linux_dsm_epyc7002/arch/sparc/net/bpf_jit_comp_64.c

1615 lines
38 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/moduleloader.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/cache.h>
#include <linux/if_vlan.h>
#include <asm/cacheflush.h>
#include <asm/ptrace.h>
#include "bpf_jit_64.h"
static inline bool is_simm13(unsigned int value)
{
return value + 0x1000 < 0x2000;
}
static inline bool is_simm10(unsigned int value)
{
return value + 0x200 < 0x400;
}
static inline bool is_simm5(unsigned int value)
{
return value + 0x10 < 0x20;
}
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
static inline bool is_sethi(unsigned int value)
{
return (value & ~0x3fffff) == 0;
}
static void bpf_flush_icache(void *start_, void *end_)
{
/* Cheetah's I-cache is fully coherent. */
if (tlb_type == spitfire) {
unsigned long start = (unsigned long) start_;
unsigned long end = (unsigned long) end_;
start &= ~7UL;
end = (end + 7UL) & ~7UL;
while (start < end) {
flushi(start);
start += 32;
}
}
}
#define S13(X) ((X) & 0x1fff)
#define S5(X) ((X) & 0x1f)
#define IMMED 0x00002000
#define RD(X) ((X) << 25)
#define RS1(X) ((X) << 14)
#define RS2(X) ((X))
#define OP(X) ((X) << 30)
#define OP2(X) ((X) << 22)
#define OP3(X) ((X) << 19)
#define COND(X) (((X) & 0xf) << 25)
#define CBCOND(X) (((X) & 0x1f) << 25)
#define F1(X) OP(X)
#define F2(X, Y) (OP(X) | OP2(Y))
#define F3(X, Y) (OP(X) | OP3(Y))
#define ASI(X) (((X) & 0xff) << 5)
#define CONDN COND(0x0)
#define CONDE COND(0x1)
#define CONDLE COND(0x2)
#define CONDL COND(0x3)
#define CONDLEU COND(0x4)
#define CONDCS COND(0x5)
#define CONDNEG COND(0x6)
#define CONDVC COND(0x7)
#define CONDA COND(0x8)
#define CONDNE COND(0x9)
#define CONDG COND(0xa)
#define CONDGE COND(0xb)
#define CONDGU COND(0xc)
#define CONDCC COND(0xd)
#define CONDPOS COND(0xe)
#define CONDVS COND(0xf)
#define CONDGEU CONDCC
#define CONDLU CONDCS
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
#define WDISP19(X) (((X) >> 2) & 0x7ffff)
/* The 10-bit branch displacement for CBCOND is split into two fields */
static u32 WDISP10(u32 off)
{
u32 ret = ((off >> 2) & 0xff) << 5;
ret |= ((off >> (2 + 8)) & 0x03) << 19;
return ret;
}
#define CBCONDE CBCOND(0x09)
#define CBCONDLE CBCOND(0x0a)
#define CBCONDL CBCOND(0x0b)
#define CBCONDLEU CBCOND(0x0c)
#define CBCONDCS CBCOND(0x0d)
#define CBCONDN CBCOND(0x0e)
#define CBCONDVS CBCOND(0x0f)
#define CBCONDNE CBCOND(0x19)
#define CBCONDG CBCOND(0x1a)
#define CBCONDGE CBCOND(0x1b)
#define CBCONDGU CBCOND(0x1c)
#define CBCONDCC CBCOND(0x1d)
#define CBCONDPOS CBCOND(0x1e)
#define CBCONDVC CBCOND(0x1f)
#define CBCONDGEU CBCONDCC
#define CBCONDLU CBCONDCS
#define ANNUL (1 << 29)
#define XCC (1 << 21)
#define BRANCH (F2(0, 1) | XCC)
#define CBCOND_OP (F2(0, 3) | XCC)
#define BA (BRANCH | CONDA)
#define BG (BRANCH | CONDG)
#define BL (BRANCH | CONDL)
#define BLE (BRANCH | CONDLE)
#define BGU (BRANCH | CONDGU)
#define BLEU (BRANCH | CONDLEU)
#define BGE (BRANCH | CONDGE)
#define BGEU (BRANCH | CONDGEU)
#define BLU (BRANCH | CONDLU)
#define BE (BRANCH | CONDE)
#define BNE (BRANCH | CONDNE)
#define SETHI(K, REG) \
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
#define OR_LO(K, REG) \
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
#define ADD F3(2, 0x00)
#define AND F3(2, 0x01)
#define ANDCC F3(2, 0x11)
#define OR F3(2, 0x02)
#define XOR F3(2, 0x03)
#define SUB F3(2, 0x04)
#define SUBCC F3(2, 0x14)
#define MUL F3(2, 0x0a)
#define MULX F3(2, 0x09)
#define UDIVX F3(2, 0x0d)
#define DIV F3(2, 0x0e)
#define SLL F3(2, 0x25)
#define SLLX (F3(2, 0x25)|(1<<12))
#define SRA F3(2, 0x27)
#define SRAX (F3(2, 0x27)|(1<<12))
#define SRL F3(2, 0x26)
#define SRLX (F3(2, 0x26)|(1<<12))
#define JMPL F3(2, 0x38)
#define SAVE F3(2, 0x3c)
#define RESTORE F3(2, 0x3d)
#define CALL F1(1)
#define BR F2(0, 0x01)
#define RD_Y F3(2, 0x28)
#define WR_Y F3(2, 0x30)
#define LD32 F3(3, 0x00)
#define LD8 F3(3, 0x01)
#define LD16 F3(3, 0x02)
#define LD64 F3(3, 0x0b)
#define LD64A F3(3, 0x1b)
#define ST8 F3(3, 0x05)
#define ST16 F3(3, 0x06)
#define ST32 F3(3, 0x04)
#define ST64 F3(3, 0x0e)
#define CAS F3(3, 0x3c)
#define CASX F3(3, 0x3e)
#define LDPTR LD64
#define BASE_STACKFRAME 176
#define LD32I (LD32 | IMMED)
#define LD8I (LD8 | IMMED)
#define LD16I (LD16 | IMMED)
#define LD64I (LD64 | IMMED)
#define LDPTRI (LDPTR | IMMED)
#define ST32I (ST32 | IMMED)
struct jit_ctx {
struct bpf_prog *prog;
unsigned int *offset;
int idx;
int epilogue_offset;
bool tmp_1_used;
bool tmp_2_used;
bool tmp_3_used;
bool saw_frame_pointer;
bool saw_call;
bool saw_tail_call;
u32 *image;
};
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
#define TMP_REG_3 (MAX_BPF_JIT_REG + 2)
/* Map BPF registers to SPARC registers */
static const int bpf2sparc[] = {
/* return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = O5,
/* arguments from eBPF program to in-kernel function */
[BPF_REG_1] = O0,
[BPF_REG_2] = O1,
[BPF_REG_3] = O2,
[BPF_REG_4] = O3,
[BPF_REG_5] = O4,
/* callee saved registers that in-kernel function will preserve */
[BPF_REG_6] = L0,
[BPF_REG_7] = L1,
[BPF_REG_8] = L2,
[BPF_REG_9] = L3,
/* read-only frame pointer to access stack */
[BPF_REG_FP] = L6,
[BPF_REG_AX] = G7,
/* temporary register for internal BPF JIT */
[TMP_REG_1] = G1,
[TMP_REG_2] = G2,
[TMP_REG_3] = G3,
};
static void emit(const u32 insn, struct jit_ctx *ctx)
{
if (ctx->image != NULL)
ctx->image[ctx->idx] = insn;
ctx->idx++;
}
static void emit_call(u32 *func, struct jit_ctx *ctx)
{
if (ctx->image != NULL) {
void *here = &ctx->image[ctx->idx];
unsigned int off;
off = (void *)func - here;
ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
}
ctx->idx++;
}
static void emit_nop(struct jit_ctx *ctx)
{
emit(SETHI(0, G0), ctx);
}
static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
{
emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
}
/* Emit 32-bit constant, zero extended. */
static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
{
emit(SETHI(K, reg), ctx);
emit(OR_LO(K, reg), ctx);
}
/* Emit 32-bit constant, sign extended. */
static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
{
if (K >= 0) {
emit(SETHI(K, reg), ctx);
emit(OR_LO(K, reg), ctx);
} else {
u32 hbits = ~(u32) K;
u32 lbits = -0x400 | (u32) K;
emit(SETHI(hbits, reg), ctx);
emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
}
}
static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
{
emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
}
static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
{
emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
}
static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
struct jit_ctx *ctx)
{
bool small_immed = is_simm13(imm);
unsigned int insn = opcode;
insn |= RS1(dst) | RD(dst);
if (small_immed) {
emit(insn | IMMED | S13(imm), ctx);
} else {
unsigned int tmp = bpf2sparc[TMP_REG_1];
ctx->tmp_1_used = true;
emit_set_const_sext(imm, tmp, ctx);
emit(insn | RS2(tmp), ctx);
}
}
static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
unsigned int dst, struct jit_ctx *ctx)
{
bool small_immed = is_simm13(imm);
unsigned int insn = opcode;
insn |= RS1(src) | RD(dst);
if (small_immed) {
emit(insn | IMMED | S13(imm), ctx);
} else {
unsigned int tmp = bpf2sparc[TMP_REG_1];
ctx->tmp_1_used = true;
emit_set_const_sext(imm, tmp, ctx);
emit(insn | RS2(tmp), ctx);
}
}
static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
if (K >= 0 && is_simm13(K)) {
/* or %g0, K, DEST */
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
} else {
emit_set_const(K, dest, ctx);
}
}
static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
if (is_simm13(K)) {
/* or %g0, K, DEST */
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
} else {
emit_set_const(K, dest, ctx);
}
}
static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
if (is_simm13(K)) {
/* or %g0, K, DEST */
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
} else {
emit_set_const_sext(K, dest, ctx);
}
}
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
int *hbsp, int *lbsp, int *abbasp)
{
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
int i;
lowest_bit_set = highest_bit_set = -1;
i = 0;
do {
if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
lowest_bit_set = i;
if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
highest_bit_set = (64 - i - 1);
} while (++i < 32 && (highest_bit_set == -1 ||
lowest_bit_set == -1));
if (i == 32) {
i = 0;
do {
if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
lowest_bit_set = i + 32;
if (highest_bit_set == -1 &&
((low_bits >> (32 - i - 1)) & 1))
highest_bit_set = 32 - i - 1;
} while (++i < 32 && (highest_bit_set == -1 ||
lowest_bit_set == -1));
}
all_bits_between_are_set = 1;
for (i = lowest_bit_set; i <= highest_bit_set; i++) {
if (i < 32) {
if ((low_bits & (1 << i)) != 0)
continue;
} else {
if ((high_bits & (1 << (i - 32))) != 0)
continue;
}
all_bits_between_are_set = 0;
break;
}
*hbsp = highest_bit_set;
*lbsp = lowest_bit_set;
*abbasp = all_bits_between_are_set;
}
static unsigned long create_simple_focus_bits(unsigned long high_bits,
unsigned long low_bits,
int lowest_bit_set, int shift)
{
long hi, lo;
if (lowest_bit_set < 32) {
lo = (low_bits >> lowest_bit_set) << shift;
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
} else {
lo = 0;
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
}
return hi | lo;
}
static bool const64_is_2insns(unsigned long high_bits,
unsigned long low_bits)
{
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
if (high_bits == 0 || high_bits == 0xffffffff)
return true;
analyze_64bit_constant(high_bits, low_bits,
&highest_bit_set, &lowest_bit_set,
&all_bits_between_are_set);
if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
all_bits_between_are_set != 0)
return true;
if (highest_bit_set - lowest_bit_set < 21)
return true;
return false;
}
static void sparc_emit_set_const64_quick2(unsigned long high_bits,
unsigned long low_imm,
unsigned int dest,
int shift_count, struct jit_ctx *ctx)
{
emit_loadimm32(high_bits, dest, ctx);
/* Now shift it up into place. */
emit_alu_K(SLLX, dest, shift_count, ctx);
/* If there is a low immediate part piece, finish up by
* putting that in as well.
*/
if (low_imm != 0)
emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
}
static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
{
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
unsigned int tmp = bpf2sparc[TMP_REG_1];
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
u32 low_bits = (K & 0xffffffff);
u32 high_bits = (K >> 32);
/* These two tests also take care of all of the one
* instruction cases.
*/
if (high_bits == 0xffffffff && (low_bits & 0x80000000))
return emit_loadimm_sext(K, dest, ctx);
if (high_bits == 0x00000000)
return emit_loadimm32(K, dest, ctx);
analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
&lowest_bit_set, &all_bits_between_are_set);
/* 1) mov -1, %reg
* sllx %reg, shift, %reg
* 2) mov -1, %reg
* srlx %reg, shift, %reg
* 3) mov some_small_const, %reg
* sllx %reg, shift, %reg
*/
if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
all_bits_between_are_set != 0) ||
((highest_bit_set - lowest_bit_set) < 12)) {
int shift = lowest_bit_set;
long the_const = -1;
if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
all_bits_between_are_set == 0) {
the_const =
create_simple_focus_bits(high_bits, low_bits,
lowest_bit_set, 0);
} else if (lowest_bit_set == 0)
shift = -(63 - highest_bit_set);
emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
if (shift > 0)
emit_alu_K(SLLX, dest, shift, ctx);
else if (shift < 0)
emit_alu_K(SRLX, dest, -shift, ctx);
return;
}
/* Now a range of 22 or less bits set somewhere.
* 1) sethi %hi(focus_bits), %reg
* sllx %reg, shift, %reg
* 2) sethi %hi(focus_bits), %reg
* srlx %reg, shift, %reg
*/
if ((highest_bit_set - lowest_bit_set) < 21) {
unsigned long focus_bits =
create_simple_focus_bits(high_bits, low_bits,
lowest_bit_set, 10);
emit(SETHI(focus_bits, dest), ctx);
/* If lowest_bit_set == 10 then a sethi alone could
* have done it.
*/
if (lowest_bit_set < 10)
emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
else if (lowest_bit_set > 10)
emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
return;
}
/* Ok, now 3 instruction sequences. */
if (low_bits == 0) {
emit_loadimm32(high_bits, dest, ctx);
emit_alu_K(SLLX, dest, 32, ctx);
return;
}
/* We may be able to do something quick
* when the constant is negated, so try that.
*/
if (const64_is_2insns((~high_bits) & 0xffffffff,
(~low_bits) & 0xfffffc00)) {
/* NOTE: The trailing bits get XOR'd so we need the
* non-negated bits, not the negated ones.
*/
unsigned long trailing_bits = low_bits & 0x3ff;
if ((((~high_bits) & 0xffffffff) == 0 &&
((~low_bits) & 0x80000000) == 0) ||
(((~high_bits) & 0xffffffff) == 0xffffffff &&
((~low_bits) & 0x80000000) != 0)) {
unsigned long fast_int = (~low_bits & 0xffffffff);
if ((is_sethi(fast_int) &&
(~high_bits & 0xffffffff) == 0)) {
emit(SETHI(fast_int, dest), ctx);
} else if (is_simm13(fast_int)) {
emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
} else {
emit_loadimm64(fast_int, dest, ctx);
}
} else {
u64 n = ((~low_bits) & 0xfffffc00) |
(((unsigned long)((~high_bits) & 0xffffffff))<<32);
emit_loadimm64(n, dest, ctx);
}
low_bits = -0x400 | trailing_bits;
emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
return;
}
/* 1) sethi %hi(xxx), %reg
* or %reg, %lo(xxx), %reg
* sllx %reg, yyy, %reg
*/
if ((highest_bit_set - lowest_bit_set) < 32) {
unsigned long focus_bits =
create_simple_focus_bits(high_bits, low_bits,
lowest_bit_set, 0);
/* So what we know is that the set bits straddle the
* middle of the 64-bit word.
*/
sparc_emit_set_const64_quick2(focus_bits, 0, dest,
lowest_bit_set, ctx);
return;
}
/* 1) sethi %hi(high_bits), %reg
* or %reg, %lo(high_bits), %reg
* sllx %reg, 32, %reg
* or %reg, low_bits, %reg
*/
if (is_simm13(low_bits) && ((int)low_bits > 0)) {
sparc_emit_set_const64_quick2(high_bits, low_bits,
dest, 32, ctx);
return;
}
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
/* Oh well, we tried... Do a full 64-bit decomposition. */
ctx->tmp_1_used = true;
sparc64: Improve 64-bit constant loading in eBPF JIT. Doing a full 64-bit decomposition is really stupid especially for simple values like 0 and -1. But if we are going to optimize this, go all the way and try for all 2 and 3 instruction sequences not requiring a temporary register as well. First we do the easy cases where it's a zero or sign extended 32-bit number (sethi+or, sethi+xor, respectively). Then we try to find a range of set bits we can load simply then shift up into place, in various ways. Then we try negating the constant and see if we can do a simple sequence using that with a xor at the end. (f.e. the range of set bits can't be loaded simply, but for the negated value it can) The final optimized strategy involves 4 instructions sequences not needing a temporary register. Otherwise we sadly fully decompose using a temp.. Example, from ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000: 0000000000000000 <foo>: 0: 9d e3 bf 50 save %sp, -176, %sp 4: 01 00 00 00 nop 8: 90 10 00 18 mov %i0, %o0 c: 13 3f ff ff sethi %hi(0xfffffc00), %o1 10: 92 12 63 ff or %o1, 0x3ff, %o1 ! ffffffff <foo+0xffffffff> 14: 93 2a 70 10 sllx %o1, 0x10, %o1 18: 15 3f ff ff sethi %hi(0xfffffc00), %o2 1c: 94 12 a3 ff or %o2, 0x3ff, %o2 ! ffffffff <foo+0xffffffff> 20: 95 2a b0 10 sllx %o2, 0x10, %o2 24: 92 1a 60 00 xor %o1, 0, %o1 28: 12 e2 40 8a cxbe %o1, %o2, 38 <foo+0x38> 2c: 9a 10 20 02 mov 2, %o5 30: 10 60 00 03 b,pn %xcc, 3c <foo+0x3c> 34: 01 00 00 00 nop 38: 9a 10 20 01 mov 1, %o5 ! 1 <foo+0x1> 3c: 81 c7 e0 08 ret 40: 91 eb 40 00 restore %o5, %g0, %o0 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 09:42:34 +07:00
emit_loadimm32(high_bits, tmp, ctx);
emit_loadimm32(low_bits, dest, ctx);
emit_alu_K(SLLX, tmp, 32, ctx);
emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
}
static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
struct jit_ctx *ctx)
{
unsigned int off = to_idx - from_idx;
if (br_opc & XCC)
emit(br_opc | WDISP19(off << 2), ctx);
else
emit(br_opc | WDISP22(off << 2), ctx);
}
static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
const u8 dst, const u8 src, struct jit_ctx *ctx)
{
unsigned int off = to_idx - from_idx;
emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
}
static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
const u8 dst, s32 imm, struct jit_ctx *ctx)
{
unsigned int off = to_idx - from_idx;
emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
}
#define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
#define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
#define emit_cmp(R1, R2, CTX) \
emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
#define emit_cmpi(R1, IMM, CTX) \
emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
#define emit_btst(R1, R2, CTX) \
emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
#define emit_btsti(R1, IMM, CTX) \
emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
const s32 imm, bool is_imm, int branch_dst,
struct jit_ctx *ctx)
{
bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
const u8 tmp = bpf2sparc[TMP_REG_1];
branch_dst = ctx->offset[branch_dst];
if (!is_simm10(branch_dst - ctx->idx) ||
BPF_OP(code) == BPF_JSET)
use_cbcond = false;
if (is_imm) {
bool fits = true;
if (use_cbcond) {
if (!is_simm5(imm))
fits = false;
} else if (!is_simm13(imm)) {
fits = false;
}
if (!fits) {
ctx->tmp_1_used = true;
emit_loadimm_sext(imm, tmp, ctx);
src = tmp;
is_imm = false;
}
}
if (!use_cbcond) {
u32 br_opcode;
if (BPF_OP(code) == BPF_JSET) {
if (is_imm)
emit_btsti(dst, imm, ctx);
else
emit_btst(dst, src, ctx);
} else {
if (is_imm)
emit_cmpi(dst, imm, ctx);
else
emit_cmp(dst, src, ctx);
}
switch (BPF_OP(code)) {
case BPF_JEQ:
br_opcode = BE;
break;
case BPF_JGT:
br_opcode = BGU;
break;
case BPF_JLT:
br_opcode = BLU;
break;
case BPF_JGE:
br_opcode = BGEU;
break;
case BPF_JLE:
br_opcode = BLEU;
break;
case BPF_JSET:
case BPF_JNE:
br_opcode = BNE;
break;
case BPF_JSGT:
br_opcode = BG;
break;
case BPF_JSLT:
br_opcode = BL;
break;
case BPF_JSGE:
br_opcode = BGE;
break;
case BPF_JSLE:
br_opcode = BLE;
break;
default:
/* Make sure we dont leak kernel information to the
* user.
*/
return -EFAULT;
}
emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
emit_nop(ctx);
} else {
u32 cbcond_opcode;
switch (BPF_OP(code)) {
case BPF_JEQ:
cbcond_opcode = CBCONDE;
break;
case BPF_JGT:
cbcond_opcode = CBCONDGU;
break;
case BPF_JLT:
cbcond_opcode = CBCONDLU;
break;
case BPF_JGE:
cbcond_opcode = CBCONDGEU;
break;
case BPF_JLE:
cbcond_opcode = CBCONDLEU;
break;
case BPF_JNE:
cbcond_opcode = CBCONDNE;
break;
case BPF_JSGT:
cbcond_opcode = CBCONDG;
break;
case BPF_JSLT:
cbcond_opcode = CBCONDL;
break;
case BPF_JSGE:
cbcond_opcode = CBCONDGE;
break;
case BPF_JSLE:
cbcond_opcode = CBCONDLE;
break;
default:
/* Make sure we dont leak kernel information to the
* user.
*/
return -EFAULT;
}
cbcond_opcode |= CBCOND_OP;
if (is_imm)
emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
dst, imm, ctx);
else
emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
dst, src, ctx);
}
return 0;
}
/* Just skip the save instruction and the ctx register move. */
#define BPF_TAILCALL_PROLOGUE_SKIP 32
#define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
static void build_prologue(struct jit_ctx *ctx)
{
s32 stack_needed = BASE_STACKFRAME;
if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
struct bpf_prog *prog = ctx->prog;
u32 stack_depth;
stack_depth = prog->aux->stack_depth;
stack_needed += round_up(stack_depth, 16);
}
if (ctx->saw_tail_call)
stack_needed += 8;
/* save %sp, -176, %sp */
emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
/* tail_call_cnt = 0 */
if (ctx->saw_tail_call) {
u32 off = BPF_TAILCALL_CNT_SP_OFF;
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
} else {
emit_nop(ctx);
}
if (ctx->saw_frame_pointer) {
const u8 vfp = bpf2sparc[BPF_REG_FP];
emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
} else {
emit_nop(ctx);
}
emit_reg_move(I0, O0, ctx);
emit_reg_move(I1, O1, ctx);
emit_reg_move(I2, O2, ctx);
emit_reg_move(I3, O3, ctx);
emit_reg_move(I4, O4, ctx);
/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
}
static void build_epilogue(struct jit_ctx *ctx)
{
ctx->epilogue_offset = ctx->idx;
/* ret (jmpl %i7 + 8, %g0) */
emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
/* restore %i5, %g0, %o0 */
emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
}
static void emit_tail_call(struct jit_ctx *ctx)
{
const u8 bpf_array = bpf2sparc[BPF_REG_2];
const u8 bpf_index = bpf2sparc[BPF_REG_3];
const u8 tmp = bpf2sparc[TMP_REG_1];
u32 off;
ctx->saw_tail_call = true;
off = offsetof(struct bpf_array, map.max_entries);
emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
emit_cmp(bpf_index, tmp, ctx);
#define OFFSET1 17
emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
emit_nop(ctx);
off = BPF_TAILCALL_CNT_SP_OFF;
emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
#define OFFSET2 13
emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
emit_nop(ctx);
emit_alu_K(ADD, tmp, 1, ctx);
off = BPF_TAILCALL_CNT_SP_OFF;
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
emit_alu(ADD, bpf_array, tmp, ctx);
off = offsetof(struct bpf_array, ptrs);
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
emit_cmpi(tmp, 0, ctx);
#define OFFSET3 5
emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
emit_nop(ctx);
off = offsetof(struct bpf_prog, bpf_func);
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
off = BPF_TAILCALL_PROLOGUE_SKIP;
emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
emit_nop(ctx);
}
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{
const u8 code = insn->code;
const u8 dst = bpf2sparc[insn->dst_reg];
const u8 src = bpf2sparc[insn->src_reg];
const int i = insn - ctx->prog->insnsi;
const s16 off = insn->off;
const s32 imm = insn->imm;
if (insn->src_reg == BPF_REG_FP)
ctx->saw_frame_pointer = true;
switch (code) {
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_X:
emit_alu3_K(SRL, src, 0, dst, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_ALU64 | BPF_MOV | BPF_X:
emit_reg_move(src, dst, ctx);
break;
/* dst = dst OP src */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
emit_alu(ADD, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
emit_alu(SUB, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
emit_alu(AND, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
emit_alu(OR, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
emit_alu(XOR, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_X:
emit_alu(MUL, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_MUL | BPF_X:
emit_alu(MULX, src, dst, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_X:
emit_write_y(G0, ctx);
emit_alu(DIV, src, dst, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_ALU64 | BPF_DIV | BPF_X:
emit_alu(UDIVX, src, dst, ctx);
break;
case BPF_ALU | BPF_MOD | BPF_X: {
const u8 tmp = bpf2sparc[TMP_REG_1];
ctx->tmp_1_used = true;
emit_write_y(G0, ctx);
emit_alu3(DIV, dst, src, tmp, ctx);
emit_alu3(MULX, tmp, src, tmp, ctx);
emit_alu3(SUB, dst, tmp, dst, ctx);
goto do_alu32_trunc;
}
case BPF_ALU64 | BPF_MOD | BPF_X: {
const u8 tmp = bpf2sparc[TMP_REG_1];
ctx->tmp_1_used = true;
emit_alu3(UDIVX, dst, src, tmp, ctx);
emit_alu3(MULX, tmp, src, tmp, ctx);
emit_alu3(SUB, dst, tmp, dst, ctx);
break;
}
case BPF_ALU | BPF_LSH | BPF_X:
emit_alu(SLL, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_LSH | BPF_X:
emit_alu(SLLX, src, dst, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_X:
emit_alu(SRL, src, dst, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_ALU64 | BPF_RSH | BPF_X:
emit_alu(SRLX, src, dst, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_X:
emit_alu(SRA, src, dst, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit_alu(SRAX, src, dst, ctx);
break;
/* dst = -dst */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (imm) {
case 16:
emit_alu_K(SLL, dst, 16, ctx);
emit_alu_K(SRL, dst, 16, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case 32:
if (!ctx->prog->aux->verifier_zext)
emit_alu_K(SRL, dst, 0, ctx);
break;
case 64:
/* nop */
break;
}
break;
/* dst = BSWAP##imm(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE: {
const u8 tmp = bpf2sparc[TMP_REG_1];
const u8 tmp2 = bpf2sparc[TMP_REG_2];
ctx->tmp_1_used = true;
switch (imm) {
case 16:
emit_alu3_K(AND, dst, 0xff, tmp, ctx);
emit_alu3_K(SRL, dst, 8, dst, ctx);
emit_alu3_K(AND, dst, 0xff, dst, ctx);
emit_alu3_K(SLL, tmp, 8, tmp, ctx);
emit_alu(OR, tmp, dst, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case 32:
ctx->tmp_2_used = true;
emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
if (insn_is_zext(&insn[1]))
return 1;
break;
case 64:
emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
break;
}
break;
}
/* dst = imm */
case BPF_ALU | BPF_MOV | BPF_K:
emit_loadimm32(imm, dst, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_ALU64 | BPF_MOV | BPF_K:
emit_loadimm_sext(imm, dst, ctx);
break;
/* dst = dst OP imm */
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
emit_alu_K(ADD, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
emit_alu_K(SUB, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
emit_alu_K(AND, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
emit_alu_K(OR, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
emit_alu_K(XOR, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_K:
emit_alu_K(MUL, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_MUL | BPF_K:
emit_alu_K(MULX, dst, imm, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_K:
if (imm == 0)
return -EINVAL;
emit_write_y(G0, ctx);
emit_alu_K(DIV, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_DIV | BPF_K:
if (imm == 0)
return -EINVAL;
emit_alu_K(UDIVX, dst, imm, ctx);
break;
case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU | BPF_MOD | BPF_K: {
const u8 tmp = bpf2sparc[TMP_REG_2];
unsigned int div;
if (imm == 0)
return -EINVAL;
div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
ctx->tmp_2_used = true;
if (BPF_CLASS(code) != BPF_ALU64)
emit_write_y(G0, ctx);
if (is_simm13(imm)) {
emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
} else {
const u8 tmp1 = bpf2sparc[TMP_REG_1];
ctx->tmp_1_used = true;
emit_set_const_sext(imm, tmp1, ctx);
emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
}
goto do_alu32_trunc;
}
case BPF_ALU | BPF_LSH | BPF_K:
emit_alu_K(SLL, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_LSH | BPF_K:
emit_alu_K(SLLX, dst, imm, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_K:
emit_alu_K(SRL, dst, imm, ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_ALU64 | BPF_RSH | BPF_K:
emit_alu_K(SRLX, dst, imm, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_K:
emit_alu_K(SRA, dst, imm, ctx);
goto do_alu32_trunc;
case BPF_ALU64 | BPF_ARSH | BPF_K:
emit_alu_K(SRAX, dst, imm, ctx);
break;
do_alu32_trunc:
if (BPF_CLASS(code) == BPF_ALU &&
!ctx->prog->aux->verifier_zext)
emit_alu_K(SRL, dst, 0, ctx);
break;
/* JUMP off */
case BPF_JMP | BPF_JA:
emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
emit_nop(ctx);
break;
/* IF (dst COND src) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP | BPF_JSET | BPF_X: {
int err;
err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
if (err)
return err;
break;
}
/* IF (dst COND imm) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_K: {
int err;
err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
if (err)
return err;
break;
}
/* function call */
case BPF_JMP | BPF_CALL:
{
u8 *func = ((u8 *)__bpf_call_base) + imm;
ctx->saw_call = true;
emit_call((u32 *)func, ctx);
emit_nop(ctx);
emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
break;
}
/* tail call */
case BPF_JMP | BPF_TAIL_CALL:
emit_tail_call(ctx);
break;
/* function return */
case BPF_JMP | BPF_EXIT:
/* Optimization: when last instruction is EXIT,
simply fallthrough to epilogue. */
if (i == ctx->prog->len - 1)
break;
emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
emit_nop(ctx);
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
{
const struct bpf_insn insn1 = insn[1];
u64 imm64;
imm64 = (u64)insn1.imm << 32 | (u32)imm;
emit_loadimm64(imm64, dst, ctx);
return 1;
}
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW: {
const u8 tmp = bpf2sparc[TMP_REG_1];
u32 opcode = 0, rs2;
ctx->tmp_1_used = true;
switch (BPF_SIZE(code)) {
case BPF_W:
opcode = LD32;
break;
case BPF_H:
opcode = LD16;
break;
case BPF_B:
opcode = LD8;
break;
case BPF_DW:
opcode = LD64;
break;
}
if (is_simm13(off)) {
opcode |= IMMED;
rs2 = S13(off);
} else {
emit_loadimm(off, tmp, ctx);
rs2 = RS2(tmp);
}
emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
if (opcode != LD64 && insn_is_zext(&insn[1]))
return 1;
break;
}
/* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_DW: {
const u8 tmp = bpf2sparc[TMP_REG_1];
const u8 tmp2 = bpf2sparc[TMP_REG_2];
u32 opcode = 0, rs2;
if (insn->dst_reg == BPF_REG_FP)
ctx->saw_frame_pointer = true;
ctx->tmp_2_used = true;
emit_loadimm(imm, tmp2, ctx);
switch (BPF_SIZE(code)) {
case BPF_W:
opcode = ST32;
break;
case BPF_H:
opcode = ST16;
break;
case BPF_B:
opcode = ST8;
break;
case BPF_DW:
opcode = ST64;
break;
}
if (is_simm13(off)) {
opcode |= IMMED;
rs2 = S13(off);
} else {
ctx->tmp_1_used = true;
emit_loadimm(off, tmp, ctx);
rs2 = RS2(tmp);
}
emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
break;
}
/* STX: *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_DW: {
const u8 tmp = bpf2sparc[TMP_REG_1];
u32 opcode = 0, rs2;
if (insn->dst_reg == BPF_REG_FP)
ctx->saw_frame_pointer = true;
switch (BPF_SIZE(code)) {
case BPF_W:
opcode = ST32;
break;
case BPF_H:
opcode = ST16;
break;
case BPF_B:
opcode = ST8;
break;
case BPF_DW:
opcode = ST64;
break;
}
if (is_simm13(off)) {
opcode |= IMMED;
rs2 = S13(off);
} else {
ctx->tmp_1_used = true;
emit_loadimm(off, tmp, ctx);
rs2 = RS2(tmp);
}
emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
break;
}
/* STX XADD: lock *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W: {
const u8 tmp = bpf2sparc[TMP_REG_1];
const u8 tmp2 = bpf2sparc[TMP_REG_2];
const u8 tmp3 = bpf2sparc[TMP_REG_3];
if (insn->dst_reg == BPF_REG_FP)
ctx->saw_frame_pointer = true;
ctx->tmp_1_used = true;
ctx->tmp_2_used = true;
ctx->tmp_3_used = true;
emit_loadimm(off, tmp, ctx);
emit_alu3(ADD, dst, tmp, tmp, ctx);
emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
emit_alu3(ADD, tmp2, src, tmp3, ctx);
emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
emit_cmp(tmp2, tmp3, ctx);
emit_branch(BNE, 4, 0, ctx);
emit_nop(ctx);
break;
}
/* STX XADD: lock *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW: {
const u8 tmp = bpf2sparc[TMP_REG_1];
const u8 tmp2 = bpf2sparc[TMP_REG_2];
const u8 tmp3 = bpf2sparc[TMP_REG_3];
if (insn->dst_reg == BPF_REG_FP)
ctx->saw_frame_pointer = true;
ctx->tmp_1_used = true;
ctx->tmp_2_used = true;
ctx->tmp_3_used = true;
emit_loadimm(off, tmp, ctx);
emit_alu3(ADD, dst, tmp, tmp, ctx);
emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
emit_alu3(ADD, tmp2, src, tmp3, ctx);
emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
emit_cmp(tmp2, tmp3, ctx);
emit_branch(BNE, 4, 0, ctx);
emit_nop(ctx);
break;
}
default:
pr_err_once("unknown opcode %02x\n", code);
return -EINVAL;
}
return 0;
}
static int build_body(struct jit_ctx *ctx)
{
const struct bpf_prog *prog = ctx->prog;
int i;
for (i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &prog->insnsi[i];
int ret;
ret = build_insn(insn, ctx);
if (ret > 0) {
i++;
ctx->offset[i] = ctx->idx;
continue;
}
ctx->offset[i] = ctx->idx;
if (ret)
return ret;
}
return 0;
}
static void jit_fill_hole(void *area, unsigned int size)
{
u32 *ptr;
/* We are guaranteed to have aligned memory. */
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
*ptr++ = 0x91d02005; /* ta 5 */
}
bool bpf_jit_needs_zext(void)
{
return true;
}
struct sparc64_jit_data {
struct bpf_binary_header *header;
u8 *image;
struct jit_ctx ctx;
};
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_prog *tmp, *orig_prog = prog;
struct sparc64_jit_data *jit_data;
struct bpf_binary_header *header;
u32 prev_image_size, image_size;
bool tmp_blinded = false;
bool extra_pass = false;
struct jit_ctx ctx;
u8 *image_ptr;
int pass, i;
if (!prog->jit_requested)
return orig_prog;
tmp = bpf_jit_blind_constants(prog);
/* If blinding was requested and we failed during blinding,
* we must fall back to the interpreter.
*/
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
jit_data = prog->aux->jit_data;
if (!jit_data) {
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
if (!jit_data) {
prog = orig_prog;
goto out;
}
prog->aux->jit_data = jit_data;
}
if (jit_data->ctx.offset) {
ctx = jit_data->ctx;
image_ptr = jit_data->image;
header = jit_data->header;
extra_pass = true;
image_size = sizeof(u32) * ctx.idx;
prev_image_size = image_size;
pass = 1;
goto skip_init_ctx;
}
memset(&ctx, 0, sizeof(ctx));
ctx.prog = prog;
ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
if (ctx.offset == NULL) {
prog = orig_prog;
goto out_off;
}
/* Longest sequence emitted is for bswap32, 12 instructions. Pre-cook
* the offset array so that we converge faster.
*/
for (i = 0; i < prog->len; i++)
ctx.offset[i] = i * (12 * 4);
prev_image_size = ~0U;
for (pass = 1; pass < 40; pass++) {
ctx.idx = 0;
build_prologue(&ctx);
if (build_body(&ctx)) {
prog = orig_prog;
goto out_off;
}
build_epilogue(&ctx);
if (bpf_jit_enable > 1)
pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
ctx.idx * 4,
ctx.tmp_1_used ? '1' : ' ',
ctx.tmp_2_used ? '2' : ' ',
ctx.tmp_3_used ? '3' : ' ',
ctx.saw_frame_pointer ? 'F' : ' ',
ctx.saw_call ? 'C' : ' ',
ctx.saw_tail_call ? 'T' : ' ');
if (ctx.idx * 4 == prev_image_size)
break;
prev_image_size = ctx.idx * 4;
cond_resched();
}
/* Now we know the actual image size. */
image_size = sizeof(u32) * ctx.idx;
header = bpf_jit_binary_alloc(image_size, &image_ptr,
sizeof(u32), jit_fill_hole);
if (header == NULL) {
prog = orig_prog;
goto out_off;
}
ctx.image = (u32 *)image_ptr;
skip_init_ctx:
ctx.idx = 0;
build_prologue(&ctx);
if (build_body(&ctx)) {
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_off;
}
build_epilogue(&ctx);
if (ctx.idx * 4 != prev_image_size) {
pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
prev_image_size, ctx.idx * 4);
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_off;
}
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, image_size, pass, ctx.image);
bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
if (!prog->is_func || extra_pass) {
bpf_jit_binary_lock_ro(header);
} else {
jit_data->ctx = ctx;
jit_data->image = image_ptr;
jit_data->header = header;
}
prog->bpf_func = (void *)ctx.image;
prog->jited = 1;
prog->jited_len = image_size;
if (!prog->is_func || extra_pass) {
bpf_prog_fill_jited_linfo(prog, ctx.offset);
out_off:
kfree(ctx.offset);
kfree(jit_data);
prog->aux->jit_data = NULL;
}
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
}