linux_dsm_epyc7002/samples/bpf/xsk_fwd.c

1086 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2020 Intel Corporation. */
#define _GNU_SOURCE
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <getopt.h>
#include <netinet/ether.h>
#include <net/if.h>
#include <linux/bpf.h>
#include <linux/if_link.h>
#include <linux/if_xdp.h>
#include <bpf/libbpf.h>
#include <bpf/xsk.h>
#include <bpf/bpf.h>
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
typedef __u64 u64;
typedef __u32 u32;
typedef __u16 u16;
typedef __u8 u8;
/* This program illustrates the packet forwarding between multiple AF_XDP
* sockets in multi-threaded environment. All threads are sharing a common
* buffer pool, with each socket having its own private buffer cache.
*
* Example 1: Single thread handling two sockets. The packets received by socket
* A (interface IFA, queue QA) are forwarded to socket B (interface IFB, queue
* QB), while the packets received by socket B are forwarded to socket A. The
* thread is running on CPU core X:
*
* ./xsk_fwd -i IFA -q QA -i IFB -q QB -c X
*
* Example 2: Two threads, each handling two sockets. The thread running on CPU
* core X forwards all the packets received by socket A to socket B, and all the
* packets received by socket B to socket A. The thread running on CPU core Y is
* performing the same packet forwarding between sockets C and D:
*
* ./xsk_fwd -i IFA -q QA -i IFB -q QB -i IFC -q QC -i IFD -q QD
* -c CX -c CY
*/
/*
* Buffer pool and buffer cache
*
* For packet forwarding, the packet buffers are typically allocated from the
* pool for packet reception and freed back to the pool for further reuse once
* the packet transmission is completed.
*
* The buffer pool is shared between multiple threads. In order to minimize the
* access latency to the shared buffer pool, each thread creates one (or
* several) buffer caches, which, unlike the buffer pool, are private to the
* thread that creates them and therefore cannot be shared with other threads.
* The access to the shared pool is only needed either (A) when the cache gets
* empty due to repeated buffer allocations and it needs to be replenished from
* the pool, or (B) when the cache gets full due to repeated buffer free and it
* needs to be flushed back to the pull.
*
* In a packet forwarding system, a packet received on any input port can
* potentially be transmitted on any output port, depending on the forwarding
* configuration. For AF_XDP sockets, for this to work with zero-copy of the
* packet buffers when, it is required that the buffer pool memory fits into the
* UMEM area shared by all the sockets.
*/
struct bpool_params {
u32 n_buffers;
u32 buffer_size;
int mmap_flags;
u32 n_users_max;
u32 n_buffers_per_slab;
};
/* This buffer pool implementation organizes the buffers into equally sized
* slabs of *n_buffers_per_slab*. Initially, there are *n_slabs* slabs in the
* pool that are completely filled with buffer pointers (full slabs).
*
* Each buffer cache has a slab for buffer allocation and a slab for buffer
* free, with both of these slabs initially empty. When the cache's allocation
* slab goes empty, it is swapped with one of the available full slabs from the
* pool, if any is available. When the cache's free slab goes full, it is
* swapped for one of the empty slabs from the pool, which is guaranteed to
* succeed.
*
* Partially filled slabs never get traded between the cache and the pool
* (except when the cache itself is destroyed), which enables fast operation
* through pointer swapping.
*/
struct bpool {
struct bpool_params params;
pthread_mutex_t lock;
void *addr;
u64 **slabs;
u64 **slabs_reserved;
u64 *buffers;
u64 *buffers_reserved;
u64 n_slabs;
u64 n_slabs_reserved;
u64 n_buffers;
u64 n_slabs_available;
u64 n_slabs_reserved_available;
struct xsk_umem_config umem_cfg;
struct xsk_ring_prod umem_fq;
struct xsk_ring_cons umem_cq;
struct xsk_umem *umem;
};
static struct bpool *
bpool_init(struct bpool_params *params,
struct xsk_umem_config *umem_cfg)
{
struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY};
u64 n_slabs, n_slabs_reserved, n_buffers, n_buffers_reserved;
u64 slabs_size, slabs_reserved_size;
u64 buffers_size, buffers_reserved_size;
u64 total_size, i;
struct bpool *bp;
u8 *p;
int status;
/* mmap prep. */
if (setrlimit(RLIMIT_MEMLOCK, &r))
return NULL;
/* bpool internals dimensioning. */
n_slabs = (params->n_buffers + params->n_buffers_per_slab - 1) /
params->n_buffers_per_slab;
n_slabs_reserved = params->n_users_max * 2;
n_buffers = n_slabs * params->n_buffers_per_slab;
n_buffers_reserved = n_slabs_reserved * params->n_buffers_per_slab;
slabs_size = n_slabs * sizeof(u64 *);
slabs_reserved_size = n_slabs_reserved * sizeof(u64 *);
buffers_size = n_buffers * sizeof(u64);
buffers_reserved_size = n_buffers_reserved * sizeof(u64);
total_size = sizeof(struct bpool) +
slabs_size + slabs_reserved_size +
buffers_size + buffers_reserved_size;
/* bpool memory allocation. */
p = calloc(total_size, sizeof(u8));
if (!p)
return NULL;
/* bpool memory initialization. */
bp = (struct bpool *)p;
memcpy(&bp->params, params, sizeof(*params));
bp->params.n_buffers = n_buffers;
bp->slabs = (u64 **)&p[sizeof(struct bpool)];
bp->slabs_reserved = (u64 **)&p[sizeof(struct bpool) +
slabs_size];
bp->buffers = (u64 *)&p[sizeof(struct bpool) +
slabs_size + slabs_reserved_size];
bp->buffers_reserved = (u64 *)&p[sizeof(struct bpool) +
slabs_size + slabs_reserved_size + buffers_size];
bp->n_slabs = n_slabs;
bp->n_slabs_reserved = n_slabs_reserved;
bp->n_buffers = n_buffers;
for (i = 0; i < n_slabs; i++)
bp->slabs[i] = &bp->buffers[i * params->n_buffers_per_slab];
bp->n_slabs_available = n_slabs;
for (i = 0; i < n_slabs_reserved; i++)
bp->slabs_reserved[i] = &bp->buffers_reserved[i *
params->n_buffers_per_slab];
bp->n_slabs_reserved_available = n_slabs_reserved;
for (i = 0; i < n_buffers; i++)
bp->buffers[i] = i * params->buffer_size;
/* lock. */
status = pthread_mutex_init(&bp->lock, NULL);
if (status) {
free(p);
return NULL;
}
/* mmap. */
bp->addr = mmap(NULL,
n_buffers * params->buffer_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | params->mmap_flags,
-1,
0);
if (bp->addr == MAP_FAILED) {
pthread_mutex_destroy(&bp->lock);
free(p);
return NULL;
}
/* umem. */
status = xsk_umem__create(&bp->umem,
bp->addr,
bp->params.n_buffers * bp->params.buffer_size,
&bp->umem_fq,
&bp->umem_cq,
umem_cfg);
if (status) {
munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
pthread_mutex_destroy(&bp->lock);
free(p);
return NULL;
}
memcpy(&bp->umem_cfg, umem_cfg, sizeof(*umem_cfg));
return bp;
}
static void
bpool_free(struct bpool *bp)
{
if (!bp)
return;
xsk_umem__delete(bp->umem);
munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
pthread_mutex_destroy(&bp->lock);
free(bp);
}
struct bcache {
struct bpool *bp;
u64 *slab_cons;
u64 *slab_prod;
u64 n_buffers_cons;
u64 n_buffers_prod;
};
static u32
bcache_slab_size(struct bcache *bc)
{
struct bpool *bp = bc->bp;
return bp->params.n_buffers_per_slab;
}
static struct bcache *
bcache_init(struct bpool *bp)
{
struct bcache *bc;
bc = calloc(1, sizeof(struct bcache));
if (!bc)
return NULL;
bc->bp = bp;
bc->n_buffers_cons = 0;
bc->n_buffers_prod = 0;
pthread_mutex_lock(&bp->lock);
if (bp->n_slabs_reserved_available == 0) {
pthread_mutex_unlock(&bp->lock);
free(bc);
return NULL;
}
bc->slab_cons = bp->slabs_reserved[bp->n_slabs_reserved_available - 1];
bc->slab_prod = bp->slabs_reserved[bp->n_slabs_reserved_available - 2];
bp->n_slabs_reserved_available -= 2;
pthread_mutex_unlock(&bp->lock);
return bc;
}
static void
bcache_free(struct bcache *bc)
{
struct bpool *bp;
if (!bc)
return;
/* In order to keep this example simple, the case of freeing any
* existing buffers from the cache back to the pool is ignored.
*/
bp = bc->bp;
pthread_mutex_lock(&bp->lock);
bp->slabs_reserved[bp->n_slabs_reserved_available] = bc->slab_prod;
bp->slabs_reserved[bp->n_slabs_reserved_available + 1] = bc->slab_cons;
bp->n_slabs_reserved_available += 2;
pthread_mutex_unlock(&bp->lock);
free(bc);
}
/* To work correctly, the implementation requires that the *n_buffers* input
* argument is never greater than the buffer pool's *n_buffers_per_slab*. This
* is typically the case, with one exception taking place when large number of
* buffers are allocated at init time (e.g. for the UMEM fill queue setup).
*/
static inline u32
bcache_cons_check(struct bcache *bc, u32 n_buffers)
{
struct bpool *bp = bc->bp;
u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
u64 n_buffers_cons = bc->n_buffers_cons;
u64 n_slabs_available;
u64 *slab_full;
/*
* Consumer slab is not empty: Use what's available locally. Do not
* look for more buffers from the pool when the ask can only be
* partially satisfied.
*/
if (n_buffers_cons)
return (n_buffers_cons < n_buffers) ?
n_buffers_cons :
n_buffers;
/*
* Consumer slab is empty: look to trade the current consumer slab
* (full) for a full slab from the pool, if any is available.
*/
pthread_mutex_lock(&bp->lock);
n_slabs_available = bp->n_slabs_available;
if (!n_slabs_available) {
pthread_mutex_unlock(&bp->lock);
return 0;
}
n_slabs_available--;
slab_full = bp->slabs[n_slabs_available];
bp->slabs[n_slabs_available] = bc->slab_cons;
bp->n_slabs_available = n_slabs_available;
pthread_mutex_unlock(&bp->lock);
bc->slab_cons = slab_full;
bc->n_buffers_cons = n_buffers_per_slab;
return n_buffers;
}
static inline u64
bcache_cons(struct bcache *bc)
{
u64 n_buffers_cons = bc->n_buffers_cons - 1;
u64 buffer;
buffer = bc->slab_cons[n_buffers_cons];
bc->n_buffers_cons = n_buffers_cons;
return buffer;
}
static inline void
bcache_prod(struct bcache *bc, u64 buffer)
{
struct bpool *bp = bc->bp;
u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
u64 n_buffers_prod = bc->n_buffers_prod;
u64 n_slabs_available;
u64 *slab_empty;
/*
* Producer slab is not yet full: store the current buffer to it.
*/
if (n_buffers_prod < n_buffers_per_slab) {
bc->slab_prod[n_buffers_prod] = buffer;
bc->n_buffers_prod = n_buffers_prod + 1;
return;
}
/*
* Producer slab is full: trade the cache's current producer slab
* (full) for an empty slab from the pool, then store the current
* buffer to the new producer slab. As one full slab exists in the
* cache, it is guaranteed that there is at least one empty slab
* available in the pool.
*/
pthread_mutex_lock(&bp->lock);
n_slabs_available = bp->n_slabs_available;
slab_empty = bp->slabs[n_slabs_available];
bp->slabs[n_slabs_available] = bc->slab_prod;
bp->n_slabs_available = n_slabs_available + 1;
pthread_mutex_unlock(&bp->lock);
slab_empty[0] = buffer;
bc->slab_prod = slab_empty;
bc->n_buffers_prod = 1;
}
/*
* Port
*
* Each of the forwarding ports sits on top of an AF_XDP socket. In order for
* packet forwarding to happen with no packet buffer copy, all the sockets need
* to share the same UMEM area, which is used as the buffer pool memory.
*/
#ifndef MAX_BURST_RX
#define MAX_BURST_RX 64
#endif
#ifndef MAX_BURST_TX
#define MAX_BURST_TX 64
#endif
struct burst_rx {
u64 addr[MAX_BURST_RX];
u32 len[MAX_BURST_RX];
};
struct burst_tx {
u64 addr[MAX_BURST_TX];
u32 len[MAX_BURST_TX];
u32 n_pkts;
};
struct port_params {
struct xsk_socket_config xsk_cfg;
struct bpool *bp;
const char *iface;
u32 iface_queue;
};
struct port {
struct port_params params;
struct bcache *bc;
struct xsk_ring_cons rxq;
struct xsk_ring_prod txq;
struct xsk_ring_prod umem_fq;
struct xsk_ring_cons umem_cq;
struct xsk_socket *xsk;
int umem_fq_initialized;
u64 n_pkts_rx;
u64 n_pkts_tx;
};
static void
port_free(struct port *p)
{
if (!p)
return;
/* To keep this example simple, the code to free the buffers from the
* socket's receive and transmit queues, as well as from the UMEM fill
* and completion queues, is not included.
*/
if (p->xsk)
xsk_socket__delete(p->xsk);
bcache_free(p->bc);
free(p);
}
static struct port *
port_init(struct port_params *params)
{
struct port *p;
u32 umem_fq_size, pos = 0;
int status, i;
/* Memory allocation and initialization. */
p = calloc(sizeof(struct port), 1);
if (!p)
return NULL;
memcpy(&p->params, params, sizeof(p->params));
umem_fq_size = params->bp->umem_cfg.fill_size;
/* bcache. */
p->bc = bcache_init(params->bp);
if (!p->bc ||
(bcache_slab_size(p->bc) < umem_fq_size) ||
(bcache_cons_check(p->bc, umem_fq_size) < umem_fq_size)) {
port_free(p);
return NULL;
}
/* xsk socket. */
status = xsk_socket__create_shared(&p->xsk,
params->iface,
params->iface_queue,
params->bp->umem,
&p->rxq,
&p->txq,
&p->umem_fq,
&p->umem_cq,
&params->xsk_cfg);
if (status) {
port_free(p);
return NULL;
}
/* umem fq. */
xsk_ring_prod__reserve(&p->umem_fq, umem_fq_size, &pos);
for (i = 0; i < umem_fq_size; i++)
*xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
bcache_cons(p->bc);
xsk_ring_prod__submit(&p->umem_fq, umem_fq_size);
p->umem_fq_initialized = 1;
return p;
}
static inline u32
port_rx_burst(struct port *p, struct burst_rx *b)
{
u32 n_pkts, pos, i;
/* Free buffers for FQ replenish. */
n_pkts = ARRAY_SIZE(b->addr);
n_pkts = bcache_cons_check(p->bc, n_pkts);
if (!n_pkts)
return 0;
/* RXQ. */
n_pkts = xsk_ring_cons__peek(&p->rxq, n_pkts, &pos);
if (!n_pkts) {
if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
struct pollfd pollfd = {
.fd = xsk_socket__fd(p->xsk),
.events = POLLIN,
};
poll(&pollfd, 1, 0);
}
return 0;
}
for (i = 0; i < n_pkts; i++) {
b->addr[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->addr;
b->len[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->len;
}
xsk_ring_cons__release(&p->rxq, n_pkts);
p->n_pkts_rx += n_pkts;
/* UMEM FQ. */
for ( ; ; ) {
int status;
status = xsk_ring_prod__reserve(&p->umem_fq, n_pkts, &pos);
if (status == n_pkts)
break;
if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
struct pollfd pollfd = {
.fd = xsk_socket__fd(p->xsk),
.events = POLLIN,
};
poll(&pollfd, 1, 0);
}
}
for (i = 0; i < n_pkts; i++)
*xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
bcache_cons(p->bc);
xsk_ring_prod__submit(&p->umem_fq, n_pkts);
return n_pkts;
}
static inline void
port_tx_burst(struct port *p, struct burst_tx *b)
{
u32 n_pkts, pos, i;
int status;
/* UMEM CQ. */
n_pkts = p->params.bp->umem_cfg.comp_size;
n_pkts = xsk_ring_cons__peek(&p->umem_cq, n_pkts, &pos);
for (i = 0; i < n_pkts; i++) {
u64 addr = *xsk_ring_cons__comp_addr(&p->umem_cq, pos + i);
bcache_prod(p->bc, addr);
}
xsk_ring_cons__release(&p->umem_cq, n_pkts);
/* TXQ. */
n_pkts = b->n_pkts;
for ( ; ; ) {
status = xsk_ring_prod__reserve(&p->txq, n_pkts, &pos);
if (status == n_pkts)
break;
if (xsk_ring_prod__needs_wakeup(&p->txq))
sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT,
NULL, 0);
}
for (i = 0; i < n_pkts; i++) {
xsk_ring_prod__tx_desc(&p->txq, pos + i)->addr = b->addr[i];
xsk_ring_prod__tx_desc(&p->txq, pos + i)->len = b->len[i];
}
xsk_ring_prod__submit(&p->txq, n_pkts);
if (xsk_ring_prod__needs_wakeup(&p->txq))
sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
p->n_pkts_tx += n_pkts;
}
/*
* Thread
*
* Packet forwarding threads.
*/
#ifndef MAX_PORTS_PER_THREAD
#define MAX_PORTS_PER_THREAD 16
#endif
struct thread_data {
struct port *ports_rx[MAX_PORTS_PER_THREAD];
struct port *ports_tx[MAX_PORTS_PER_THREAD];
u32 n_ports_rx;
struct burst_rx burst_rx;
struct burst_tx burst_tx[MAX_PORTS_PER_THREAD];
u32 cpu_core_id;
int quit;
};
static void swap_mac_addresses(void *data)
{
struct ether_header *eth = (struct ether_header *)data;
struct ether_addr *src_addr = (struct ether_addr *)&eth->ether_shost;
struct ether_addr *dst_addr = (struct ether_addr *)&eth->ether_dhost;
struct ether_addr tmp;
tmp = *src_addr;
*src_addr = *dst_addr;
*dst_addr = tmp;
}
static void *
thread_func(void *arg)
{
struct thread_data *t = arg;
cpu_set_t cpu_cores;
u32 i;
CPU_ZERO(&cpu_cores);
CPU_SET(t->cpu_core_id, &cpu_cores);
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_cores);
for (i = 0; !t->quit; i = (i + 1) & (t->n_ports_rx - 1)) {
struct port *port_rx = t->ports_rx[i];
struct port *port_tx = t->ports_tx[i];
struct burst_rx *brx = &t->burst_rx;
struct burst_tx *btx = &t->burst_tx[i];
u32 n_pkts, j;
/* RX. */
n_pkts = port_rx_burst(port_rx, brx);
if (!n_pkts)
continue;
/* Process & TX. */
for (j = 0; j < n_pkts; j++) {
u64 addr = xsk_umem__add_offset_to_addr(brx->addr[j]);
u8 *pkt = xsk_umem__get_data(port_rx->params.bp->addr,
addr);
swap_mac_addresses(pkt);
btx->addr[btx->n_pkts] = brx->addr[j];
btx->len[btx->n_pkts] = brx->len[j];
btx->n_pkts++;
if (btx->n_pkts == MAX_BURST_TX) {
port_tx_burst(port_tx, btx);
btx->n_pkts = 0;
}
}
}
return NULL;
}
/*
* Process
*/
static const struct bpool_params bpool_params_default = {
.n_buffers = 64 * 1024,
.buffer_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
.mmap_flags = 0,
.n_users_max = 16,
.n_buffers_per_slab = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
};
static const struct xsk_umem_config umem_cfg_default = {
.fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
.comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
.frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
.frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM,
.flags = 0,
};
static const struct port_params port_params_default = {
.xsk_cfg = {
.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS,
.libbpf_flags = 0,
.xdp_flags = XDP_FLAGS_DRV_MODE,
.bind_flags = XDP_USE_NEED_WAKEUP | XDP_ZEROCOPY,
},
.bp = NULL,
.iface = NULL,
.iface_queue = 0,
};
#ifndef MAX_PORTS
#define MAX_PORTS 64
#endif
#ifndef MAX_THREADS
#define MAX_THREADS 64
#endif
static struct bpool_params bpool_params;
static struct xsk_umem_config umem_cfg;
static struct bpool *bp;
static struct port_params port_params[MAX_PORTS];
static struct port *ports[MAX_PORTS];
static u64 n_pkts_rx[MAX_PORTS];
static u64 n_pkts_tx[MAX_PORTS];
static int n_ports;
static pthread_t threads[MAX_THREADS];
static struct thread_data thread_data[MAX_THREADS];
static int n_threads;
static void
print_usage(char *prog_name)
{
const char *usage =
"Usage:\n"
"\t%s [ -b SIZE ] -c CORE -i INTERFACE [ -q QUEUE ]\n"
"\n"
"-c CORE CPU core to run a packet forwarding thread\n"
" on. May be invoked multiple times.\n"
"\n"
"-b SIZE Number of buffers in the buffer pool shared\n"
" by all the forwarding threads. Default: %u.\n"
"\n"
"-i INTERFACE Network interface. Each (INTERFACE, QUEUE)\n"
" pair specifies one forwarding port. May be\n"
" invoked multiple times.\n"
"\n"
"-q QUEUE Network interface queue for RX and TX. Each\n"
" (INTERFACE, QUEUE) pair specified one\n"
" forwarding port. Default: %u. May be invoked\n"
" multiple times.\n"
"\n";
printf(usage,
prog_name,
bpool_params_default.n_buffers,
port_params_default.iface_queue);
}
static int
parse_args(int argc, char **argv)
{
struct option lgopts[] = {
{ NULL, 0, 0, 0 }
};
int opt, option_index;
/* Parse the input arguments. */
for ( ; ;) {
opt = getopt_long(argc, argv, "c:i:q:", lgopts, &option_index);
if (opt == EOF)
break;
switch (opt) {
case 'b':
bpool_params.n_buffers = atoi(optarg);
break;
case 'c':
if (n_threads == MAX_THREADS) {
printf("Max number of threads (%d) reached.\n",
MAX_THREADS);
return -1;
}
thread_data[n_threads].cpu_core_id = atoi(optarg);
n_threads++;
break;
case 'i':
if (n_ports == MAX_PORTS) {
printf("Max number of ports (%d) reached.\n",
MAX_PORTS);
return -1;
}
port_params[n_ports].iface = optarg;
port_params[n_ports].iface_queue = 0;
n_ports++;
break;
case 'q':
if (n_ports == 0) {
printf("No port specified for queue.\n");
return -1;
}
port_params[n_ports - 1].iface_queue = atoi(optarg);
break;
default:
printf("Illegal argument.\n");
return -1;
}
}
optind = 1; /* reset getopt lib */
/* Check the input arguments. */
if (!n_ports) {
printf("No ports specified.\n");
return -1;
}
if (!n_threads) {
printf("No threads specified.\n");
return -1;
}
if (n_ports % n_threads) {
printf("Ports cannot be evenly distributed to threads.\n");
return -1;
}
return 0;
}
static void
print_port(u32 port_id)
{
struct port *port = ports[port_id];
printf("Port %u: interface = %s, queue = %u\n",
port_id, port->params.iface, port->params.iface_queue);
}
static void
print_thread(u32 thread_id)
{
struct thread_data *t = &thread_data[thread_id];
u32 i;
printf("Thread %u (CPU core %u): ",
thread_id, t->cpu_core_id);
for (i = 0; i < t->n_ports_rx; i++) {
struct port *port_rx = t->ports_rx[i];
struct port *port_tx = t->ports_tx[i];
printf("(%s, %u) -> (%s, %u), ",
port_rx->params.iface,
port_rx->params.iface_queue,
port_tx->params.iface,
port_tx->params.iface_queue);
}
printf("\n");
}
static void
print_port_stats_separator(void)
{
printf("+-%4s-+-%12s-+-%13s-+-%12s-+-%13s-+\n",
"----",
"------------",
"-------------",
"------------",
"-------------");
}
static void
print_port_stats_header(void)
{
print_port_stats_separator();
printf("| %4s | %12s | %13s | %12s | %13s |\n",
"Port",
"RX packets",
"RX rate (pps)",
"TX packets",
"TX_rate (pps)");
print_port_stats_separator();
}
static void
print_port_stats_trailer(void)
{
print_port_stats_separator();
printf("\n");
}
static void
print_port_stats(int port_id, u64 ns_diff)
{
struct port *p = ports[port_id];
double rx_pps, tx_pps;
rx_pps = (p->n_pkts_rx - n_pkts_rx[port_id]) * 1000000000. / ns_diff;
tx_pps = (p->n_pkts_tx - n_pkts_tx[port_id]) * 1000000000. / ns_diff;
printf("| %4d | %12llu | %13.0f | %12llu | %13.0f |\n",
port_id,
p->n_pkts_rx,
rx_pps,
p->n_pkts_tx,
tx_pps);
n_pkts_rx[port_id] = p->n_pkts_rx;
n_pkts_tx[port_id] = p->n_pkts_tx;
}
static void
print_port_stats_all(u64 ns_diff)
{
int i;
print_port_stats_header();
for (i = 0; i < n_ports; i++)
print_port_stats(i, ns_diff);
print_port_stats_trailer();
}
static int quit;
static void
signal_handler(int sig)
{
quit = 1;
}
static void remove_xdp_program(void)
{
int i;
for (i = 0 ; i < n_ports; i++)
bpf_set_link_xdp_fd(if_nametoindex(port_params[i].iface), -1,
port_params[i].xsk_cfg.xdp_flags);
}
int main(int argc, char **argv)
{
struct timespec time;
u64 ns0;
int i;
/* Parse args. */
memcpy(&bpool_params, &bpool_params_default,
sizeof(struct bpool_params));
memcpy(&umem_cfg, &umem_cfg_default,
sizeof(struct xsk_umem_config));
for (i = 0; i < MAX_PORTS; i++)
memcpy(&port_params[i], &port_params_default,
sizeof(struct port_params));
if (parse_args(argc, argv)) {
print_usage(argv[0]);
return -1;
}
/* Buffer pool initialization. */
bp = bpool_init(&bpool_params, &umem_cfg);
if (!bp) {
printf("Buffer pool initialization failed.\n");
return -1;
}
printf("Buffer pool created successfully.\n");
/* Ports initialization. */
for (i = 0; i < MAX_PORTS; i++)
port_params[i].bp = bp;
for (i = 0; i < n_ports; i++) {
ports[i] = port_init(&port_params[i]);
if (!ports[i]) {
printf("Port %d initialization failed.\n", i);
return -1;
}
print_port(i);
}
printf("All ports created successfully.\n");
/* Threads. */
for (i = 0; i < n_threads; i++) {
struct thread_data *t = &thread_data[i];
u32 n_ports_per_thread = n_ports / n_threads, j;
for (j = 0; j < n_ports_per_thread; j++) {
t->ports_rx[j] = ports[i * n_ports_per_thread + j];
t->ports_tx[j] = ports[i * n_ports_per_thread +
(j + 1) % n_ports_per_thread];
}
t->n_ports_rx = n_ports_per_thread;
print_thread(i);
}
for (i = 0; i < n_threads; i++) {
int status;
status = pthread_create(&threads[i],
NULL,
thread_func,
&thread_data[i]);
if (status) {
printf("Thread %d creation failed.\n", i);
return -1;
}
}
printf("All threads created successfully.\n");
/* Print statistics. */
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGABRT, signal_handler);
clock_gettime(CLOCK_MONOTONIC, &time);
ns0 = time.tv_sec * 1000000000UL + time.tv_nsec;
for ( ; !quit; ) {
u64 ns1, ns_diff;
sleep(1);
clock_gettime(CLOCK_MONOTONIC, &time);
ns1 = time.tv_sec * 1000000000UL + time.tv_nsec;
ns_diff = ns1 - ns0;
ns0 = ns1;
print_port_stats_all(ns_diff);
}
/* Threads completion. */
printf("Quit.\n");
for (i = 0; i < n_threads; i++)
thread_data[i].quit = 1;
for (i = 0; i < n_threads; i++)
pthread_join(threads[i], NULL);
for (i = 0; i < n_ports; i++)
port_free(ports[i]);
bpool_free(bp);
remove_xdp_program();
return 0;
}