2008-09-17 22:34:30 +07:00
|
|
|
/*
|
|
|
|
* Host Wire Adapter:
|
|
|
|
* Driver glue, HWA-specific functions, bridges to WAHC and WUSBHC
|
|
|
|
*
|
|
|
|
* Copyright (C) 2005-2006 Intel Corporation
|
|
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License version
|
|
|
|
* 2 as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
|
|
* 02110-1301, USA.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* The HWA driver is a simple layer that forwards requests to the WAHC
|
|
|
|
* (Wire Adater Host Controller) or WUSBHC (Wireless USB Host
|
|
|
|
* Controller) layers.
|
|
|
|
*
|
|
|
|
* Host Wire Adapter is the 'WUSB 1.0 standard' name for Wireless-USB
|
|
|
|
* Host Controller that is connected to your system via USB (a USB
|
|
|
|
* dongle that implements a USB host...). There is also a Device Wired
|
|
|
|
* Adaptor, DWA (Wireless USB hub) that uses the same mechanism for
|
|
|
|
* transferring data (it is after all a USB host connected via
|
|
|
|
* Wireless USB), we have a common layer called Wire Adapter Host
|
|
|
|
* Controller that does all the hard work. The WUSBHC (Wireless USB
|
|
|
|
* Host Controller) is the part common to WUSB Host Controllers, the
|
|
|
|
* HWA and the PCI-based one, that is implemented following the WHCI
|
|
|
|
* spec. All these layers are implemented in ../wusbcore.
|
|
|
|
*
|
|
|
|
* The main functions are hwahc_op_urb_{en,de}queue(), that pass the
|
|
|
|
* job of converting a URB to a Wire Adapter
|
|
|
|
*
|
|
|
|
* Entry points:
|
|
|
|
*
|
|
|
|
* hwahc_driver_*() Driver initialization, registration and
|
|
|
|
* teardown.
|
|
|
|
*
|
|
|
|
* hwahc_probe() New device came up, create an instance for
|
|
|
|
* it [from device enumeration].
|
|
|
|
*
|
|
|
|
* hwahc_disconnect() Remove device instance [from device
|
|
|
|
* enumeration].
|
|
|
|
*
|
|
|
|
* [__]hwahc_op_*() Host-Wire-Adaptor specific functions for
|
|
|
|
* starting/stopping/etc (some might be made also
|
|
|
|
* DWA).
|
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
|
|
|
#include <linux/slab.h>
|
2008-09-17 22:34:30 +07:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
#include "../wusbcore/wa-hc.h"
|
|
|
|
#include "../wusbcore/wusbhc.h"
|
|
|
|
|
|
|
|
struct hwahc {
|
|
|
|
struct wusbhc wusbhc; /* has to be 1st */
|
|
|
|
struct wahc wa;
|
|
|
|
};
|
|
|
|
|
2008-12-23 01:22:50 +07:00
|
|
|
/*
|
2008-09-17 22:34:30 +07:00
|
|
|
* FIXME should be wusbhc
|
|
|
|
*
|
|
|
|
* NOTE: we need to cache the Cluster ID because later...there is no
|
|
|
|
* way to get it :)
|
|
|
|
*/
|
|
|
|
static int __hwahc_set_cluster_id(struct hwahc *hwahc, u8 cluster_id)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct wusbhc *wusbhc = &hwahc->wusbhc;
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
|
|
|
|
|
|
result = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_SET_CLUSTER_ID,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
cluster_id,
|
|
|
|
wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0)
|
|
|
|
dev_err(dev, "Cannot set WUSB Cluster ID to 0x%02x: %d\n",
|
|
|
|
cluster_id, result);
|
|
|
|
else
|
|
|
|
wusbhc->cluster_id = cluster_id;
|
|
|
|
dev_info(dev, "Wireless USB Cluster ID set to 0x%02x\n", cluster_id);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __hwahc_op_set_num_dnts(struct wusbhc *wusbhc, u8 interval, u8 slots)
|
|
|
|
{
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
|
|
|
|
return usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_SET_NUM_DNTS,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
interval << 8 | slots,
|
|
|
|
wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset a WUSB host controller and wait for it to complete doing it.
|
|
|
|
*
|
|
|
|
* @usb_hcd: Pointer to WUSB Host Controller instance.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int hwahc_op_reset(struct usb_hcd *usb_hcd)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct device *dev = &hwahc->wa.usb_iface->dev;
|
|
|
|
|
|
|
|
mutex_lock(&wusbhc->mutex);
|
|
|
|
wa_nep_disarm(&hwahc->wa);
|
|
|
|
result = __wa_set_feature(&hwahc->wa, WA_RESET);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "error commanding HC to reset: %d\n", result);
|
|
|
|
goto error_unlock;
|
|
|
|
}
|
|
|
|
result = __wa_wait_status(&hwahc->wa, WA_STATUS_RESETTING, 0);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "error waiting for HC to reset: %d\n", result);
|
|
|
|
goto error_unlock;
|
|
|
|
}
|
|
|
|
error_unlock:
|
|
|
|
mutex_unlock(&wusbhc->mutex);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FIXME: break this function up
|
|
|
|
*/
|
|
|
|
static int hwahc_op_start(struct usb_hcd *usb_hcd)
|
|
|
|
{
|
|
|
|
u8 addr;
|
|
|
|
int result;
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
|
|
|
|
result = -ENOSPC;
|
|
|
|
mutex_lock(&wusbhc->mutex);
|
|
|
|
addr = wusb_cluster_id_get();
|
|
|
|
if (addr == 0)
|
|
|
|
goto error_cluster_id_get;
|
|
|
|
result = __hwahc_set_cluster_id(hwahc, addr);
|
|
|
|
if (result < 0)
|
|
|
|
goto error_set_cluster_id;
|
|
|
|
|
|
|
|
usb_hcd->uses_new_polling = 1;
|
2010-06-23 03:39:10 +07:00
|
|
|
set_bit(HCD_FLAG_POLL_RH, &usb_hcd->flags);
|
2008-09-17 22:34:30 +07:00
|
|
|
usb_hcd->state = HC_STATE_RUNNING;
|
2013-08-09 03:25:47 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* prevent USB core from suspending the root hub since
|
|
|
|
* bus_suspend and bus_resume are not yet supported.
|
|
|
|
*/
|
|
|
|
pm_runtime_get_noresume(&usb_hcd->self.root_hub->dev);
|
|
|
|
|
2008-09-17 22:34:30 +07:00
|
|
|
result = 0;
|
|
|
|
out:
|
|
|
|
mutex_unlock(&wusbhc->mutex);
|
|
|
|
return result;
|
|
|
|
|
|
|
|
error_set_cluster_id:
|
|
|
|
wusb_cluster_id_put(wusbhc->cluster_id);
|
|
|
|
error_cluster_id_get:
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No need to abort pipes, as when this is called, all the children
|
|
|
|
* has been disconnected and that has done it [through
|
|
|
|
* usb_disable_interface() -> usb_disable_endpoint() ->
|
|
|
|
* hwahc_op_ep_disable() - >rpipe_ep_disable()].
|
|
|
|
*/
|
|
|
|
static void hwahc_op_stop(struct usb_hcd *usb_hcd)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
|
|
|
|
mutex_lock(&wusbhc->mutex);
|
|
|
|
wusb_cluster_id_put(wusbhc->cluster_id);
|
|
|
|
mutex_unlock(&wusbhc->mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hwahc_op_get_frame_number(struct usb_hcd *usb_hcd)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
2013-10-02 02:04:33 +07:00
|
|
|
struct wahc *wa = &hwahc->wa;
|
2008-09-17 22:34:30 +07:00
|
|
|
|
2013-10-02 02:04:33 +07:00
|
|
|
/*
|
|
|
|
* We cannot query the HWA for the WUSB time since that requires sending
|
|
|
|
* a synchronous URB and this function can be called in_interrupt.
|
|
|
|
* Instead, query the USB frame number for our parent and use that.
|
|
|
|
*/
|
|
|
|
return usb_get_current_frame_number(wa->usb_dev);
|
2008-09-17 22:34:30 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int hwahc_op_urb_enqueue(struct usb_hcd *usb_hcd, struct urb *urb,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
|
|
|
|
return wa_urb_enqueue(&hwahc->wa, urb->ep, urb, gfp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hwahc_op_urb_dequeue(struct usb_hcd *usb_hcd, struct urb *urb,
|
|
|
|
int status)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
|
2013-11-26 05:17:16 +07:00
|
|
|
return wa_urb_dequeue(&hwahc->wa, urb, status);
|
2008-09-17 22:34:30 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Release resources allocated for an endpoint
|
|
|
|
*
|
|
|
|
* If there is an associated rpipe to this endpoint, go ahead and put it.
|
|
|
|
*/
|
|
|
|
static void hwahc_op_endpoint_disable(struct usb_hcd *usb_hcd,
|
|
|
|
struct usb_host_endpoint *ep)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
|
|
|
|
rpipe_ep_disable(&hwahc->wa, ep);
|
|
|
|
}
|
|
|
|
|
2008-10-27 22:42:31 +07:00
|
|
|
static int __hwahc_op_wusbhc_start(struct wusbhc *wusbhc)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct device *dev = &hwahc->wa.usb_iface->dev;
|
|
|
|
|
|
|
|
result = __wa_set_feature(&hwahc->wa, WA_ENABLE);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "error commanding HC to start: %d\n", result);
|
|
|
|
goto error_stop;
|
|
|
|
}
|
|
|
|
result = __wa_wait_status(&hwahc->wa, WA_ENABLE, WA_ENABLE);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "error waiting for HC to start: %d\n", result);
|
|
|
|
goto error_stop;
|
|
|
|
}
|
|
|
|
result = wa_nep_arm(&hwahc->wa, GFP_KERNEL);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "cannot listen to notifications: %d\n", result);
|
|
|
|
goto error_stop;
|
|
|
|
}
|
2014-03-07 01:53:37 +07:00
|
|
|
/*
|
|
|
|
* If WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS is set,
|
|
|
|
* disable transfer notifications.
|
|
|
|
*/
|
|
|
|
if (hwahc->wa.quirks &
|
|
|
|
WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS) {
|
|
|
|
struct usb_host_interface *cur_altsetting =
|
|
|
|
hwahc->wa.usb_iface->cur_altsetting;
|
|
|
|
|
|
|
|
result = usb_control_msg(hwahc->wa.usb_dev,
|
|
|
|
usb_sndctrlpipe(hwahc->wa.usb_dev, 0),
|
|
|
|
WA_REQ_ALEREON_DISABLE_XFER_NOTIFICATIONS,
|
|
|
|
USB_DIR_OUT | USB_TYPE_VENDOR |
|
|
|
|
USB_RECIP_INTERFACE,
|
|
|
|
WA_REQ_ALEREON_FEATURE_SET,
|
|
|
|
cur_altsetting->desc.bInterfaceNumber,
|
|
|
|
NULL, 0,
|
|
|
|
USB_CTRL_SET_TIMEOUT);
|
|
|
|
/*
|
|
|
|
* If we successfully sent the control message, start DTI here
|
|
|
|
* because no transfer notifications will be received which is
|
|
|
|
* where DTI is normally started.
|
|
|
|
*/
|
|
|
|
if (result == 0)
|
|
|
|
result = wa_dti_start(&hwahc->wa);
|
|
|
|
else
|
|
|
|
result = 0; /* OK. Continue normally. */
|
|
|
|
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "cannot start DTI: %d\n", result);
|
|
|
|
goto error_dti_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-10-27 22:42:31 +07:00
|
|
|
return result;
|
|
|
|
|
2014-03-07 01:53:37 +07:00
|
|
|
error_dti_start:
|
|
|
|
wa_nep_disarm(&hwahc->wa);
|
2008-10-27 22:42:31 +07:00
|
|
|
error_stop:
|
|
|
|
__wa_clear_feature(&hwahc->wa, WA_ENABLE);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __hwahc_op_wusbhc_stop(struct wusbhc *wusbhc, int delay)
|
|
|
|
{
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_CHAN_STOP,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
delay * 1000,
|
|
|
|
iface_no,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-10-27 22:42:31 +07:00
|
|
|
if (ret == 0)
|
|
|
|
msleep(delay);
|
|
|
|
|
|
|
|
wa_nep_disarm(&hwahc->wa);
|
|
|
|
__wa_stop(&hwahc->wa);
|
|
|
|
}
|
|
|
|
|
2008-09-17 22:34:30 +07:00
|
|
|
/*
|
|
|
|
* Set the UWB MAS allocation for the WUSB cluster
|
|
|
|
*
|
|
|
|
* @stream_index: stream to use (-1 for cancelling the allocation)
|
|
|
|
* @mas: mas bitmap to use
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_bwa_set(struct wusbhc *wusbhc, s8 stream_index,
|
|
|
|
const struct uwb_mas_bm *mas)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
|
|
u8 mas_le[UWB_NUM_MAS/8];
|
|
|
|
|
|
|
|
/* Set the stream index */
|
|
|
|
result = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_SET_STREAM_IDX,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
stream_index,
|
|
|
|
wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Cannot set WUSB stream index: %d\n", result);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
uwb_mas_bm_copy_le(mas_le, mas);
|
|
|
|
/* Set the MAS allocation */
|
|
|
|
result = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_SET_WUSB_MAS,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
0, wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
|
2013-12-10 02:19:08 +07:00
|
|
|
mas_le, 32, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0)
|
|
|
|
dev_err(dev, "Cannot set WUSB MAS allocation: %d\n", result);
|
|
|
|
out:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add an IE to the host's MMC
|
|
|
|
*
|
|
|
|
* @interval: See WUSB1.0[8.5.3.1]
|
|
|
|
* @repeat_cnt: See WUSB1.0[8.5.3.1]
|
|
|
|
* @handle: See WUSB1.0[8.5.3.1]
|
|
|
|
* @wuie: Pointer to the header of the WUSB IE data to add.
|
|
|
|
* MUST BE allocated in a kmalloc buffer (no stack or
|
|
|
|
* vmalloc).
|
|
|
|
*
|
|
|
|
* NOTE: the format of the WUSB IEs for MMCs are different to the
|
|
|
|
* normal MBOA MAC IEs (IE Id + Length in MBOA MAC vs. Length +
|
|
|
|
* Id in WUSB IEs). Standards...you gotta love'em.
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_mmcie_add(struct wusbhc *wusbhc, u8 interval,
|
|
|
|
u8 repeat_cnt, u8 handle,
|
|
|
|
struct wuie_hdr *wuie)
|
|
|
|
{
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
|
|
|
|
return usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_ADD_MMC_IE,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
interval << 8 | repeat_cnt,
|
|
|
|
handle << 8 | iface_no,
|
2013-12-10 02:19:08 +07:00
|
|
|
wuie, wuie->bLength, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove an IE to the host's MMC
|
|
|
|
*
|
|
|
|
* @handle: See WUSB1.0[8.5.3.1]
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_mmcie_rm(struct wusbhc *wusbhc, u8 handle)
|
|
|
|
{
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
return usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_REMOVE_MMC_IE,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
0, handle << 8 | iface_no,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update device information for a given fake port
|
|
|
|
*
|
|
|
|
* @port_idx: Fake port to which device is connected (wusbhc index, not
|
|
|
|
* USB port number).
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_dev_info_set(struct wusbhc *wusbhc,
|
|
|
|
struct wusb_dev *wusb_dev)
|
|
|
|
{
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
struct hwa_dev_info *dev_info;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* fill out the Device Info buffer and send it */
|
|
|
|
dev_info = kzalloc(sizeof(struct hwa_dev_info), GFP_KERNEL);
|
|
|
|
if (!dev_info)
|
|
|
|
return -ENOMEM;
|
|
|
|
uwb_mas_bm_copy_le(dev_info->bmDeviceAvailability,
|
|
|
|
&wusb_dev->availability);
|
|
|
|
dev_info->bDeviceAddress = wusb_dev->addr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the descriptors haven't been read yet, use a default PHY
|
|
|
|
* rate of 53.3 Mbit/s only. The correct value will be used
|
|
|
|
* when this will be called again as part of the
|
|
|
|
* authentication process (which occurs after the descriptors
|
|
|
|
* have been read).
|
|
|
|
*/
|
|
|
|
if (wusb_dev->wusb_cap_descr)
|
|
|
|
dev_info->wPHYRates = wusb_dev->wusb_cap_descr->wPHYRates;
|
|
|
|
else
|
|
|
|
dev_info->wPHYRates = cpu_to_le16(USB_WIRELESS_PHY_53);
|
|
|
|
|
|
|
|
ret = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
WUSB_REQ_SET_DEV_INFO,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
0, wusb_dev->port_idx << 8 | iface_no,
|
|
|
|
dev_info, sizeof(struct hwa_dev_info),
|
2013-12-10 02:19:08 +07:00
|
|
|
USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
kfree(dev_info);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set host's idea of which encryption (and key) method to use when
|
|
|
|
* talking to ad evice on a given port.
|
|
|
|
*
|
|
|
|
* If key is NULL, it means disable encryption for that "virtual port"
|
|
|
|
* (used when we disconnect).
|
|
|
|
*/
|
|
|
|
static int __hwahc_dev_set_key(struct wusbhc *wusbhc, u8 port_idx, u32 tkid,
|
|
|
|
const void *key, size_t key_size,
|
|
|
|
u8 key_idx)
|
|
|
|
{
|
|
|
|
int result = -ENOMEM;
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
struct usb_key_descriptor *keyd;
|
|
|
|
size_t keyd_len;
|
|
|
|
|
|
|
|
keyd_len = sizeof(*keyd) + key_size;
|
|
|
|
keyd = kzalloc(keyd_len, GFP_KERNEL);
|
|
|
|
if (keyd == NULL)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
keyd->bLength = keyd_len;
|
|
|
|
keyd->bDescriptorType = USB_DT_KEY;
|
|
|
|
keyd->tTKID[0] = (tkid >> 0) & 0xff;
|
|
|
|
keyd->tTKID[1] = (tkid >> 8) & 0xff;
|
|
|
|
keyd->tTKID[2] = (tkid >> 16) & 0xff;
|
|
|
|
memcpy(keyd->bKeyData, key, key_size);
|
|
|
|
|
|
|
|
result = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
USB_REQ_SET_DESCRIPTOR,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
USB_DT_KEY << 8 | key_idx,
|
|
|
|
port_idx << 8 | iface_no,
|
2013-12-10 02:19:08 +07:00
|
|
|
keyd, keyd_len, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
|
2009-03-05 03:06:15 +07:00
|
|
|
kzfree(keyd); /* clear keys etc. */
|
2008-09-17 22:34:30 +07:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set host's idea of which encryption (and key) method to use when
|
|
|
|
* talking to ad evice on a given port.
|
|
|
|
*
|
|
|
|
* If key is NULL, it means disable encryption for that "virtual port"
|
|
|
|
* (used when we disconnect).
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_set_ptk(struct wusbhc *wusbhc, u8 port_idx, u32 tkid,
|
|
|
|
const void *key, size_t key_size)
|
|
|
|
{
|
|
|
|
int result = -ENOMEM;
|
|
|
|
struct hwahc *hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
u8 iface_no = wa->usb_iface->cur_altsetting->desc.bInterfaceNumber;
|
|
|
|
u8 encryption_value;
|
|
|
|
|
|
|
|
/* Tell the host which key to use to talk to the device */
|
|
|
|
if (key) {
|
|
|
|
u8 key_idx = wusb_key_index(0, WUSB_KEY_INDEX_TYPE_PTK,
|
|
|
|
WUSB_KEY_INDEX_ORIGINATOR_HOST);
|
|
|
|
|
|
|
|
result = __hwahc_dev_set_key(wusbhc, port_idx, tkid,
|
|
|
|
key, key_size, key_idx);
|
|
|
|
if (result < 0)
|
|
|
|
goto error_set_key;
|
|
|
|
encryption_value = wusbhc->ccm1_etd->bEncryptionValue;
|
|
|
|
} else {
|
|
|
|
/* FIXME: this should come from wusbhc->etd[UNSECURE].value */
|
|
|
|
encryption_value = 0;
|
|
|
|
}
|
|
|
|
|
2011-11-29 11:31:00 +07:00
|
|
|
/* Set the encryption type for communicating with the device */
|
2008-09-17 22:34:30 +07:00
|
|
|
result = usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
|
|
|
|
USB_REQ_SET_ENCRYPTION,
|
|
|
|
USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
|
|
encryption_value, port_idx << 8 | iface_no,
|
2013-12-10 02:19:08 +07:00
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0)
|
|
|
|
dev_err(wusbhc->dev, "Can't set host's WUSB encryption for "
|
|
|
|
"port index %u to %s (value %d): %d\n", port_idx,
|
|
|
|
wusb_et_name(wusbhc->ccm1_etd->bEncryptionType),
|
|
|
|
wusbhc->ccm1_etd->bEncryptionValue, result);
|
|
|
|
error_set_key:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set host's GTK key
|
|
|
|
*/
|
|
|
|
static int __hwahc_op_set_gtk(struct wusbhc *wusbhc, u32 tkid,
|
|
|
|
const void *key, size_t key_size)
|
|
|
|
{
|
|
|
|
u8 key_idx = wusb_key_index(0, WUSB_KEY_INDEX_TYPE_GTK,
|
|
|
|
WUSB_KEY_INDEX_ORIGINATOR_HOST);
|
|
|
|
|
|
|
|
return __hwahc_dev_set_key(wusbhc, 0, tkid, key, key_size, key_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the Wire Adapter class-specific descriptor
|
|
|
|
*
|
|
|
|
* NOTE: this descriptor comes with the big bundled configuration
|
|
|
|
* descriptor that includes the interfaces' and endpoints', so
|
|
|
|
* we just look for it in the cached copy kept by the USB stack.
|
|
|
|
*
|
|
|
|
* NOTE2: We convert LE fields to CPU order.
|
|
|
|
*/
|
|
|
|
static int wa_fill_descr(struct wahc *wa)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
|
|
char *itr;
|
|
|
|
struct usb_device *usb_dev = wa->usb_dev;
|
|
|
|
struct usb_descriptor_header *hdr;
|
|
|
|
struct usb_wa_descriptor *wa_descr;
|
|
|
|
size_t itr_size, actconfig_idx;
|
|
|
|
|
|
|
|
actconfig_idx = (usb_dev->actconfig - usb_dev->config) /
|
|
|
|
sizeof(usb_dev->config[0]);
|
|
|
|
itr = usb_dev->rawdescriptors[actconfig_idx];
|
|
|
|
itr_size = le16_to_cpu(usb_dev->actconfig->desc.wTotalLength);
|
|
|
|
while (itr_size >= sizeof(*hdr)) {
|
|
|
|
hdr = (struct usb_descriptor_header *) itr;
|
2008-12-23 01:22:50 +07:00
|
|
|
dev_dbg(dev, "Extra device descriptor: "
|
|
|
|
"type %02x/%u bytes @ %zu (%zu left)\n",
|
|
|
|
hdr->bDescriptorType, hdr->bLength,
|
|
|
|
(itr - usb_dev->rawdescriptors[actconfig_idx]),
|
|
|
|
itr_size);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (hdr->bDescriptorType == USB_DT_WIRE_ADAPTER)
|
|
|
|
goto found;
|
|
|
|
itr += hdr->bLength;
|
|
|
|
itr_size -= hdr->bLength;
|
|
|
|
}
|
|
|
|
dev_err(dev, "cannot find Wire Adapter Class descriptor\n");
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
found:
|
|
|
|
result = -EINVAL;
|
|
|
|
if (hdr->bLength > itr_size) { /* is it available? */
|
|
|
|
dev_err(dev, "incomplete Wire Adapter Class descriptor "
|
|
|
|
"(%zu bytes left, %u needed)\n",
|
|
|
|
itr_size, hdr->bLength);
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
if (hdr->bLength < sizeof(*wa->wa_descr)) {
|
|
|
|
dev_err(dev, "short Wire Adapter Class descriptor\n");
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
wa->wa_descr = wa_descr = (struct usb_wa_descriptor *) hdr;
|
2013-10-07 22:07:51 +07:00
|
|
|
if (le16_to_cpu(wa_descr->bcdWAVersion) > 0x0100)
|
2008-09-17 22:34:30 +07:00
|
|
|
dev_warn(dev, "Wire Adapter v%d.%d newer than groked v1.0\n",
|
2014-10-29 15:46:11 +07:00
|
|
|
(le16_to_cpu(wa_descr->bcdWAVersion) & 0xff00) >> 8,
|
2013-10-07 22:07:51 +07:00
|
|
|
le16_to_cpu(wa_descr->bcdWAVersion) & 0x00ff);
|
2008-09-17 22:34:30 +07:00
|
|
|
result = 0;
|
|
|
|
error:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct hc_driver hwahc_hc_driver = {
|
|
|
|
.description = "hwa-hcd",
|
|
|
|
.product_desc = "Wireless USB HWA host controller",
|
|
|
|
.hcd_priv_size = sizeof(struct hwahc) - sizeof(struct usb_hcd),
|
|
|
|
.irq = NULL, /* FIXME */
|
2013-06-01 02:16:13 +07:00
|
|
|
.flags = HCD_USB25,
|
2008-09-17 22:34:30 +07:00
|
|
|
.reset = hwahc_op_reset,
|
|
|
|
.start = hwahc_op_start,
|
|
|
|
.stop = hwahc_op_stop,
|
|
|
|
.get_frame_number = hwahc_op_get_frame_number,
|
|
|
|
.urb_enqueue = hwahc_op_urb_enqueue,
|
|
|
|
.urb_dequeue = hwahc_op_urb_dequeue,
|
|
|
|
.endpoint_disable = hwahc_op_endpoint_disable,
|
|
|
|
|
|
|
|
.hub_status_data = wusbhc_rh_status_data,
|
|
|
|
.hub_control = wusbhc_rh_control,
|
|
|
|
.start_port_reset = wusbhc_rh_start_port_reset,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int hwahc_security_create(struct hwahc *hwahc)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct wusbhc *wusbhc = &hwahc->wusbhc;
|
|
|
|
struct usb_device *usb_dev = hwahc->wa.usb_dev;
|
|
|
|
struct device *dev = &usb_dev->dev;
|
|
|
|
struct usb_security_descriptor *secd;
|
|
|
|
struct usb_encryption_descriptor *etd;
|
|
|
|
void *itr, *top;
|
|
|
|
size_t itr_size, needed, bytes;
|
|
|
|
u8 index;
|
|
|
|
char buf[64];
|
|
|
|
|
|
|
|
/* Find the host's security descriptors in the config descr bundle */
|
|
|
|
index = (usb_dev->actconfig - usb_dev->config) /
|
|
|
|
sizeof(usb_dev->config[0]);
|
|
|
|
itr = usb_dev->rawdescriptors[index];
|
|
|
|
itr_size = le16_to_cpu(usb_dev->actconfig->desc.wTotalLength);
|
|
|
|
top = itr + itr_size;
|
|
|
|
result = __usb_get_extra_descriptor(usb_dev->rawdescriptors[index],
|
|
|
|
le16_to_cpu(usb_dev->actconfig->desc.wTotalLength),
|
|
|
|
USB_DT_SECURITY, (void **) &secd);
|
|
|
|
if (result == -1) {
|
|
|
|
dev_warn(dev, "BUG? WUSB host has no security descriptors\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
needed = sizeof(*secd);
|
|
|
|
if (top - (void *)secd < needed) {
|
|
|
|
dev_err(dev, "BUG? Not enough data to process security "
|
|
|
|
"descriptor header (%zu bytes left vs %zu needed)\n",
|
|
|
|
top - (void *) secd, needed);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
needed = le16_to_cpu(secd->wTotalLength);
|
|
|
|
if (top - (void *)secd < needed) {
|
|
|
|
dev_err(dev, "BUG? Not enough data to process security "
|
|
|
|
"descriptors (%zu bytes left vs %zu needed)\n",
|
|
|
|
top - (void *) secd, needed);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Walk over the sec descriptors and store CCM1's on wusbhc */
|
|
|
|
itr = (void *) secd + sizeof(*secd);
|
|
|
|
top = (void *) secd + le16_to_cpu(secd->wTotalLength);
|
|
|
|
index = 0;
|
|
|
|
bytes = 0;
|
|
|
|
while (itr < top) {
|
|
|
|
etd = itr;
|
|
|
|
if (top - itr < sizeof(*etd)) {
|
|
|
|
dev_err(dev, "BUG: bad host security descriptor; "
|
|
|
|
"not enough data (%zu vs %zu left)\n",
|
|
|
|
top - itr, sizeof(*etd));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (etd->bLength < sizeof(*etd)) {
|
|
|
|
dev_err(dev, "BUG: bad host encryption descriptor; "
|
|
|
|
"descriptor is too short "
|
|
|
|
"(%zu vs %zu needed)\n",
|
|
|
|
(size_t)etd->bLength, sizeof(*etd));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
itr += etd->bLength;
|
|
|
|
bytes += snprintf(buf + bytes, sizeof(buf) - bytes,
|
|
|
|
"%s (0x%02x) ",
|
|
|
|
wusb_et_name(etd->bEncryptionType),
|
|
|
|
etd->bEncryptionValue);
|
|
|
|
wusbhc->ccm1_etd = etd;
|
|
|
|
}
|
|
|
|
dev_info(dev, "supported encryption types: %s\n", buf);
|
|
|
|
if (wusbhc->ccm1_etd == NULL) {
|
|
|
|
dev_err(dev, "E: host doesn't support CCM-1 crypto\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Pretty print what we support */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hwahc_security_release(struct hwahc *hwahc)
|
|
|
|
{
|
|
|
|
/* nothing to do here so far... */
|
|
|
|
}
|
|
|
|
|
2013-10-24 02:44:28 +07:00
|
|
|
static int hwahc_create(struct hwahc *hwahc, struct usb_interface *iface,
|
|
|
|
kernel_ulong_t quirks)
|
2008-09-17 22:34:30 +07:00
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct device *dev = &iface->dev;
|
|
|
|
struct wusbhc *wusbhc = &hwahc->wusbhc;
|
|
|
|
struct wahc *wa = &hwahc->wa;
|
|
|
|
struct usb_device *usb_dev = interface_to_usbdev(iface);
|
|
|
|
|
|
|
|
wa->usb_dev = usb_get_dev(usb_dev); /* bind the USB device */
|
|
|
|
wa->usb_iface = usb_get_intf(iface);
|
|
|
|
wusbhc->dev = dev;
|
2013-06-25 02:26:35 +07:00
|
|
|
/* defer getting the uwb_rc handle until it is needed since it
|
|
|
|
* may not have been registered by the hwa_rc driver yet. */
|
|
|
|
wusbhc->uwb_rc = NULL;
|
2008-09-17 22:34:30 +07:00
|
|
|
result = wa_fill_descr(wa); /* Get the device descriptor */
|
|
|
|
if (result < 0)
|
|
|
|
goto error_fill_descriptor;
|
|
|
|
if (wa->wa_descr->bNumPorts > USB_MAXCHILDREN) {
|
|
|
|
dev_err(dev, "FIXME: USB_MAXCHILDREN too low for WUSB "
|
|
|
|
"adapter (%u ports)\n", wa->wa_descr->bNumPorts);
|
|
|
|
wusbhc->ports_max = USB_MAXCHILDREN;
|
|
|
|
} else {
|
|
|
|
wusbhc->ports_max = wa->wa_descr->bNumPorts;
|
|
|
|
}
|
|
|
|
wusbhc->mmcies_max = wa->wa_descr->bNumMMCIEs;
|
|
|
|
wusbhc->start = __hwahc_op_wusbhc_start;
|
|
|
|
wusbhc->stop = __hwahc_op_wusbhc_stop;
|
|
|
|
wusbhc->mmcie_add = __hwahc_op_mmcie_add;
|
|
|
|
wusbhc->mmcie_rm = __hwahc_op_mmcie_rm;
|
|
|
|
wusbhc->dev_info_set = __hwahc_op_dev_info_set;
|
|
|
|
wusbhc->bwa_set = __hwahc_op_bwa_set;
|
|
|
|
wusbhc->set_num_dnts = __hwahc_op_set_num_dnts;
|
|
|
|
wusbhc->set_ptk = __hwahc_op_set_ptk;
|
|
|
|
wusbhc->set_gtk = __hwahc_op_set_gtk;
|
|
|
|
result = hwahc_security_create(hwahc);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Can't initialize security: %d\n", result);
|
|
|
|
goto error_security_create;
|
|
|
|
}
|
|
|
|
wa->wusb = wusbhc; /* FIXME: ugly, need to fix */
|
|
|
|
result = wusbhc_create(&hwahc->wusbhc);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Can't create WUSB HC structures: %d\n", result);
|
|
|
|
goto error_wusbhc_create;
|
|
|
|
}
|
2013-10-24 02:44:28 +07:00
|
|
|
result = wa_create(&hwahc->wa, iface, quirks);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0)
|
|
|
|
goto error_wa_create;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_wa_create:
|
|
|
|
wusbhc_destroy(&hwahc->wusbhc);
|
|
|
|
error_wusbhc_create:
|
|
|
|
/* WA Descr fill allocs no resources */
|
|
|
|
error_security_create:
|
|
|
|
error_fill_descriptor:
|
|
|
|
usb_put_intf(iface);
|
|
|
|
usb_put_dev(usb_dev);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hwahc_destroy(struct hwahc *hwahc)
|
|
|
|
{
|
|
|
|
struct wusbhc *wusbhc = &hwahc->wusbhc;
|
|
|
|
|
|
|
|
mutex_lock(&wusbhc->mutex);
|
|
|
|
__wa_destroy(&hwahc->wa);
|
|
|
|
wusbhc_destroy(&hwahc->wusbhc);
|
|
|
|
hwahc_security_release(hwahc);
|
|
|
|
hwahc->wusbhc.dev = NULL;
|
|
|
|
uwb_rc_put(wusbhc->uwb_rc);
|
|
|
|
usb_put_intf(hwahc->wa.usb_iface);
|
|
|
|
usb_put_dev(hwahc->wa.usb_dev);
|
|
|
|
mutex_unlock(&wusbhc->mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hwahc_init(struct hwahc *hwahc)
|
|
|
|
{
|
|
|
|
wa_init(&hwahc->wa);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hwahc_probe(struct usb_interface *usb_iface,
|
|
|
|
const struct usb_device_id *id)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
struct usb_hcd *usb_hcd;
|
|
|
|
struct wusbhc *wusbhc;
|
|
|
|
struct hwahc *hwahc;
|
|
|
|
struct device *dev = &usb_iface->dev;
|
|
|
|
|
|
|
|
result = -ENOMEM;
|
|
|
|
usb_hcd = usb_create_hcd(&hwahc_hc_driver, &usb_iface->dev, "wusb-hwa");
|
|
|
|
if (usb_hcd == NULL) {
|
|
|
|
dev_err(dev, "unable to allocate instance\n");
|
|
|
|
goto error_alloc;
|
|
|
|
}
|
|
|
|
usb_hcd->wireless = 1;
|
2013-06-11 22:39:31 +07:00
|
|
|
usb_hcd->self.sg_tablesize = ~0;
|
2008-09-17 22:34:30 +07:00
|
|
|
wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
hwahc_init(hwahc);
|
2013-10-24 02:44:28 +07:00
|
|
|
result = hwahc_create(hwahc, usb_iface, id->driver_info);
|
2008-09-17 22:34:30 +07:00
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Cannot initialize internals: %d\n", result);
|
|
|
|
goto error_hwahc_create;
|
|
|
|
}
|
|
|
|
result = usb_add_hcd(usb_hcd, 0, 0);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Cannot add HCD: %d\n", result);
|
|
|
|
goto error_add_hcd;
|
|
|
|
}
|
2013-11-05 09:46:02 +07:00
|
|
|
device_wakeup_enable(usb_hcd->self.controller);
|
2008-09-17 22:34:30 +07:00
|
|
|
result = wusbhc_b_create(&hwahc->wusbhc);
|
|
|
|
if (result < 0) {
|
|
|
|
dev_err(dev, "Cannot setup phase B of WUSBHC: %d\n", result);
|
|
|
|
goto error_wusbhc_b_create;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_wusbhc_b_create:
|
|
|
|
usb_remove_hcd(usb_hcd);
|
|
|
|
error_add_hcd:
|
|
|
|
hwahc_destroy(hwahc);
|
|
|
|
error_hwahc_create:
|
|
|
|
usb_put_hcd(usb_hcd);
|
|
|
|
error_alloc:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hwahc_disconnect(struct usb_interface *usb_iface)
|
|
|
|
{
|
|
|
|
struct usb_hcd *usb_hcd;
|
|
|
|
struct wusbhc *wusbhc;
|
|
|
|
struct hwahc *hwahc;
|
|
|
|
|
|
|
|
usb_hcd = usb_get_intfdata(usb_iface);
|
|
|
|
wusbhc = usb_hcd_to_wusbhc(usb_hcd);
|
|
|
|
hwahc = container_of(wusbhc, struct hwahc, wusbhc);
|
|
|
|
|
|
|
|
wusbhc_b_destroy(&hwahc->wusbhc);
|
|
|
|
usb_remove_hcd(usb_hcd);
|
|
|
|
hwahc_destroy(hwahc);
|
|
|
|
usb_put_hcd(usb_hcd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct usb_device_id hwahc_id_table[] = {
|
2013-10-24 02:44:28 +07:00
|
|
|
/* Alereon 5310 */
|
|
|
|
{ USB_DEVICE_AND_INTERFACE_INFO(0x13dc, 0x5310, 0xe0, 0x02, 0x01),
|
2014-03-07 01:53:37 +07:00
|
|
|
.driver_info = WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC |
|
|
|
|
WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS },
|
2013-10-24 02:44:28 +07:00
|
|
|
/* Alereon 5611 */
|
|
|
|
{ USB_DEVICE_AND_INTERFACE_INFO(0x13dc, 0x5611, 0xe0, 0x02, 0x01),
|
2014-03-07 01:53:37 +07:00
|
|
|
.driver_info = WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC |
|
|
|
|
WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS },
|
2008-09-17 22:34:30 +07:00
|
|
|
/* FIXME: use class labels for this */
|
|
|
|
{ USB_INTERFACE_INFO(0xe0, 0x02, 0x01), },
|
|
|
|
{},
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(usb, hwahc_id_table);
|
|
|
|
|
|
|
|
static struct usb_driver hwahc_driver = {
|
|
|
|
.name = "hwa-hc",
|
|
|
|
.probe = hwahc_probe,
|
|
|
|
.disconnect = hwahc_disconnect,
|
|
|
|
.id_table = hwahc_id_table,
|
|
|
|
};
|
|
|
|
|
2011-11-19 00:34:02 +07:00
|
|
|
module_usb_driver(hwahc_driver);
|
2008-09-17 22:34:30 +07:00
|
|
|
|
|
|
|
MODULE_AUTHOR("Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>");
|
|
|
|
MODULE_DESCRIPTION("Host Wired Adapter USB Host Control Driver");
|
|
|
|
MODULE_LICENSE("GPL");
|