linux_dsm_epyc7002/drivers/net/dsa/rtl8366.c

552 lines
12 KiB
C
Raw Normal View History

net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
// SPDX-License-Identifier: GPL-2.0
/* Realtek SMI library helpers for the RTL8366x variants
* RTL8366RB and RTL8366S
*
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
* Copyright (C) 2009-2010 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2010 Antti Seppälä <a.seppala@gmail.com>
* Copyright (C) 2010 Roman Yeryomin <roman@advem.lv>
* Copyright (C) 2011 Colin Leitner <colin.leitner@googlemail.com>
*/
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include "realtek-smi-core.h"
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
int rtl8366_mc_is_used(struct realtek_smi *smi, int mc_index, int *used)
{
int ret;
int i;
*used = 0;
for (i = 0; i < smi->num_ports; i++) {
int index = 0;
ret = smi->ops->get_mc_index(smi, i, &index);
if (ret)
return ret;
if (mc_index == index) {
*used = 1;
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_mc_is_used);
/**
* rtl8366_obtain_mc() - retrieve or allocate a VLAN member configuration
* @smi: the Realtek SMI device instance
* @vid: the VLAN ID to look up or allocate
* @vlanmc: the pointer will be assigned to a pointer to a valid member config
* if successful
* @return: index of a new member config or negative error number
*/
static int rtl8366_obtain_mc(struct realtek_smi *smi, int vid,
struct rtl8366_vlan_mc *vlanmc)
{
struct rtl8366_vlan_4k vlan4k;
int ret;
int i;
/* Try to find an existing member config entry for this VID */
for (i = 0; i < smi->num_vlan_mc; i++) {
ret = smi->ops->get_vlan_mc(smi, i, vlanmc);
if (ret) {
dev_err(smi->dev, "error searching for VLAN MC %d for VID %d\n",
i, vid);
return ret;
}
if (vid == vlanmc->vid)
return i;
}
/* We have no MC entry for this VID, try to find an empty one */
for (i = 0; i < smi->num_vlan_mc; i++) {
ret = smi->ops->get_vlan_mc(smi, i, vlanmc);
if (ret) {
dev_err(smi->dev, "error searching for VLAN MC %d for VID %d\n",
i, vid);
return ret;
}
if (vlanmc->vid == 0 && vlanmc->member == 0) {
/* Update the entry from the 4K table */
ret = smi->ops->get_vlan_4k(smi, vid, &vlan4k);
if (ret) {
dev_err(smi->dev, "error looking for 4K VLAN MC %d for VID %d\n",
i, vid);
return ret;
}
vlanmc->vid = vid;
vlanmc->member = vlan4k.member;
vlanmc->untag = vlan4k.untag;
vlanmc->fid = vlan4k.fid;
ret = smi->ops->set_vlan_mc(smi, i, vlanmc);
if (ret) {
dev_err(smi->dev, "unable to set/update VLAN MC %d for VID %d\n",
i, vid);
return ret;
}
dev_dbg(smi->dev, "created new MC at index %d for VID %d\n",
i, vid);
return i;
}
}
/* MC table is full, try to find an unused entry and replace it */
for (i = 0; i < smi->num_vlan_mc; i++) {
int used;
ret = rtl8366_mc_is_used(smi, i, &used);
if (ret)
return ret;
if (!used) {
/* Update the entry from the 4K table */
ret = smi->ops->get_vlan_4k(smi, vid, &vlan4k);
if (ret)
return ret;
vlanmc->vid = vid;
vlanmc->member = vlan4k.member;
vlanmc->untag = vlan4k.untag;
vlanmc->fid = vlan4k.fid;
ret = smi->ops->set_vlan_mc(smi, i, vlanmc);
if (ret) {
dev_err(smi->dev, "unable to set/update VLAN MC %d for VID %d\n",
i, vid);
return ret;
}
dev_dbg(smi->dev, "recycled MC at index %i for VID %d\n",
i, vid);
return i;
}
}
dev_err(smi->dev, "all VLAN member configurations are in use\n");
return -ENOSPC;
}
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
int rtl8366_set_vlan(struct realtek_smi *smi, int vid, u32 member,
u32 untag, u32 fid)
{
struct rtl8366_vlan_mc vlanmc;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
struct rtl8366_vlan_4k vlan4k;
int mc;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
int ret;
if (!smi->ops->is_vlan_valid(smi, vid))
return -EINVAL;
dev_dbg(smi->dev,
"setting VLAN%d 4k members: 0x%02x, untagged: 0x%02x\n",
vid, member, untag);
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
/* Update the 4K table */
ret = smi->ops->get_vlan_4k(smi, vid, &vlan4k);
if (ret)
return ret;
vlan4k.member |= member;
vlan4k.untag |= untag;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
vlan4k.fid = fid;
ret = smi->ops->set_vlan_4k(smi, &vlan4k);
if (ret)
return ret;
dev_dbg(smi->dev,
"resulting VLAN%d 4k members: 0x%02x, untagged: 0x%02x\n",
vid, vlan4k.member, vlan4k.untag);
/* Find or allocate a member config for this VID */
ret = rtl8366_obtain_mc(smi, vid, &vlanmc);
if (ret < 0)
return ret;
mc = ret;
/* Update the MC entry */
vlanmc.member |= member;
vlanmc.untag |= untag;
vlanmc.fid = fid;
/* Commit updates to the MC entry */
ret = smi->ops->set_vlan_mc(smi, mc, &vlanmc);
if (ret)
dev_err(smi->dev, "failed to commit changes to VLAN MC index %d for VID %d\n",
mc, vid);
else
dev_dbg(smi->dev,
"resulting VLAN%d MC members: 0x%02x, untagged: 0x%02x\n",
vid, vlanmc.member, vlanmc.untag);
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
return ret;
}
EXPORT_SYMBOL_GPL(rtl8366_set_vlan);
int rtl8366_set_pvid(struct realtek_smi *smi, unsigned int port,
unsigned int vid)
{
struct rtl8366_vlan_mc vlanmc;
int mc;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
int ret;
if (!smi->ops->is_vlan_valid(smi, vid))
return -EINVAL;
/* Find or allocate a member config for this VID */
ret = rtl8366_obtain_mc(smi, vid, &vlanmc);
if (ret < 0)
return ret;
mc = ret;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
ret = smi->ops->set_mc_index(smi, port, mc);
if (ret) {
dev_err(smi->dev, "set PVID: failed to set MC index %d for port %d\n",
mc, port);
return ret;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
}
dev_dbg(smi->dev, "set PVID: the PVID for port %d set to %d using existing MC index %d\n",
port, vid, mc);
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
return 0;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
}
EXPORT_SYMBOL_GPL(rtl8366_set_pvid);
int rtl8366_enable_vlan4k(struct realtek_smi *smi, bool enable)
{
int ret;
/* To enable 4k VLAN, ordinary VLAN must be enabled first,
* but if we disable 4k VLAN it is fine to leave ordinary
* VLAN enabled.
*/
if (enable) {
/* Make sure VLAN is ON */
ret = smi->ops->enable_vlan(smi, true);
if (ret)
return ret;
smi->vlan_enabled = true;
}
ret = smi->ops->enable_vlan4k(smi, enable);
if (ret)
return ret;
smi->vlan4k_enabled = enable;
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_enable_vlan4k);
int rtl8366_enable_vlan(struct realtek_smi *smi, bool enable)
{
int ret;
ret = smi->ops->enable_vlan(smi, enable);
if (ret)
return ret;
smi->vlan_enabled = enable;
/* If we turn VLAN off, make sure that we turn off
* 4k VLAN as well, if that happened to be on.
*/
if (!enable) {
smi->vlan4k_enabled = false;
ret = smi->ops->enable_vlan4k(smi, false);
}
return ret;
}
EXPORT_SYMBOL_GPL(rtl8366_enable_vlan);
int rtl8366_reset_vlan(struct realtek_smi *smi)
{
struct rtl8366_vlan_mc vlanmc;
int ret;
int i;
rtl8366_enable_vlan(smi, false);
rtl8366_enable_vlan4k(smi, false);
/* Clear the 16 VLAN member configurations */
vlanmc.vid = 0;
vlanmc.priority = 0;
vlanmc.member = 0;
vlanmc.untag = 0;
vlanmc.fid = 0;
for (i = 0; i < smi->num_vlan_mc; i++) {
ret = smi->ops->set_vlan_mc(smi, i, &vlanmc);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_reset_vlan);
int rtl8366_init_vlan(struct realtek_smi *smi)
{
int port;
int ret;
ret = rtl8366_reset_vlan(smi);
if (ret)
return ret;
/* Loop over the available ports, for each port, associate
* it with the VLAN (port+1)
*/
for (port = 0; port < smi->num_ports; port++) {
u32 mask;
if (port == smi->cpu_port)
/* For the CPU port, make all ports members of this
* VLAN.
*/
mask = GENMASK((int)smi->num_ports - 1, 0);
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
else
/* For all other ports, enable itself plus the
* CPU port.
*/
mask = BIT(port) | BIT(smi->cpu_port);
/* For each port, set the port as member of VLAN (port+1)
* and untagged, except for the CPU port: the CPU port (5) is
* member of VLAN 6 and so are ALL the other ports as well.
* Use filter 0 (no filter).
*/
dev_info(smi->dev, "VLAN%d port mask for port %d, %08x\n",
(port + 1), port, mask);
ret = rtl8366_set_vlan(smi, (port + 1), mask, mask, 0);
if (ret)
return ret;
dev_info(smi->dev, "VLAN%d port %d, PVID set to %d\n",
(port + 1), port, (port + 1));
ret = rtl8366_set_pvid(smi, port, (port + 1));
if (ret)
return ret;
}
return rtl8366_enable_vlan(smi, true);
}
EXPORT_SYMBOL_GPL(rtl8366_init_vlan);
int rtl8366_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering)
{
struct realtek_smi *smi = ds->priv;
struct rtl8366_vlan_4k vlan4k;
int ret;
/* Use VLAN nr port + 1 since VLAN0 is not valid */
if (!smi->ops->is_vlan_valid(smi, port + 1))
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
return -EINVAL;
dev_info(smi->dev, "%s filtering on port %d\n",
vlan_filtering ? "enable" : "disable",
port);
/* TODO:
* The hardware support filter ID (FID) 0..7, I have no clue how to
* support this in the driver when the callback only says on/off.
*/
ret = smi->ops->get_vlan_4k(smi, port + 1, &vlan4k);
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
if (ret)
return ret;
/* Just set the filter to FID 1 for now then */
ret = rtl8366_set_vlan(smi, port + 1,
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
vlan4k.member,
vlan4k.untag,
1);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_vlan_filtering);
int rtl8366_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct realtek_smi *smi = ds->priv;
u16 vid;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
int ret;
for (vid = vlan->vid_begin; vid < vlan->vid_end; vid++)
if (!smi->ops->is_vlan_valid(smi, vid))
return -EINVAL;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
dev_info(smi->dev, "prepare VLANs %04x..%04x\n",
vlan->vid_begin, vlan->vid_end);
/* Enable VLAN in the hardware
* FIXME: what's with this 4k business?
* Just rtl8366_enable_vlan() seems inconclusive.
*/
ret = rtl8366_enable_vlan4k(smi, true);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_vlan_prepare);
void rtl8366_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = !!(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED);
bool pvid = !!(vlan->flags & BRIDGE_VLAN_INFO_PVID);
struct realtek_smi *smi = ds->priv;
u32 member = 0;
u32 untag = 0;
u16 vid;
int ret;
for (vid = vlan->vid_begin; vid < vlan->vid_end; vid++)
if (!smi->ops->is_vlan_valid(smi, vid))
return;
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
dev_info(smi->dev, "add VLAN %d on port %d, %s, %s\n",
vlan->vid_begin,
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
port,
untagged ? "untagged" : "tagged",
pvid ? " PVID" : "no PVID");
if (dsa_is_dsa_port(ds, port) || dsa_is_cpu_port(ds, port))
dev_err(smi->dev, "port is DSA or CPU port\n");
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
member |= BIT(port);
if (untagged)
untag |= BIT(port);
ret = rtl8366_set_vlan(smi, vid, member, untag, 0);
if (ret)
dev_err(smi->dev,
"failed to set up VLAN %04x",
vid);
ret = rtl8366_set_pvid(smi, port, vid);
if (ret)
dev_err(smi->dev,
"failed to set PVID on port %d to VLAN %04x",
port, vid);
if (!ret)
dev_dbg(smi->dev, "VLAN add: added VLAN %d with PVID on port %d\n",
vid, port);
}
net: dsa: realtek-smi: Add Realtek SMI driver This adds a driver core for the Realtek SMI chips and a subdriver for the RTL8366RB. I just added this chip simply because it is all I can test. The code is a massaged variant of the code that has been sitting out-of-tree in OpenWRT for years in the absence of a proper switch subsystem. This creates a DSA driver for it. I have tried to credit the original authors wherever possible. The main changes I've done from the OpenWRT code: - Added an IRQ chip inside the RTL8366RB switch to demux and handle the line state IRQs. - Distributed the phy handling out to the PHY driver. - Added some RTL8366RB code that was missing in the driver at the time, such as setting up "green ethernet" with a funny jam table and forcing MAC5 (the CPU port) into 1 GBit. - Select jam table and add the default jam table from the vendor driver, also for ASIC "version 0" if need be. - Do not store jam tables in the device tree, store them in the driver. - Pick in the "initvals" jam tables from OpenWRT's driver and make those get selected per compatible for the whole system. It's apparently about electrical settings for this system and whatnot, not really configuration from device tree. - Implemented LED control: beware of bugs because there are no LEDs on the device I am using! We do not implement custom DSA tags. This is explained in a comment in the driver as well: this "tagging protocol" is not simply a few extra bytes tagged on to the ethernet frame as DSA is used to. Instead, enabling the CPU tags will make the switch start talking Realtek RRCP internally. For example a simple ping will make this kind of packets appear inside the switch: 0000 ff ff ff ff ff ff bc ae c5 6b a8 3d 88 99 a2 00 0010 08 06 00 01 08 00 06 04 00 01 bc ae c5 6b a8 3d 0020 a9 fe 01 01 00 00 00 00 00 00 a9 fe 01 02 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 As you can see a custom "8899" tagged packet using the protocol 0xa2. Norm RRCP appears to always have this protocol set to 0x01 according to OpenRRCP. You can also see that this is not a ping packet at all, instead the switch is starting to talk network management issues with the CPU port. So for now custom "tagging" is disabled. This was tested on the D-Link DIR-685 with initramfs and OpenWRT userspaces and works fine on all the LAN ports (lan0 .. lan3). The WAN port is yet not working. Cc: Antti Seppälä <a.seppala@gmail.com> Cc: Roman Yeryomin <roman@advem.lv> Cc: Colin Leitner <colin.leitner@googlemail.com> Cc: Gabor Juhos <juhosg@openwrt.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-14 16:45:55 +07:00
}
EXPORT_SYMBOL_GPL(rtl8366_vlan_add);
int rtl8366_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct realtek_smi *smi = ds->priv;
u16 vid;
int ret;
dev_info(smi->dev, "del VLAN on port %d\n", port);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
int i;
dev_info(smi->dev, "del VLAN %04x\n", vid);
for (i = 0; i < smi->num_vlan_mc; i++) {
struct rtl8366_vlan_mc vlanmc;
ret = smi->ops->get_vlan_mc(smi, i, &vlanmc);
if (ret)
return ret;
if (vid == vlanmc.vid) {
/* clear VLAN member configurations */
vlanmc.vid = 0;
vlanmc.priority = 0;
vlanmc.member = 0;
vlanmc.untag = 0;
vlanmc.fid = 0;
ret = smi->ops->set_vlan_mc(smi, i, &vlanmc);
if (ret) {
dev_err(smi->dev,
"failed to remove VLAN %04x\n",
vid);
return ret;
}
break;
}
}
}
return 0;
}
EXPORT_SYMBOL_GPL(rtl8366_vlan_del);
void rtl8366_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
struct realtek_smi *smi = ds->priv;
struct rtl8366_mib_counter *mib;
int i;
if (port >= smi->num_ports)
return;
for (i = 0; i < smi->num_mib_counters; i++) {
mib = &smi->mib_counters[i];
strncpy(data + i * ETH_GSTRING_LEN,
mib->name, ETH_GSTRING_LEN);
}
}
EXPORT_SYMBOL_GPL(rtl8366_get_strings);
int rtl8366_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
struct realtek_smi *smi = ds->priv;
/* We only support SS_STATS */
if (sset != ETH_SS_STATS)
return 0;
if (port >= smi->num_ports)
return -EINVAL;
return smi->num_mib_counters;
}
EXPORT_SYMBOL_GPL(rtl8366_get_sset_count);
void rtl8366_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
{
struct realtek_smi *smi = ds->priv;
int i;
int ret;
if (port >= smi->num_ports)
return;
for (i = 0; i < smi->num_mib_counters; i++) {
struct rtl8366_mib_counter *mib;
u64 mibvalue = 0;
mib = &smi->mib_counters[i];
ret = smi->ops->get_mib_counter(smi, port, mib, &mibvalue);
if (ret) {
dev_err(smi->dev, "error reading MIB counter %s\n",
mib->name);
}
data[i] = mibvalue;
}
}
EXPORT_SYMBOL_GPL(rtl8366_get_ethtool_stats);