linux_dsm_epyc7002/include/linux/memremap.h

144 lines
4.7 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MEMREMAP_H_
#define _LINUX_MEMREMAP_H_
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 07:56:49 +07:00
#include <linux/ioport.h>
#include <linux/percpu-refcount.h>
struct resource;
struct device;
/**
* struct vmem_altmap - pre-allocated storage for vmemmap_populate
* @base_pfn: base of the entire dev_pagemap mapping
* @reserve: pages mapped, but reserved for driver use (relative to @base)
* @free: free pages set aside in the mapping for memmap storage
* @align: pages reserved to meet allocation alignments
* @alloc: track pages consumed, private to vmemmap_populate()
*/
struct vmem_altmap {
const unsigned long base_pfn;
const unsigned long reserve;
unsigned long free;
unsigned long align;
unsigned long alloc;
};
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
/*
* Specialize ZONE_DEVICE memory into multiple types each having differents
* usage.
*
* MEMORY_DEVICE_PRIVATE:
* Device memory that is not directly addressable by the CPU: CPU can neither
* read nor write private memory. In this case, we do still have struct pages
* backing the device memory. Doing so simplifies the implementation, but it is
* important to remember that there are certain points at which the struct page
* must be treated as an opaque object, rather than a "normal" struct page.
*
* A more complete discussion of unaddressable memory may be found in
* include/linux/hmm.h and Documentation/vm/hmm.rst.
*
* MEMORY_DEVICE_PUBLIC:
* Device memory that is cache coherent from device and CPU point of view. This
* is use on platform that have an advance system bus (like CAPI or CCIX). A
* driver can hotplug the device memory using ZONE_DEVICE and with that memory
* type. Any page of a process can be migrated to such memory. However no one
* should be allow to pin such memory so that it can always be evicted.
mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS In preparation for fixing dax-dma-vs-unmap issues, filesystems need to be able to rely on the fact that they will get wakeups on dev_pagemap page-idle events. Introduce MEMORY_DEVICE_FS_DAX and generic_dax_page_free() as common indicator / infrastructure for dax filesytems to require. With this change there are no users of the MEMORY_DEVICE_HOST designation, so remove it. The HMM sub-system extended dev_pagemap to arrange a callback when a dev_pagemap managed page is freed. Since a dev_pagemap page is free / idle when its reference count is 1 it requires an additional branch to check the page-type at put_page() time. Given put_page() is a hot-path we do not want to incur that check if HMM is not in use, so a static branch is used to avoid that overhead when not necessary. Now, the FS_DAX implementation wants to reuse this mechanism for receiving dev_pagemap ->page_free() callbacks. Rework the HMM-specific static-key into a generic mechanism that either HMM or FS_DAX code paths can enable. For ARCH=um builds, and any other arch that lacks ZONE_DEVICE support, care must be taken to compile out the DEV_PAGEMAP_OPS infrastructure. However, we still need to support FS_DAX in the FS_DAX_LIMITED case implemented by the s390/dcssblk driver. Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Thomas Meyer <thomas@m3y3r.de> Reported-by: Dave Jiang <dave.jiang@intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-05-17 01:46:08 +07:00
*
* MEMORY_DEVICE_FS_DAX:
* Host memory that has similar access semantics as System RAM i.e. DMA
* coherent and supports page pinning. In support of coordinating page
* pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a
* wakeup event whenever a page is unpinned and becomes idle. This
* wakeup is used to coordinate physical address space management (ex:
* fs truncate/hole punch) vs pinned pages (ex: device dma).
PCI/P2PDMA: Support peer-to-peer memory Some PCI devices may have memory mapped in a BAR space that's intended for use in peer-to-peer transactions. To enable such transactions the memory must be registered with ZONE_DEVICE pages so it can be used by DMA interfaces in existing drivers. Add an interface for other subsystems to find and allocate chunks of P2P memory as necessary to facilitate transfers between two PCI peers: struct pci_dev *pci_p2pmem_find[_many](); int pci_p2pdma_distance[_many](); void *pci_alloc_p2pmem(); The new interface requires a driver to collect a list of client devices involved in the transaction then call pci_p2pmem_find() to obtain any suitable P2P memory. Alternatively, if the caller knows a device which provides P2P memory, they can use pci_p2pdma_distance() to determine if it is usable. With a suitable p2pmem device, memory can then be allocated with pci_alloc_p2pmem() for use in DMA transactions. Depending on hardware, using peer-to-peer memory may reduce the bandwidth of the transfer but can significantly reduce pressure on system memory. This may be desirable in many cases: for example a system could be designed with a small CPU connected to a PCIe switch by a small number of lanes which would maximize the number of lanes available to connect to NVMe devices. The code is designed to only utilize the p2pmem device if all the devices involved in a transfer are behind the same PCI bridge. This is because we have no way of knowing whether peer-to-peer routing between PCIe Root Ports is supported (PCIe r4.0, sec 1.3.1). Additionally, the benefits of P2P transfers that go through the RC is limited to only reducing DRAM usage and, in some cases, coding convenience. The PCI-SIG may be exploring adding a new capability bit to advertise whether this is possible for future hardware. This commit includes significant rework and feedback from Christoph Hellwig. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Logan Gunthorpe <logang@deltatee.com> [bhelgaas: fold in fix from Keith Busch <keith.busch@intel.com>: https://lore.kernel.org/linux-pci/20181012155920.15418-1-keith.busch@intel.com, to address comment from Dan Carpenter <dan.carpenter@oracle.com>, fold in https://lore.kernel.org/linux-pci/20181017160510.17926-1-logang@deltatee.com] Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2018-10-05 04:27:35 +07:00
*
* MEMORY_DEVICE_PCI_P2PDMA:
* Device memory residing in a PCI BAR intended for use with Peer-to-Peer
* transactions.
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
*/
enum memory_type {
mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS In preparation for fixing dax-dma-vs-unmap issues, filesystems need to be able to rely on the fact that they will get wakeups on dev_pagemap page-idle events. Introduce MEMORY_DEVICE_FS_DAX and generic_dax_page_free() as common indicator / infrastructure for dax filesytems to require. With this change there are no users of the MEMORY_DEVICE_HOST designation, so remove it. The HMM sub-system extended dev_pagemap to arrange a callback when a dev_pagemap managed page is freed. Since a dev_pagemap page is free / idle when its reference count is 1 it requires an additional branch to check the page-type at put_page() time. Given put_page() is a hot-path we do not want to incur that check if HMM is not in use, so a static branch is used to avoid that overhead when not necessary. Now, the FS_DAX implementation wants to reuse this mechanism for receiving dev_pagemap ->page_free() callbacks. Rework the HMM-specific static-key into a generic mechanism that either HMM or FS_DAX code paths can enable. For ARCH=um builds, and any other arch that lacks ZONE_DEVICE support, care must be taken to compile out the DEV_PAGEMAP_OPS infrastructure. However, we still need to support FS_DAX in the FS_DAX_LIMITED case implemented by the s390/dcssblk driver. Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Thomas Meyer <thomas@m3y3r.de> Reported-by: Dave Jiang <dave.jiang@intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-05-17 01:46:08 +07:00
MEMORY_DEVICE_PRIVATE = 1,
MEMORY_DEVICE_PUBLIC,
mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS In preparation for fixing dax-dma-vs-unmap issues, filesystems need to be able to rely on the fact that they will get wakeups on dev_pagemap page-idle events. Introduce MEMORY_DEVICE_FS_DAX and generic_dax_page_free() as common indicator / infrastructure for dax filesytems to require. With this change there are no users of the MEMORY_DEVICE_HOST designation, so remove it. The HMM sub-system extended dev_pagemap to arrange a callback when a dev_pagemap managed page is freed. Since a dev_pagemap page is free / idle when its reference count is 1 it requires an additional branch to check the page-type at put_page() time. Given put_page() is a hot-path we do not want to incur that check if HMM is not in use, so a static branch is used to avoid that overhead when not necessary. Now, the FS_DAX implementation wants to reuse this mechanism for receiving dev_pagemap ->page_free() callbacks. Rework the HMM-specific static-key into a generic mechanism that either HMM or FS_DAX code paths can enable. For ARCH=um builds, and any other arch that lacks ZONE_DEVICE support, care must be taken to compile out the DEV_PAGEMAP_OPS infrastructure. However, we still need to support FS_DAX in the FS_DAX_LIMITED case implemented by the s390/dcssblk driver. Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Thomas Meyer <thomas@m3y3r.de> Reported-by: Dave Jiang <dave.jiang@intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-05-17 01:46:08 +07:00
MEMORY_DEVICE_FS_DAX,
PCI/P2PDMA: Support peer-to-peer memory Some PCI devices may have memory mapped in a BAR space that's intended for use in peer-to-peer transactions. To enable such transactions the memory must be registered with ZONE_DEVICE pages so it can be used by DMA interfaces in existing drivers. Add an interface for other subsystems to find and allocate chunks of P2P memory as necessary to facilitate transfers between two PCI peers: struct pci_dev *pci_p2pmem_find[_many](); int pci_p2pdma_distance[_many](); void *pci_alloc_p2pmem(); The new interface requires a driver to collect a list of client devices involved in the transaction then call pci_p2pmem_find() to obtain any suitable P2P memory. Alternatively, if the caller knows a device which provides P2P memory, they can use pci_p2pdma_distance() to determine if it is usable. With a suitable p2pmem device, memory can then be allocated with pci_alloc_p2pmem() for use in DMA transactions. Depending on hardware, using peer-to-peer memory may reduce the bandwidth of the transfer but can significantly reduce pressure on system memory. This may be desirable in many cases: for example a system could be designed with a small CPU connected to a PCIe switch by a small number of lanes which would maximize the number of lanes available to connect to NVMe devices. The code is designed to only utilize the p2pmem device if all the devices involved in a transfer are behind the same PCI bridge. This is because we have no way of knowing whether peer-to-peer routing between PCIe Root Ports is supported (PCIe r4.0, sec 1.3.1). Additionally, the benefits of P2P transfers that go through the RC is limited to only reducing DRAM usage and, in some cases, coding convenience. The PCI-SIG may be exploring adding a new capability bit to advertise whether this is possible for future hardware. This commit includes significant rework and feedback from Christoph Hellwig. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Logan Gunthorpe <logang@deltatee.com> [bhelgaas: fold in fix from Keith Busch <keith.busch@intel.com>: https://lore.kernel.org/linux-pci/20181012155920.15418-1-keith.busch@intel.com, to address comment from Dan Carpenter <dan.carpenter@oracle.com>, fold in https://lore.kernel.org/linux-pci/20181017160510.17926-1-logang@deltatee.com] Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2018-10-05 04:27:35 +07:00
MEMORY_DEVICE_PCI_P2PDMA,
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
};
/*
* Additional notes about MEMORY_DEVICE_PRIVATE may be found in
* include/linux/hmm.h and Documentation/vm/hmm.rst. There is also a brief
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
* explanation in include/linux/memory_hotplug.h.
*
* The page_free() callback is called once the page refcount reaches 1
* (ZONE_DEVICE pages never reach 0 refcount unless there is a refcount bug.
* This allows the device driver to implement its own memory management.)
*/
typedef void (*dev_page_free_t)(struct page *page, void *data);
/**
* struct dev_pagemap - metadata for ZONE_DEVICE mappings
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
* @page_free: free page callback when page refcount reaches 1
* @altmap: pre-allocated/reserved memory for vmemmap allocations
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 07:56:49 +07:00
* @res: physical address range covered by @ref
* @ref: reference count that pins the devm_memremap_pages() mapping
mm, devm_memremap_pages: fix shutdown handling The last step before devm_memremap_pages() returns success is to allocate a release action, devm_memremap_pages_release(), to tear the entire setup down. However, the result from devm_add_action() is not checked. Checking the error from devm_add_action() is not enough. The api currently relies on the fact that the percpu_ref it is using is killed by the time the devm_memremap_pages_release() is run. Rather than continue this awkward situation, offload the responsibility of killing the percpu_ref to devm_memremap_pages_release() directly. This allows devm_memremap_pages() to do the right thing relative to init failures and shutdown. Without this change we could fail to register the teardown of devm_memremap_pages(). The likelihood of hitting this failure is tiny as small memory allocations almost always succeed. However, the impact of the failure is large given any future reconfiguration, or disable/enable, of an nvdimm namespace will fail forever as subsequent calls to devm_memremap_pages() will fail to setup the pgmap_radix since there will be stale entries for the physical address range. An argument could be made to require that the ->kill() operation be set in the @pgmap arg rather than passed in separately. However, it helps code readability, tracking the lifetime of a given instance, to be able to grep the kill routine directly at the devm_memremap_pages() call site. Link: http://lkml.kernel.org/r/154275558526.76910.7535251937849268605.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Fixes: e8d513483300 ("memremap: change devm_memremap_pages interface...") Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com> Reported-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 15:34:57 +07:00
* @kill: callback to transition @ref to the dead state
* @dev: host device of the mapping for debug
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
* @data: private data pointer for page_free()
* @type: memory type: see MEMORY_* in memory_hotplug.h
*/
struct dev_pagemap {
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
dev_page_free_t page_free;
struct vmem_altmap altmap;
bool altmap_valid;
struct resource res;
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 07:56:49 +07:00
struct percpu_ref *ref;
mm, devm_memremap_pages: fix shutdown handling The last step before devm_memremap_pages() returns success is to allocate a release action, devm_memremap_pages_release(), to tear the entire setup down. However, the result from devm_add_action() is not checked. Checking the error from devm_add_action() is not enough. The api currently relies on the fact that the percpu_ref it is using is killed by the time the devm_memremap_pages_release() is run. Rather than continue this awkward situation, offload the responsibility of killing the percpu_ref to devm_memremap_pages_release() directly. This allows devm_memremap_pages() to do the right thing relative to init failures and shutdown. Without this change we could fail to register the teardown of devm_memremap_pages(). The likelihood of hitting this failure is tiny as small memory allocations almost always succeed. However, the impact of the failure is large given any future reconfiguration, or disable/enable, of an nvdimm namespace will fail forever as subsequent calls to devm_memremap_pages() will fail to setup the pgmap_radix since there will be stale entries for the physical address range. An argument could be made to require that the ->kill() operation be set in the @pgmap arg rather than passed in separately. However, it helps code readability, tracking the lifetime of a given instance, to be able to grep the kill routine directly at the devm_memremap_pages() call site. Link: http://lkml.kernel.org/r/154275558526.76910.7535251937849268605.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Fixes: e8d513483300 ("memremap: change devm_memremap_pages interface...") Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com> Reported-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 15:34:57 +07:00
void (*kill)(struct percpu_ref *ref);
struct device *dev;
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 06:11:43 +07:00
void *data;
enum memory_type type;
u64 pci_p2pdma_bus_offset;
};
#ifdef CONFIG_ZONE_DEVICE
void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap);
struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
struct dev_pagemap *pgmap);
unsigned long vmem_altmap_offset(struct vmem_altmap *altmap);
void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns);
#else
static inline void *devm_memremap_pages(struct device *dev,
struct dev_pagemap *pgmap)
{
/*
* Fail attempts to call devm_memremap_pages() without
* ZONE_DEVICE support enabled, this requires callers to fall
* back to plain devm_memremap() based on config
*/
WARN_ON_ONCE(1);
return ERR_PTR(-ENXIO);
}
static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
struct dev_pagemap *pgmap)
{
return NULL;
}
static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
{
return 0;
}
static inline void vmem_altmap_free(struct vmem_altmap *altmap,
unsigned long nr_pfns)
{
}
#endif /* CONFIG_ZONE_DEVICE */
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 07:56:49 +07:00
static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
{
if (pgmap)
percpu_ref_put(pgmap->ref);
}
#endif /* _LINUX_MEMREMAP_H_ */