linux_dsm_epyc7002/arch/arm64/mm/mmu.c

909 lines
24 KiB
C
Raw Normal View History

/*
* Based on arch/arm/mm/mmu.c
*
* Copyright (C) 1995-2005 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cache.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/kexec.h>
#include <linux/libfdt.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <asm/barrier.h>
#include <asm/cputype.h>
#include <asm/fixmap.h>
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
#include <asm/kasan.h>
#include <asm/kernel-pgtable.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 16:40:51 +07:00
#include <asm/memblock.h>
#include <asm/mmu_context.h>
#include <asm/ptdump.h>
#define NO_BLOCK_MAPPINGS BIT(0)
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
#define NO_CONT_MAPPINGS BIT(1)
u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
u64 kimage_voffset __ro_after_init;
EXPORT_SYMBOL(kimage_voffset);
/*
* Empty_zero_page is a special page that is used for zero-initialized data
* and COW.
*/
arm64: mm: place empty_zero_page in bss Currently the zero page is set up in paging_init, and thus we cannot use the zero page earlier. We use the zero page as a reserved TTBR value from which no TLB entries may be allocated (e.g. when uninstalling the idmap). To enable such usage earlier (as may be required for invasive changes to the kernel page tables), and to minimise the time that the idmap is active, we need to be able to use the zero page before paging_init. This patch follows the example set by x86, by allocating the zero page at compile time, in .bss. This means that the zero page itself is available immediately upon entry to start_kernel (as we zero .bss before this), and also means that the zero page takes up no space in the raw Image binary. The associated struct page is allocated in bootmem_init, and remains unavailable until this time. Outside of arch code, the only users of empty_zero_page assume that the empty_zero_page symbol refers to the zeroed memory itself, and that ZERO_PAGE(x) must be used to acquire the associated struct page, following the example of x86. This patch also brings arm64 inline with these assumptions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:44:57 +07:00
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
EXPORT_SYMBOL(empty_zero_page);
static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (!pfn_valid(pfn))
return pgprot_noncached(vma_prot);
else if (file->f_flags & O_SYNC)
return pgprot_writecombine(vma_prot);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
static phys_addr_t __init early_pgtable_alloc(void)
{
phys_addr_t phys;
void *ptr;
phys = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
/*
* The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
* slot will be free, so we can (ab)use the FIX_PTE slot to initialise
* any level of table.
*/
ptr = pte_set_fixmap(phys);
memset(ptr, 0, PAGE_SIZE);
/*
* Implicit barriers also ensure the zeroed page is visible to the page
* table walker
*/
pte_clear_fixmap();
return phys;
}
static bool pgattr_change_is_safe(u64 old, u64 new)
{
/*
* The following mapping attributes may be updated in live
* kernel mappings without the need for break-before-make.
*/
static const pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE;
/* creating or taking down mappings is always safe */
if (old == 0 || new == 0)
return true;
/* live contiguous mappings may not be manipulated at all */
if ((old | new) & PTE_CONT)
return false;
return ((old ^ new) & ~mask) == 0;
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
static void init_pte(pmd_t *pmd, unsigned long addr, unsigned long end,
phys_addr_t phys, pgprot_t prot)
{
pte_t *pte;
pte = pte_set_fixmap_offset(pmd, addr);
do {
pte_t old_pte = *pte;
set_pte(pte, pfn_pte(__phys_to_pfn(phys), prot));
/*
* After the PTE entry has been populated once, we
* only allow updates to the permission attributes.
*/
BUG_ON(!pgattr_change_is_safe(pte_val(old_pte), pte_val(*pte)));
phys += PAGE_SIZE;
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_clear_fixmap();
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
static void alloc_init_cont_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, phys_addr_t phys,
pgprot_t prot,
phys_addr_t (*pgtable_alloc)(void),
int flags)
{
unsigned long next;
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
BUG_ON(pmd_sect(*pmd));
if (pmd_none(*pmd)) {
phys_addr_t pte_phys;
BUG_ON(!pgtable_alloc);
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
pte_phys = pgtable_alloc();
__pmd_populate(pmd, pte_phys, PMD_TYPE_TABLE);
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
BUG_ON(pmd_bad(*pmd));
do {
pgprot_t __prot = prot;
next = pte_cont_addr_end(addr, end);
/* use a contiguous mapping if the range is suitably aligned */
if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
(flags & NO_CONT_MAPPINGS) == 0)
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
init_pte(pmd, addr, next, phys, __prot);
phys += next - addr;
} while (addr = next, addr != end);
}
static void init_pmd(pud_t *pud, unsigned long addr, unsigned long end,
phys_addr_t phys, pgprot_t prot,
phys_addr_t (*pgtable_alloc)(void), int flags)
{
unsigned long next;
pmd_t *pmd;
pmd = pmd_set_fixmap_offset(pud, addr);
do {
pmd_t old_pmd = *pmd;
next = pmd_addr_end(addr, end);
/* try section mapping first */
if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
(flags & NO_BLOCK_MAPPINGS) == 0) {
Revert "arm64: mm: set the contiguous bit for kernel mappings where appropriate" This reverts commit 0bfc445dec9dd8130d22c9f4476eed7598524129. When we change the permissions of regions mapped using contiguous entries, the architecture requires us to follow a Break-Before-Make strategy, breaking *all* associated entries before we can change any of the following properties from the entries: - presence of the contiguous bit - output address - attributes - permissiones Failure to do so can result in a number of problems (e.g. TLB conflict aborts and/or erroneous results from TLB lookups). See ARM DDI 0487A.k_iss10775, "Misprogramming of the Contiguous bit", page D4-1762. We do not take this into account when altering the permissions of kernel segments in mark_rodata_ro(), where we change the permissions of live contiguous entires one-by-one, leaving them transiently inconsistent. This has been observed to result in failures on some fast model configurations. Unfortunately, we cannot follow Break-Before-Make here as we'd have to unmap kernel text and data used to perform the sequence. For the timebeing, revert commit 0bfc445dec9dd813 so as to avoid issues resulting from this misuse of the contiguous bit. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reported-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <Will.Deacon@arm.com> Cc: stable@vger.kernel.org # v4.10 Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-23 23:22:55 +07:00
pmd_set_huge(pmd, phys, prot);
/*
* After the PMD entry has been populated once, we
* only allow updates to the permission attributes.
*/
BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
pmd_val(*pmd)));
} else {
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
alloc_init_cont_pte(pmd, addr, next, phys, prot,
pgtable_alloc, flags);
BUG_ON(pmd_val(old_pmd) != 0 &&
pmd_val(old_pmd) != pmd_val(*pmd));
}
phys += next - addr;
} while (pmd++, addr = next, addr != end);
pmd_clear_fixmap();
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
static void alloc_init_cont_pmd(pud_t *pud, unsigned long addr,
unsigned long end, phys_addr_t phys,
pgprot_t prot,
phys_addr_t (*pgtable_alloc)(void), int flags)
{
unsigned long next;
/*
* Check for initial section mappings in the pgd/pud.
*/
BUG_ON(pud_sect(*pud));
if (pud_none(*pud)) {
phys_addr_t pmd_phys;
BUG_ON(!pgtable_alloc);
pmd_phys = pgtable_alloc();
__pud_populate(pud, pmd_phys, PUD_TYPE_TABLE);
}
BUG_ON(pud_bad(*pud));
do {
pgprot_t __prot = prot;
next = pmd_cont_addr_end(addr, end);
/* use a contiguous mapping if the range is suitably aligned */
if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
(flags & NO_CONT_MAPPINGS) == 0)
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
init_pmd(pud, addr, next, phys, __prot, pgtable_alloc, flags);
phys += next - addr;
} while (addr = next, addr != end);
}
static inline bool use_1G_block(unsigned long addr, unsigned long next,
unsigned long phys)
{
if (PAGE_SHIFT != 12)
return false;
if (((addr | next | phys) & ~PUD_MASK) != 0)
return false;
return true;
}
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
phys_addr_t phys, pgprot_t prot,
phys_addr_t (*pgtable_alloc)(void),
int flags)
{
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 16:40:51 +07:00
pud_t *pud;
unsigned long next;
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 16:40:51 +07:00
if (pgd_none(*pgd)) {
phys_addr_t pud_phys;
BUG_ON(!pgtable_alloc);
pud_phys = pgtable_alloc();
__pgd_populate(pgd, pud_phys, PUD_TYPE_TABLE);
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 16:40:51 +07:00
}
BUG_ON(pgd_bad(*pgd));
pud = pud_set_fixmap_offset(pgd, addr);
do {
pud_t old_pud = *pud;
next = pud_addr_end(addr, end);
/*
* For 4K granule only, attempt to put down a 1GB block
*/
if (use_1G_block(addr, next, phys) &&
(flags & NO_BLOCK_MAPPINGS) == 0) {
pud_set_huge(pud, phys, prot);
/*
* After the PUD entry has been populated once, we
* only allow updates to the permission attributes.
*/
BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
pud_val(*pud)));
} else {
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
alloc_init_cont_pmd(pud, addr, next, phys, prot,
pgtable_alloc, flags);
BUG_ON(pud_val(old_pud) != 0 &&
pud_val(old_pud) != pud_val(*pud));
}
phys += next - addr;
} while (pud++, addr = next, addr != end);
pud_clear_fixmap();
}
static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
unsigned long virt, phys_addr_t size,
pgprot_t prot,
phys_addr_t (*pgtable_alloc)(void),
int flags)
{
unsigned long addr, length, end, next;
pgd_t *pgd = pgd_offset_raw(pgdir, virt);
/*
* If the virtual and physical address don't have the same offset
* within a page, we cannot map the region as the caller expects.
*/
if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
return;
phys &= PAGE_MASK;
addr = virt & PAGE_MASK;
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
end = addr + length;
do {
next = pgd_addr_end(addr, end);
alloc_init_pud(pgd, addr, next, phys, prot, pgtable_alloc,
flags);
phys += next - addr;
} while (pgd++, addr = next, addr != end);
}
static phys_addr_t pgd_pgtable_alloc(void)
{
void *ptr = (void *)__get_free_page(PGALLOC_GFP);
if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
BUG();
/* Ensure the zeroed page is visible to the page table walker */
dsb(ishst);
return __pa(ptr);
}
/*
* This function can only be used to modify existing table entries,
* without allocating new levels of table. Note that this permits the
* creation of new section or page entries.
*/
static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot)
{
if (virt < VMALLOC_START) {
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
&phys, virt);
return;
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
NO_CONT_MAPPINGS);
}
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
unsigned long virt, phys_addr_t size,
pgprot_t prot, bool page_mappings_only)
{
int flags = 0;
BUG_ON(mm == &init_mm);
if (page_mappings_only)
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
pgd_pgtable_alloc, flags);
}
static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot)
{
if (virt < VMALLOC_START) {
pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
&phys, virt);
return;
}
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
NO_CONT_MAPPINGS);
/* flush the TLBs after updating live kernel mappings */
flush_tlb_kernel_range(virt, virt + size);
}
static void __init __map_memblock(pgd_t *pgd, phys_addr_t start,
phys_addr_t end, pgprot_t prot, int flags)
{
__create_pgd_mapping(pgd, start, __phys_to_virt(start), end - start,
prot, early_pgtable_alloc, flags);
}
void __init mark_linear_text_alias_ro(void)
{
/*
* Remove the write permissions from the linear alias of .text/.rodata
*/
update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
(unsigned long)__init_begin - (unsigned long)_text,
PAGE_KERNEL_RO);
}
static void __init map_mem(pgd_t *pgd)
{
phys_addr_t kernel_start = __pa_symbol(_text);
phys_addr_t kernel_end = __pa_symbol(__init_begin);
struct memblock_region *reg;
int flags = 0;
if (debug_pagealloc_enabled())
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
/*
* Take care not to create a writable alias for the
* read-only text and rodata sections of the kernel image.
* So temporarily mark them as NOMAP to skip mappings in
* the following for-loop
*/
memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
#ifdef CONFIG_KEXEC_CORE
if (crashk_res.end)
memblock_mark_nomap(crashk_res.start,
resource_size(&crashk_res));
#endif
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
/* map all the memory banks */
for_each_memblock(memory, reg) {
phys_addr_t start = reg->base;
phys_addr_t end = start + reg->size;
if (start >= end)
break;
if (memblock_is_nomap(reg))
continue;
__map_memblock(pgd, start, end, PAGE_KERNEL, flags);
}
/*
* Map the linear alias of the [_text, __init_begin) interval
* as non-executable now, and remove the write permission in
* mark_linear_text_alias_ro() below (which will be called after
* alternative patching has completed). This makes the contents
* of the region accessible to subsystems such as hibernate,
* but protects it from inadvertent modification or execution.
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
* Note that contiguous mappings cannot be remapped in this way,
* so we should avoid them here.
*/
__map_memblock(pgd, kernel_start, kernel_end,
PAGE_KERNEL, NO_CONT_MAPPINGS);
memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
#ifdef CONFIG_KEXEC_CORE
/*
* Use page-level mappings here so that we can shrink the region
* in page granularity and put back unused memory to buddy system
* through /sys/kernel/kexec_crash_size interface.
*/
if (crashk_res.end) {
__map_memblock(pgd, crashk_res.start, crashk_res.end + 1,
PAGE_KERNEL,
NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
memblock_clear_nomap(crashk_res.start,
resource_size(&crashk_res));
}
#endif
}
void mark_rodata_ro(void)
{
unsigned long section_size;
/*
* mark .rodata as read only. Use __init_begin rather than __end_rodata
* to cover NOTES and EXCEPTION_TABLE.
*/
section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
section_size, PAGE_KERNEL_RO);
debug_checkwx();
}
static void __init map_kernel_segment(pgd_t *pgd, void *va_start, void *va_end,
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
pgprot_t prot, struct vm_struct *vma,
int flags, unsigned long vm_flags)
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
{
phys_addr_t pa_start = __pa_symbol(va_start);
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
unsigned long size = va_end - va_start;
BUG_ON(!PAGE_ALIGNED(pa_start));
BUG_ON(!PAGE_ALIGNED(size));
__create_pgd_mapping(pgd, pa_start, (unsigned long)va_start, size, prot,
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
early_pgtable_alloc, flags);
if (!(vm_flags & VM_NO_GUARD))
size += PAGE_SIZE;
vma->addr = va_start;
vma->phys_addr = pa_start;
vma->size = size;
vma->flags = VM_MAP | vm_flags;
vma->caller = __builtin_return_address(0);
vm_area_add_early(vma);
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
}
static int __init parse_rodata(char *arg)
{
return strtobool(arg, &rodata_enabled);
}
early_param("rodata", parse_rodata);
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
/*
* Create fine-grained mappings for the kernel.
*/
static void __init map_kernel(pgd_t *pgd)
{
static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
vmlinux_initdata, vmlinux_data;
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
/*
* External debuggers may need to write directly to the text
* mapping to install SW breakpoints. Allow this (only) when
* explicitly requested with rodata=off.
*/
pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
arm64: mm: set the contiguous bit for kernel mappings where appropriate This is the third attempt at enabling the use of contiguous hints for kernel mappings. The most recent attempt 0bfc445dec9d was reverted after it turned out that updating permission attributes on live contiguous ranges may result in TLB conflicts. So this time, the contiguous hint is not set for .rodata or for the linear alias of .text/.rodata, both of which are mapped read-write initially, and remapped read-only at a later stage. (Note that the latter region could also be unmapped and remapped again with updated permission attributes, given that the region, while live, is only mapped for the convenience of the hibernation code, but that also means the TLB footprint is negligible anyway, so why bother) This enables the following contiguous range sizes for the virtual mapping of the kernel image, and for the linear mapping: granule size | cont PTE | cont PMD | -------------+------------+------------+ 4 KB | 64 KB | 32 MB | 16 KB | 2 MB | 1 GB* | 64 KB | 2 MB | 16 GB* | * Only when built for 3 or more levels of translation. This is due to the fact that a 2 level configuration only consists of PGDs and PTEs, and the added complexity of dealing with folded PMDs is not justified considering that 16 GB contiguous ranges are likely to be ignored by the hardware (and 16k/2 levels is a niche configuration) Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-10 03:52:09 +07:00
/*
* Only rodata will be remapped with different permissions later on,
* all other segments are allowed to use contiguous mappings.
*/
map_kernel_segment(pgd, _text, _etext, text_prot, &vmlinux_text, 0,
VM_NO_GUARD);
map_kernel_segment(pgd, __start_rodata, __inittext_begin, PAGE_KERNEL,
&vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
map_kernel_segment(pgd, __inittext_begin, __inittext_end, text_prot,
&vmlinux_inittext, 0, VM_NO_GUARD);
map_kernel_segment(pgd, __initdata_begin, __initdata_end, PAGE_KERNEL,
&vmlinux_initdata, 0, VM_NO_GUARD);
map_kernel_segment(pgd, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
if (!pgd_val(*pgd_offset_raw(pgd, FIXADDR_START))) {
/*
* The fixmap falls in a separate pgd to the kernel, and doesn't
* live in the carveout for the swapper_pg_dir. We can simply
* re-use the existing dir for the fixmap.
*/
set_pgd(pgd_offset_raw(pgd, FIXADDR_START),
*pgd_offset_k(FIXADDR_START));
} else if (CONFIG_PGTABLE_LEVELS > 3) {
/*
* The fixmap shares its top level pgd entry with the kernel
* mapping. This can really only occur when we are running
* with 16k/4 levels, so we can simply reuse the pud level
* entry instead.
*/
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
set_pud(pud_set_fixmap_offset(pgd, FIXADDR_START),
__pud(__pa_symbol(bm_pmd) | PUD_TYPE_TABLE));
pud_clear_fixmap();
} else {
BUG();
}
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
kasan_copy_shadow(pgd);
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps and sets up the zero page.
*/
void __init paging_init(void)
{
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
phys_addr_t pgd_phys = early_pgtable_alloc();
pgd_t *pgd = pgd_set_fixmap(pgd_phys);
map_kernel(pgd);
map_mem(pgd);
/*
* We want to reuse the original swapper_pg_dir so we don't have to
* communicate the new address to non-coherent secondaries in
* secondary_entry, and so cpu_switch_mm can generate the address with
* adrp+add rather than a load from some global variable.
*
* To do this we need to go via a temporary pgd.
*/
cpu_replace_ttbr1(__va(pgd_phys));
memcpy(swapper_pg_dir, pgd, PGD_SIZE);
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
pgd_clear_fixmap();
memblock_free(pgd_phys, PAGE_SIZE);
/*
* We only reuse the PGD from the swapper_pg_dir, not the pud + pmd
* allocated with it.
*/
memblock_free(__pa_symbol(swapper_pg_dir) + PAGE_SIZE,
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 18:45:12 +07:00
SWAPPER_DIR_SIZE - PAGE_SIZE);
}
/*
* Check whether a kernel address is valid (derived from arch/x86/).
*/
int kern_addr_valid(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if ((((long)addr) >> VA_BITS) != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
if (pud_sect(*pud))
return pfn_valid(pud_pfn(*pud));
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_sect(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#if !ARM64_SWAPPER_USES_SECTION_MAPS
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 05:07:50 +07:00
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 05:07:50 +07:00
return vmemmap_populate_basepages(start, end, node);
}
#else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 05:07:50 +07:00
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 05:07:50 +07:00
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
do {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = NULL;
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
if (!p)
return -ENOMEM;
set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
} while (addr = next, addr != end);
return 0;
}
#endif /* CONFIG_ARM64_64K_PAGES */
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 05:07:50 +07:00
void vmemmap_free(unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static inline pud_t * fixmap_pud(unsigned long addr)
{
pgd_t *pgd = pgd_offset_k(addr);
BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
return pud_offset_kimg(pgd, addr);
}
static inline pmd_t * fixmap_pmd(unsigned long addr)
{
pud_t *pud = fixmap_pud(addr);
BUG_ON(pud_none(*pud) || pud_bad(*pud));
return pmd_offset_kimg(pud, addr);
}
static inline pte_t * fixmap_pte(unsigned long addr)
{
return &bm_pte[pte_index(addr)];
}
/*
* The p*d_populate functions call virt_to_phys implicitly so they can't be used
* directly on kernel symbols (bm_p*d). This function is called too early to use
* lm_alias so __p*d_populate functions must be used to populate with the
* physical address from __pa_symbol.
*/
void __init early_fixmap_init(void)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
unsigned long addr = FIXADDR_START;
pgd = pgd_offset_k(addr);
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
if (CONFIG_PGTABLE_LEVELS > 3 &&
!(pgd_none(*pgd) || pgd_page_paddr(*pgd) == __pa_symbol(bm_pud))) {
/*
* We only end up here if the kernel mapping and the fixmap
* share the top level pgd entry, which should only happen on
* 16k/4 levels configurations.
*/
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
pud = pud_offset_kimg(pgd, addr);
} else {
if (pgd_none(*pgd))
__pgd_populate(pgd, __pa_symbol(bm_pud), PUD_TYPE_TABLE);
pud = fixmap_pud(addr);
}
if (pud_none(*pud))
__pud_populate(pud, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);
pmd = fixmap_pmd(addr);
__pmd_populate(pmd, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
/*
* The boot-ioremap range spans multiple pmds, for which
* we are not prepared:
*/
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|| pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
WARN_ON(1);
pr_warn("pmd %p != %p, %p\n",
pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
fix_to_virt(FIX_BTMAP_BEGIN));
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
fix_to_virt(FIX_BTMAP_END));
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
}
}
/*
* Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
* ever need to use IPIs for TLB broadcasting, then we're in trouble here.
*/
void __set_fixmap(enum fixed_addresses idx,
phys_addr_t phys, pgprot_t flags)
{
unsigned long addr = __fix_to_virt(idx);
pte_t *pte;
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
pte = fixmap_pte(addr);
if (pgprot_val(flags)) {
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
} else {
pte_clear(&init_mm, addr, pte);
flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
}
}
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
{
const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
int offset;
void *dt_virt;
/*
* Check whether the physical FDT address is set and meets the minimum
* alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
* at least 8 bytes so that we can always access the magic and size
* fields of the FDT header after mapping the first chunk, double check
* here if that is indeed the case.
*/
BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
return NULL;
/*
* Make sure that the FDT region can be mapped without the need to
* allocate additional translation table pages, so that it is safe
* to call create_mapping_noalloc() this early.
*
* On 64k pages, the FDT will be mapped using PTEs, so we need to
* be in the same PMD as the rest of the fixmap.
* On 4k pages, we'll use section mappings for the FDT so we only
* have to be in the same PUD.
*/
BUILD_BUG_ON(dt_virt_base % SZ_2M);
BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
__fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
offset = dt_phys % SWAPPER_BLOCK_SIZE;
dt_virt = (void *)dt_virt_base + offset;
/* map the first chunk so we can read the size from the header */
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
if (fdt_magic(dt_virt) != FDT_MAGIC)
return NULL;
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
*size = fdt_totalsize(dt_virt);
if (*size > MAX_FDT_SIZE)
return NULL;
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
if (offset + *size > SWAPPER_BLOCK_SIZE)
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
return dt_virt;
}
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 20:12:01 +07:00
void *__init fixmap_remap_fdt(phys_addr_t dt_phys)
{
void *dt_virt;
int size;
dt_virt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
if (!dt_virt)
return NULL;
memblock_reserve(dt_phys, size);
return dt_virt;
}
int __init arch_ioremap_pud_supported(void)
{
/* only 4k granule supports level 1 block mappings */
return IS_ENABLED(CONFIG_ARM64_4K_PAGES);
}
int __init arch_ioremap_pmd_supported(void)
{
return 1;
}
int pud_set_huge(pud_t *pud, phys_addr_t phys, pgprot_t prot)
{
BUG_ON(phys & ~PUD_MASK);
set_pud(pud, __pud(phys | PUD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
return 1;
}
int pmd_set_huge(pmd_t *pmd, phys_addr_t phys, pgprot_t prot)
{
BUG_ON(phys & ~PMD_MASK);
set_pmd(pmd, __pmd(phys | PMD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
return 1;
}
int pud_clear_huge(pud_t *pud)
{
if (!pud_sect(*pud))
return 0;
pud_clear(pud);
return 1;
}
int pmd_clear_huge(pmd_t *pmd)
{
if (!pmd_sect(*pmd))
return 0;
pmd_clear(pmd);
return 1;
}