 /* 6*Tcyc delay 1st bit between SDA and SCL */
#define TCYC17 0x0f /* 17*Tcyc delay 1st bit between SDA and SCL */
#define RCAR_BUS_PHASE_START (MDBS | MIE | ESG)
#define RCAR_BUS_PHASE_DATA (MDBS | MIE)
#define RCAR_BUS_MASK_DATA (~(ESG | FSB) & 0xFF)
#define RCAR_BUS_PHASE_STOP (MDBS | MIE | FSB)
#define RCAR_IRQ_SEND (MNR | MAL | MST | MAT | MDE)
#define RCAR_IRQ_RECV (MNR | MAL | MST | MAT | MDR)
#define RCAR_IRQ_STOP (MST)
#define RCAR_IRQ_ACK_SEND (~(MAT | MDE) & 0x7F)
#define RCAR_IRQ_ACK_RECV (~(MAT | MDR) & 0x7F)
#define ID_LAST_MSG (1 << 0)
#define ID_FIRST_MSG (1 << 1)
#define ID_DONE (1 << 2)
#define ID_ARBLOST (1 << 3)
#define ID_NACK (1 << 4)
/* persistent flags */
#define ID_P_REP_AFTER_RD BIT(29)
#define ID_P_NO_RXDMA BIT(30) /* HW forbids RXDMA sometimes */
#define ID_P_PM_BLOCKED BIT(31)
#define ID_P_MASK GENMASK(31, 29)
enum rcar_i2c_type {
I2C_RCAR_GEN1,
I2C_RCAR_GEN2,
I2C_RCAR_GEN3,
};
struct rcar_i2c_priv {
void __iomem *io;
struct i2c_adapter adap;
struct i2c_msg *msg;
int msgs_left;
struct clk *clk;
wait_queue_head_t wait;
int pos;
u32 icccr;
u32 flags;
u8 recovery_icmcr; /* protected by adapter lock */
enum rcar_i2c_type devtype;
struct i2c_client *slave;
struct resource *res;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
struct scatterlist sg;
enum dma_data_direction dma_direction;
struct reset_control *rstc;
};
#define rcar_i2c_priv_to_dev(p) ((p)->adap.dev.parent)
#define rcar_i2c_is_recv(p) ((p)->msg->flags & I2C_M_RD)
#define LOOP_TIMEOUT 1024
static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
{
writel(val, priv->io + reg);
}
static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
{
return readl(priv->io + reg);
}
static int rcar_i2c_get_scl(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !!(rcar_i2c_read(priv, ICMCR) & FSCL);
};
static void rcar_i2c_set_scl(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSCL;
else
priv->recovery_icmcr &= ~FSCL;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
};
static void rcar_i2c_set_sda(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSDA;
else
priv->recovery_icmcr &= ~FSDA;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
};
static int rcar_i2c_get_bus_free(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !(rcar_i2c_read(priv, ICMCR) & FSDA);
};
static struct i2c_bus_recovery_info rcar_i2c_bri = {
.get_scl = rcar_i2c_get_scl,
.set_scl = rcar_i2c_set_scl,
.set_sda = rcar_i2c_set_sda,
.get_bus_free = rcar_i2c_get_bus_free,
.recover_bus = i2c_generic_scl_recovery,
};
static void rcar_i2c_init(struct rcar_i2c_priv *priv)
{
/* reset master mode */
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMCR, MDBS);
rcar_i2c_write(priv, ICMSR, 0);
/* start clock */
rcar_i2c_write(priv, ICCCR, priv->icccr);
}
static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
{
int i;
for (i = 0; i < LOOP_TIMEOUT; i++) {
/* make sure that bus is not busy */
if (!(rcar_i2c_read(priv, ICMCR) & FSDA))
return 0;
udelay(1);
}
/* Waiting did not help, try to recover */
priv->recovery_icmcr = MDBS | OBPC | FSDA | FSCL;
return i2c_recover_bus(&priv->adap);
}
static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv, struct i2c_timings *t)
{
u32 scgd, cdf, round, ick, sum, scl, cdf_width;
unsigned long rate;
struct device *dev = rcar_i2c_priv_to_dev(priv);
/* Fall back to previously used values if not supplied */
t->bus_freq_hz = t->bus_freq_hz ?: 100000;
t->scl_fall_ns = t->scl_fall_ns ?: 35;
t->scl_rise_ns = t->scl_rise_ns ?: 200;
t->scl_int_delay_ns = t->scl_int_delay_ns ?: 50;
switch (priv->devtype) {
case I2C_RCAR_GEN1:
cdf_width = 2;
break;
case I2C_RCAR_GEN2:
case I2C_RCAR_GEN3:
cdf_width = 3;
break;
default:
dev_err(dev, "device type error\n");
return -EIO;
}
/*
* calculate SCL clock
* see
* ICCCR
*
* ick = clkp / (1 + CDF)
* SCL = ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
*
* ick : I2C internal clock < 20 MHz
* ticf : I2C SCL falling time
* tr : I2C SCL rising time
* intd : LSI internal delay
* clkp : peripheral_clk
* F[] : integer up-valuation
*/
rate = clk_get_rate(priv->clk);
cdf = rate / 20000000;
if (cdf >= 1U << cdf_width) {
dev_err(dev, "Input clock %lu too high\n", rate);
return -EIO;
}
ick = rate / (cdf + 1);
/*
* it is impossible to calculate large scale
* number on u32. separate it
*
* F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
* = F[sum * ick / 1000000000]
* = F[(ick / 1000000) * sum / 1000]
*/
sum = t->scl_fall_ns + t->scl_rise_ns + t->scl_int_delay_ns;
round = (ick + 500000) / 1000000 * sum;
round = (round + 500) / 1000;
/*
* SCL = ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
*
* Calculation result (= SCL) should be less than
* bus_speed for hardware safety
*
* We could use something along the lines of
* div = ick / (bus_speed + 1) + 1;
* scgd = (div - 20 - round + 7) / 8;
* scl = ick / (20 + (scgd * 8) + round);
* (not fully verified) but that would get pretty involved
*/
for (scgd = 0; scgd < 0x40; scgd++) {
scl = ick / (20 + (scgd * 8) + round);
if (scl <= t->bus_freq_hz)
goto scgd_find;
}
dev_err(dev, "it is impossible to calculate best SCL\n");
return -EIO;
scgd_find:
dev_dbg(dev, "clk %d/%d(%lu), round %u, CDF:0x%x, SCGD: 0x%x\n",
scl, t->bus_freq_hz, clk_get_rate(priv->clk), round, cdf, scgd);
/* keep icccr value */
priv->icccr = scgd << cdf_width | cdf;
return 0;
}
static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
{
int read = !!rcar_i2c_is_recv(priv);
priv->pos = 0;
if (priv->msgs_left == 1)
priv->flags |= ID_LAST_MSG;
rcar_i2c_write(priv, ICMAR, i2c_8bit_addr_from_msg(priv->msg));
/*
* We don't have a test case but the HW engineers say that the write order
* of ICMSR and ICMCR depends on whether we issue START or REP_START. Since
* it didn't cause a drawback for me, let's rather be safe than sorry.
*/
if (priv->flags & ID_FIRST_MSG) {
rcar_i2c_write(priv, ICMSR, 0);
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
} else {
if (priv->flags & ID_P_REP_AFTER_RD)
priv->flags &= ~ID_P_REP_AFTER_RD;
else
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
rcar_i2c_write(priv, ICMSR, 0);
}
rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
}
static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
{
priv->msg++;
priv->msgs_left--;
priv->flags &= ID_P_MASK;
rcar_i2c_prepare_msg(priv);
}
/*
* interrupt functions
*/
static void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv)
{
struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
? priv->dma_rx : priv->dma_tx;
/* Disable DMA Master Received/Transmitted */
rcar_i2c_write(priv, ICDMAER, 0);
/* Reset default delay */
rcar_i2c_write(priv, ICFBSCR, TCYC06);
dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
sg_dma_len(&priv->sg), priv->dma_direction);
/* Gen3 can only do one RXDMA per transfer and we just completed it */
if (priv->devtype == I2C_RCAR_GEN3 &&
priv->dma_direction == DMA_FROM_DEVICE)
priv->flags |= ID_P_NO_RXDMA;
priv->dma_direction = DMA_NONE;
}
static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv)
{
if (priv->dma_direction == DMA_NONE)
return;
else if (priv->dma_direction == DMA_FROM_DEVICE)
dmaengine_terminate_all(priv->dma_rx);
else if (priv->dma_direction == DMA_TO_DEVICE)
dmaengine_terminate_all(priv->dma_tx);
rcar_i2c_dma_unmap(priv);
}
static void rcar_i2c_dma_callback(void *data)
{
struct rcar_i2c_priv *priv = data;
priv->pos += sg_dma_len(&priv->sg);
rcar_i2c_dma_unmap(priv);
}
static void rcar_i2c_dma(struct rcar_i2c_priv *priv)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
struct i2c_msg *msg = priv->msg;
bool read = msg->flags & I2C_M_RD;
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
struct dma_async_tx_descriptor *txdesc;
dma_addr_t dma_addr;
dma_cookie_t cookie;
unsigned char *buf;
int len;
/* Do various checks to see if DMA is feasible at all */
if (IS_ERR(chan) || msg->len < 8 || !(msg->flags & I2C_M_DMA_SAFE) ||
(read && priv->flags & ID_P_NO_RXDMA))
return;
if (read) {
/*
* The last two bytes needs to be fetched using PIO in
* order for the STOP phase to work.
*/
buf = priv->msg->buf;
len = priv->msg->len - 2;
} else {
/*
* First byte in message was sent using PIO.
*/
buf = priv->msg->buf + 1;
len = priv->msg->len - 1;
}
dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
if (dma_mapping_error(chan->device->dev, dma_addr)) {
dev_dbg(dev, "dma map failed, using PIO\n");
return;
}
sg_dma_len(&priv->sg) = len;
sg_dma_address(&priv->sg) = dma_addr;
priv->dma_direction = dir;
txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc) {
dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
rcar_i2c_cleanup_dma(priv);
return;
}
txdesc->callback = rcar_i2c_dma_callback;
txdesc->callback_param = priv;
cookie = dmaengine_submit(txdesc);
if (dma_submit_error(cookie)) {
dev_dbg(dev, "submitting dma failed, using PIO\n");
rcar_i2c_cleanup_dma(priv);
return;
}
/* Set delay for DMA operations */
rcar_i2c_write(priv, ICFBSCR, TCYC17);
/* Enable DMA Master Received/Transmitted */
if (read)
rcar_i2c_write(priv, ICDMAER, RMDMAE);
else
rcar_i2c_write(priv, ICDMAER, TMDMAE);
dma_async_issue_pending(chan);
}
static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (!(msr & MDE))
return;
if (priv->pos < msg->len) {
/*
* Prepare next data to ICRXTX register.
* This data will go to _SHIFT_ register.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
priv->pos++;
/*
* Try to use DMA to transmit the rest of the data if
* address transfer phase just finished.
*/
if (msr & MAT)
rcar_i2c_dma(priv);
} else {
/*
* The last data was pushed to ICRXTX on _PREV_ empty irq.
* It is on _SHIFT_ register, and will sent to I2C bus.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
if (priv->flags & ID_LAST_MSG) {
/*
* If current msg is the _LAST_ msg,
* prepare stop condition here.
* ID_DONE will be set on STOP irq.
*/
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
} else {
rcar_i2c_next_msg(priv);
return;
}
}
rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_SEND);
}
static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (!(msr & MDR))
return;
if (msr & MAT) {
/*
* Address transfer phase finished, but no data at this point.
* Try to use DMA to receive data.
*/
rcar_i2c_dma(priv);
} else if (priv->pos < msg->len) {
/* get received data */
msg->buf[priv->pos] = rcar_i2c_read(priv, ICRXTX);
priv->pos++;
}
/* If next received data is the _LAST_, go to new phase. */
if (priv->pos + 1 == msg->len) {
if (priv->flags & ID_LAST_MSG) {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
} else {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
priv->flags |= ID_P_REP_AFTER_RD;
}
}
if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
rcar_i2c_next_msg(priv);
else
rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_RECV);
}
static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
{
u32 ssr_raw, ssr_filtered;
u8 value;
ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
if (!ssr_filtered)
return false;
/* address detected */
if (ssr_filtered & SAR) {
/* read or write request */
if (ssr_raw & STM) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
} else {
i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
rcar_i2c_read(priv, ICRXTX); /* dummy read */
rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
}
rcar_i2c_write(priv, ICSSR, ~SAR & 0xff);
}
/* master sent stop */
if (ssr_filtered & SSR) {
i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
rcar_i2c_write(priv, ICSIER, SAR | SSR);
rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
}
/* master wants to write to us */
if (ssr_filtered & SDR) {
int ret;
value = rcar_i2c_read(priv, ICRXTX);
ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
/* Send NACK in case of error */
rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
}
/* master wants to read from us */
if (ssr_filtered & SDE) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
}
return true;
}
static irqreturn_t rcar_i2c_irq(int irq, void *ptr)
{
struct rcar_i2c_priv *priv = ptr;
u32 msr, val;
/* Clear START or STOP immediately, except for REPSTART after read */
if (likely(!(priv->flags & ID_P_REP_AFTER_RD))) {
val = rcar_i2c_read(priv, ICMCR);
rcar_i2c_write(priv, ICMCR, val & RCAR_BUS_MASK_DATA);
}
msr = rcar_i2c_read(priv, ICMSR);
/* Only handle interrupts that are currently enabled */
msr &= rcar_i2c_read(priv, ICMIER);
if (!msr) {
if (rcar_i2c_slave_irq(priv))
return IRQ_HANDLED;
return IRQ_NONE;
}
/* Arbitration lost */
if (msr & MAL) {
priv->flags |= ID_DONE | ID_ARBLOST;
goto out;
}
/* Nack */
if (msr & MNR) {
/* HW automatically sends STOP after received NACK */
rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
priv->flags |= ID_NACK;
goto out;
}
/* Stop */
if (msr & MST) {
priv->msgs_left--; /* The last message also made it */
priv->flags |= ID_DONE;
goto out;
}
if (rcar_i2c_is_recv(priv))
rcar_i2c_irq_recv(priv, msr);
else
rcar_i2c_irq_send(priv, msr);
out:
if (priv->flags & ID_DONE) {
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMSR, 0);
wake_up(&priv->wait);
}
return IRQ_HANDLED;
}
static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
enum dma_transfer_direction dir,
dma_addr_t port_addr)
{
struct dma_chan *chan;
struct dma_slave_config cfg;
char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
int ret;
chan = dma_request_chan(dev, chan_name);
if (IS_ERR(chan)) {
dev_dbg(dev, "request_channel failed for %s (%ld)\n",
chan_name, PTR_ERR(chan));
return chan;
}
memset(&cfg, 0, sizeof(cfg));
cfg.direction = dir;
if (dir == DMA_MEM_TO_DEV) {
cfg.dst_addr = port_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
} else {
cfg.src_addr = port_addr;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
}
ret = dmaengine_slave_config(chan, &cfg);
if (ret) {
dev_dbg(dev, "slave_config failed for %s (%d)\n",
chan_name, ret);
dma_release_channel(chan);
return ERR_PTR(ret);
}
dev_dbg(dev, "got DMA channel for %s\n", chan_name);
return chan;
}
static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
struct i2c_msg *msg)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
bool read;
struct dma_chan *chan;
enum dma_transfer_direction dir;
read = msg->flags & I2C_M_RD;
chan = read ? priv->dma_rx : priv->dma_tx;
if (PTR_ERR(chan) != -EPROBE_DEFER)
return;
dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
if (read)
priv->dma_rx = chan;
else
priv->dma_tx = chan;
}
static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
{
if (!IS_ERR(priv->dma_tx)) {
dma_release_channel(priv->dma_tx);
priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
}
if (!IS_ERR(priv->dma_rx)) {
dma_release_channel(priv->dma_rx);
priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
}
}
/* I2C is a special case, we need to poll the status of a reset */
static int rcar_i2c_do_reset(struct rcar_i2c_priv *priv)
{
int i, ret;
ret = reset_control_reset(priv->rstc);
if (ret)
return ret;
for (i = 0; i < LOOP_TIMEOUT; i++) {
ret = reset_control_status(priv->rstc);
if (ret == 0)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs,
int num)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
struct device *dev = rcar_i2c_priv_to_dev(priv);
int i, ret;
long time_left;
pm_runtime_get_sync(dev);
/* Gen3 needs a reset before allowing RXDMA once */
if (priv->devtype == I2C_RCAR_GEN3) {
priv->flags |= ID_P_NO_RXDMA;
if (!IS_ERR(priv->rstc)) {
ret = rcar_i2c_do_reset(priv);
if (ret == 0)
priv->flags &= ~ID_P_NO_RXDMA;
}
}
rcar_i2c_init(priv);
ret = rcar_i2c_bus_barrier(priv);
if (ret < 0)
goto out;
for (i = 0; i < num; i++)
rcar_i2c_request_dma(priv, msgs + i);
/* init first message */
priv->msg = msgs;
priv->msgs_left = num;
priv->flags = (priv->flags & ID_P_MASK) | ID_FIRST_MSG;
rcar_i2c_prepare_msg(priv);
time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
num * adap->timeout);
/* cleanup DMA if it couldn't complete properly due to an error */
if (priv->dma_direction != DMA_NONE)
rcar_i2c_cleanup_dma(priv);
if (!time_left) {
rcar_i2c_init(priv);
ret = -ETIMEDOUT;
} else if (priv->flags & ID_NACK) {
ret = -ENXIO;
} else if (priv->flags & ID_ARBLOST) {
ret = -EAGAIN;
} else {
ret = num - priv->msgs_left; /* The number of transfer */
}
out:
pm_runtime_put(dev);
if (ret < 0 && ret != -ENXIO)
dev_err(dev, "error %d : %x\n", ret, priv->flags);
return ret;
}
static int rcar_reg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
if (priv->slave)
return -EBUSY;
if (slave->flags & I2C_CLIENT_TEN)
return -EAFNOSUPPORT;
/* Keep device active for slave address detection logic */
pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
priv->slave = slave;
rcar_i2c_write(priv, ICSAR, slave->addr);
rcar_i2c_write(priv, ICSSR, 0);
rcar_i2c_write(priv, ICSIER, SAR | SSR);
rcar_i2c_write(priv, ICSCR, SIE | SDBS);
return 0;
}
static int rcar_unreg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
WARN_ON(!priv->slave);
rcar_i2c_write(priv, ICSIER, 0);
rcar_i2c_write(priv, ICSCR, 0);
priv->slave = NULL;
pm_runtime_put(rcar_i2c_priv_to_dev(priv));
return 0;
}
static u32 rcar_i2c_func(struct i2c_adapter *adap)
{
/*
* This HW can't do:
* I2C_SMBUS_QUICK (setting FSB during START didn't work)
* I2C_M_NOSTART (automatically sends address after START)
* I2C_M_IGNORE_NAK (automatically sends STOP after NAK)
*/
return I2C_FUNC_I2C | I2C_FUNC_SLAVE |
(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm rcar_i2c_algo = {
.master_xfer = rcar_i2c_master_xfer,
.functionality = rcar_i2c_func,
.reg_slave = rcar_reg_slave,
.unreg_slave = rcar_unreg_slave,
};
static const struct i2c_adapter_quirks rcar_i2c_quirks = {
.flags = I2C_AQ_NO_ZERO_LEN,
};
static const struct of_device_id rcar_i2c_dt_ids[] = {
{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,i2c-rcar", .data = (void *)I2C_RCAR_GEN1 }, /* Deprecated */
{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
{},
};
MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
static int rcar_i2c_probe(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv;
struct i2c_adapter *adap;
struct device *dev = &pdev->dev;
struct i2c_timings i2c_t;
int irq, ret;
priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(dev, "cannot get clock\n");
return PTR_ERR(priv->clk);
}
priv->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->io = devm_ioremap_resource(dev, priv->res);
if (IS_ERR(priv->io))
return PTR_ERR(priv->io);
priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
init_waitqueue_head(&priv->wait);
adap = &priv->adap;
adap->nr = pdev->id;
adap->algo = &rcar_i2c_algo;
adap->class = I2C_CLASS_DEPRECATED;
adap->retries = 3;
adap->dev.parent = dev;
adap->dev.of_node = dev->of_node;
adap->bus_recovery_info = &rcar_i2c_bri;
adap->quirks = &rcar_i2c_quirks;
i2c_set_adapdata(adap, priv);
strlcpy(adap->name, pdev->name, sizeof(adap->name));
i2c_parse_fw_timings(dev, &i2c_t, false);
/* Init DMA */
sg_init_table(&priv->sg, 1);
priv->dma_direction = DMA_NONE;
priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
/* Activate device for clock calculation */
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
ret = rcar_i2c_clock_calculate(priv, &i2c_t);
if (ret < 0)
goto out_pm_put;
if (priv->devtype == I2C_RCAR_GEN3) {
priv->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (!IS_ERR(priv->rstc)) {
ret = reset_control_status(priv->rstc);
if (ret < 0)
priv->rstc = ERR_PTR(-ENOTSUPP);
}
}
/* Stay always active when multi-master to keep arbitration working */
if (of_property_read_bool(dev->of_node, "multi-master"))
priv->flags |= ID_P_PM_BLOCKED;
else
pm_runtime_put(dev);
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(dev, irq, rcar_i2c_irq, 0, dev_name(dev), priv);
if (ret < 0) {
dev_err(dev, "cannot get irq %d\n", irq);
goto out_pm_disable;
}
platform_set_drvdata(pdev, priv);
ret = i2c_add_numbered_adapter(adap);
if (ret < 0)
goto out_pm_disable;
dev_info(dev, "probed\n");
return 0;
out_pm_put:
pm_runtime_put(dev);
out_pm_disable:
pm_runtime_disable(dev);
return ret;
}
static int rcar_i2c_remove(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
i2c_del_adapter(&priv->adap);
rcar_i2c_release_dma(priv);
if (priv->flags & ID_P_PM_BLOCKED)
pm_runtime_put(dev);
pm_runtime_disable(dev);
return 0;
}
static struct platform_driver rcar_i2c_driver = {
.driver = {
.name = "i2c-rcar",
.of_match_table = rcar_i2c_dt_ids,
},
.probe = rcar_i2c_probe,
.remove = rcar_i2c_remove,
};
module_platform_driver(rcar_i2c_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");