linux_dsm_epyc7002/arch/x86/include/asm/pgalloc.h

205 lines
5.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PGALLOC_H
#define _ASM_X86_PGALLOC_H
#include <linux/threads.h>
#include <linux/mm.h> /* for struct page */
#include <linux/pagemap.h>
static inline int __paravirt_pgd_alloc(struct mm_struct *mm) { return 0; }
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define paravirt_pgd_alloc(mm) __paravirt_pgd_alloc(mm)
static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) {}
static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) {}
static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) {}
static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn,
unsigned long start, unsigned long count) {}
static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) {}
static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) {}
static inline void paravirt_release_pte(unsigned long pfn) {}
static inline void paravirt_release_pmd(unsigned long pfn) {}
static inline void paravirt_release_pud(unsigned long pfn) {}
static inline void paravirt_release_p4d(unsigned long pfn) {}
#endif
x86, mm: Allow highmem user page tables to be disabled at boot time Distros generally (I looked at Debian, RHEL5 and SLES11) seem to enable CONFIG_HIGHPTE for any x86 configuration which has highmem enabled. This means that the overhead applies even to machines which have a fairly modest amount of high memory and which therefore do not really benefit from allocating PTEs in high memory but still pay the price of the additional mapping operations. Running kernbench on a 4G box I found that with CONFIG_HIGHPTE=y but no actual highptes being allocated there was a reduction in system time used from 59.737s to 55.9s. With CONFIG_HIGHPTE=y and highmem PTEs being allocated: Average Optimal load -j 4 Run (std deviation): Elapsed Time 175.396 (0.238914) User Time 515.983 (5.85019) System Time 59.737 (1.26727) Percent CPU 263.8 (71.6796) Context Switches 39989.7 (4672.64) Sleeps 42617.7 (246.307) With CONFIG_HIGHPTE=y but with no highmem PTEs being allocated: Average Optimal load -j 4 Run (std deviation): Elapsed Time 174.278 (0.831968) User Time 515.659 (6.07012) System Time 55.9 (1.07799) Percent CPU 263.8 (71.266) Context Switches 39929.6 (4485.13) Sleeps 42583.7 (373.039) This patch allows the user to control the allocation of PTEs in highmem from the command line ("userpte=nohigh") but retains the status-quo as the default. It is possible that some simple heuristic could be developed which allows auto-tuning of this option however I don't have a sufficiently large machine available to me to perform any particularly meaningful experiments. We could probably handwave up an argument for a threshold at 16G of total RAM. Assuming 768M of lowmem we have 196608 potential lowmem PTE pages. Each page can map 2M of RAM in a PAE-enabled configuration, meaning a maximum of 384G of RAM could potentially be mapped using lowmem PTEs. Even allowing generous factor of 10 to account for other required lowmem allocations, generous slop to account for page sharing (which reduces the total amount of RAM mappable by a given number of PT pages) and other innacuracies in the estimations it would seem that even a 32G machine would not have a particularly pressing need for highmem PTEs. I think 32G could be considered to be at the upper bound of what might be sensible on a 32 bit machine (although I think in practice 64G is still supported). It's seems questionable if HIGHPTE is even a win for any amount of RAM you would sensibly run a 32 bit kernel on rather than going 64 bit. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> LKML-Reference: <1266403090-20162-1-git-send-email-ian.campbell@citrix.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-17 17:38:10 +07:00
/*
* Flags to use when allocating a user page table page.
*/
extern gfp_t __userpte_alloc_gfp;
#ifdef CONFIG_PAGE_TABLE_ISOLATION
/*
* Instead of one PGD, we acquire two PGDs. Being order-1, it is
* both 8k in size and 8k-aligned. That lets us just flip bit 12
* in a pointer to swap between the two 4k halves.
*/
#define PGD_ALLOCATION_ORDER 1
#else
#define PGD_ALLOCATION_ORDER 0
#endif
/*
* Allocate and free page tables.
*/
extern pgd_t *pgd_alloc(struct mm_struct *);
extern void pgd_free(struct mm_struct *mm, pgd_t *pgd);
extern pte_t *pte_alloc_one_kernel(struct mm_struct *, unsigned long);
extern pgtable_t pte_alloc_one(struct mm_struct *, unsigned long);
/* Should really implement gc for free page table pages. This could be
done with a reference count in struct page. */
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
BUG_ON((unsigned long)pte & (PAGE_SIZE-1));
free_page((unsigned long)pte);
}
static inline void pte_free(struct mm_struct *mm, struct page *pte)
{
x86, mm: fix pte_free() On -rt we were seeing spurious bad page states like: Bad page state in process 'firefox' page:c1bc2380 flags:0x40000000 mapping:c1bc2390 mapcount:0 count:0 Trying to fix it up, but a reboot is needed Backtrace: Pid: 503, comm: firefox Not tainted 2.6.26.8-rt13 #3 [<c043d0f3>] ? printk+0x14/0x19 [<c0272d4e>] bad_page+0x4e/0x79 [<c0273831>] free_hot_cold_page+0x5b/0x1d3 [<c02739f6>] free_hot_page+0xf/0x11 [<c0273a18>] __free_pages+0x20/0x2b [<c027d170>] __pte_alloc+0x87/0x91 [<c027d25e>] handle_mm_fault+0xe4/0x733 [<c043f680>] ? rt_mutex_down_read_trylock+0x57/0x63 [<c043f680>] ? rt_mutex_down_read_trylock+0x57/0x63 [<c0218875>] do_page_fault+0x36f/0x88a This is the case where a concurrent fault already installed the PTE and we get to free the newly allocated one. This is due to pgtable_page_ctor() doing the spin_lock_init(&page->ptl) which is overlaid with the {private, mapping} struct. union { struct { unsigned long private; struct address_space *mapping; }; spinlock_t ptl; struct kmem_cache *slab; struct page *first_page; }; Normally the spinlock is small enough to not stomp on page->mapping, but PREEMPT_RT=y has huge 'spin'locks. But lockdep kernels should also be able to trigger this splat, as the lock tracking code grows the spinlock to cover page->mapping. The obvious fix is calling pgtable_page_dtor() like the regular pte free path __pte_free_tlb() does. It seems all architectures except x86 and nm10300 already do this, and nm10300 doesn't seem to use pgtable_page_ctor(), which suggests it doesn't do SMP or simply doesnt do MMU at all or something. Signed-off-by: Peter Zijlstra <a.p.zijlsta@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org>
2009-01-23 23:37:49 +07:00
pgtable_page_dtor(pte);
__free_page(pte);
}
extern void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte);
static inline void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
unsigned long address)
{
___pte_free_tlb(tlb, pte);
}
static inline void pmd_populate_kernel(struct mm_struct *mm,
pmd_t *pmd, pte_t *pte)
{
paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT);
set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE));
}
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
struct page *pte)
{
unsigned long pfn = page_to_pfn(pte);
paravirt_alloc_pte(mm, pfn);
set_pmd(pmd, __pmd(((pteval_t)pfn << PAGE_SHIFT) | _PAGE_TABLE));
}
#define pmd_pgtable(pmd) pmd_page(pmd)
#if CONFIG_PGTABLE_LEVELS > 2
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
struct page *page;
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
if (mm == &init_mm)
gfp &= ~__GFP_ACCOUNT;
page = alloc_pages(gfp, 0);
if (!page)
return NULL;
if (!pgtable_pmd_page_ctor(page)) {
__free_pages(page, 0);
return NULL;
}
return (pmd_t *)page_address(page);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
BUG_ON((unsigned long)pmd & (PAGE_SIZE-1));
pgtable_pmd_page_dtor(virt_to_page(pmd));
free_page((unsigned long)pmd);
}
extern void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd);
static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
unsigned long address)
{
___pmd_free_tlb(tlb, pmd);
}
#ifdef CONFIG_X86_PAE
extern void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd);
#else /* !CONFIG_X86_PAE */
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
set_pud(pud, __pud(_PAGE_TABLE | __pa(pmd)));
}
#endif /* CONFIG_X86_PAE */
#if CONFIG_PGTABLE_LEVELS > 3
static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4d, pud_t *pud)
{
paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT);
set_p4d(p4d, __p4d(_PAGE_TABLE | __pa(pud)));
}
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT;
if (mm == &init_mm)
gfp &= ~__GFP_ACCOUNT;
return (pud_t *)get_zeroed_page(gfp);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
{
BUG_ON((unsigned long)pud & (PAGE_SIZE-1));
free_page((unsigned long)pud);
}
extern void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud);
static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
unsigned long address)
{
___pud_free_tlb(tlb, pud);
}
#if CONFIG_PGTABLE_LEVELS > 4
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d)
{
if (!pgtable_l5_enabled())
return;
paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT);
set_pgd(pgd, __pgd(_PAGE_TABLE | __pa(p4d)));
}
static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT;
if (mm == &init_mm)
gfp &= ~__GFP_ACCOUNT;
return (p4d_t *)get_zeroed_page(gfp);
}
static inline void p4d_free(struct mm_struct *mm, p4d_t *p4d)
{
BUG_ON((unsigned long)p4d & (PAGE_SIZE-1));
free_page((unsigned long)p4d);
}
extern void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d);
static inline void __p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d,
unsigned long address)
{
if (pgtable_l5_enabled())
___p4d_free_tlb(tlb, p4d);
}
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#endif /* _ASM_X86_PGALLOC_H */