linux_dsm_epyc7002/include/linux/usb_usual.h

100 lines
3.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Interface to the libusual.
*
* Copyright (c) 2005 Pete Zaitcev <zaitcev@redhat.com>
* Copyright (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
* Copyright (c) 1999 Michael Gee (michael@linuxspecific.com)
*/
#ifndef __LINUX_USB_USUAL_H
#define __LINUX_USB_USUAL_H
/* We should do this for cleanliness... But other usb_foo.h do not do this. */
/* #include <linux/usb.h> */
/*
* The flags field, which we store in usb_device_id.driver_info.
* It is compatible with the old usb-storage flags in lower 24 bits.
*/
/*
* Static flag definitions. We use this roundabout technique so that the
* proc_info() routine can automatically display a message for each flag.
*/
#define US_DO_ALL_FLAGS \
US_FLAG(SINGLE_LUN, 0x00000001) \
/* allow access to only LUN 0 */ \
US_FLAG(NEED_OVERRIDE, 0x00000002) \
/* unusual_devs entry is necessary */ \
US_FLAG(SCM_MULT_TARG, 0x00000004) \
/* supports multiple targets */ \
US_FLAG(FIX_INQUIRY, 0x00000008) \
/* INQUIRY response needs faking */ \
US_FLAG(FIX_CAPACITY, 0x00000010) \
/* READ CAPACITY response too big */ \
US_FLAG(IGNORE_RESIDUE, 0x00000020) \
/* reported residue is wrong */ \
US_FLAG(BULK32, 0x00000040) \
/* Uses 32-byte CBW length */ \
US_FLAG(NOT_LOCKABLE, 0x00000080) \
/* PREVENT/ALLOW not supported */ \
US_FLAG(GO_SLOW, 0x00000100) \
/* Need delay after Command phase */ \
US_FLAG(NO_WP_DETECT, 0x00000200) \
/* Don't check for write-protect */ \
US_FLAG(MAX_SECTORS_64, 0x00000400) \
/* Sets max_sectors to 64 */ \
US_FLAG(IGNORE_DEVICE, 0x00000800) \
/* Don't claim device */ \
US_FLAG(CAPACITY_HEURISTICS, 0x00001000) \
/* sometimes sizes is too big */ \
US_FLAG(MAX_SECTORS_MIN,0x00002000) \
/* Sets max_sectors to arch min */ \
US_FLAG(BULK_IGNORE_TAG,0x00004000) \
/* Ignore tag mismatch in bulk operations */ \
USB: storage: add last-sector hacks This patch (as1189b) adds some hacks to usb-storage for dealing with the growing problems involving bad capacity values and last-sector accesses: A new flag, US_FL_CAPACITY_OK, is created to indicate that the device is known to report its capacity correctly. An unusual_devs entry for Linux's own File-backed Storage Gadget is added with this flag set, since g_file_storage always reports the correct capacity and since the capacity need not be even (it is determined by the size of the backing file). An entry in unusual_devs.h which has only the CAPACITY_OK flag set shouldn't prejudice libusual, since the device will work perfectly well with either usb-storage or ub. So a new macro, COMPLIANT_DEV, is added to let libusual know about these entries. When a last-sector access succeeds and the total number of sectors is odd (the unexpected case, in which guessing that the number is even might cause trouble), a WARN is triggered. The kerneloops.org project will collect these warnings, allowing us to add CAPACITY_OK flags for the devices in question before implementing the default-to-even heuristic. If users want to prevent the stack dump produced by the WARN, they can disable the hack by adding an unusual_devs entry for their device with the CAPACITY_OK flag. When a last-sector access fails three times in a row and neither the FIX_CAPACITY nor the CAPACITY_OK flag is set, we assume the last-sector bug is present. We replace the existing status and sense data with values that will cause the SCSI core to fail the access immediately rather than retry indefinitely. This should fix the difficulties people have been having with Nokia phones. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-12-16 00:43:41 +07:00
US_FLAG(SANE_SENSE, 0x00008000) \
/* Sane Sense (> 18 bytes) */ \
US_FLAG(CAPACITY_OK, 0x00010000) \
/* READ CAPACITY response is correct */ \
US_FLAG(BAD_SENSE, 0x00020000) \
/* Bad Sense (never more than 18 bytes) */ \
US_FLAG(NO_READ_DISC_INFO, 0x00040000) \
/* cannot handle READ_DISC_INFO */ \
US_FLAG(NO_READ_CAPACITY_16, 0x00080000) \
2011-06-07 22:35:52 +07:00
/* cannot handle READ_CAPACITY_16 */ \
US_FLAG(INITIAL_READ10, 0x00100000) \
/* Initial READ(10) (and others) must be retried */ \
US_FLAG(WRITE_CACHE, 0x00200000) \
/* Write Cache status is not available */ \
US_FLAG(NEEDS_CAP16, 0x00400000) \
/* cannot handle READ_CAPACITY_10 */ \
US_FLAG(IGNORE_UAS, 0x00800000) \
/* Device advertises UAS but it is broken */ \
US_FLAG(BROKEN_FUA, 0x01000000) \
/* Cannot handle FUA in WRITE or READ CDBs */ \
US_FLAG(NO_ATA_1X, 0x02000000) \
/* Cannot handle ATA_12 or ATA_16 CDBs */ \
US_FLAG(NO_REPORT_OPCODES, 0x04000000) \
/* Cannot handle MI_REPORT_SUPPORTED_OPERATION_CODES */ \
US_FLAG(MAX_SECTORS_240, 0x08000000) \
/* Sets max_sectors to 240 */ \
US_FLAG(NO_REPORT_LUNS, 0x10000000) \
/* Cannot handle REPORT_LUNS */ \
US_FLAG(ALWAYS_SYNC, 0x20000000) \
/* lies about caching, so always sync */ \
US_FLAG(NO_SAME, 0x40000000) \
/* Cannot handle WRITE_SAME */ \
#define US_FLAG(name, value) US_FL_##name = value ,
enum { US_DO_ALL_FLAGS };
#undef US_FLAG
#include <linux/usb/storage.h>
usb-storage: prepare for subdriver separation This patch (as1206) is the first step in converting usb-storage's subdrivers into separate modules. It makes the following large-scale changes: Remove a bunch of unnecessary #ifdef's from usb_usual.h. Not truly necessary, but it does clean things up. Move the USB device-ID table (which is duplicated between libusual and usb-storage) into its own source file, usual-tables.c, and arrange for this to be linked with either libusual or usb-storage according to whether USB_LIBUSUAL is configured. Add to usual-tables.c a new usb_usual_ignore_device() function to detect whether a particular device needs to be managed by a subdriver and not by the standard handlers in usb-storage. Export a whole bunch of functions in usb-storage, renaming some of them because their names don't already begin with "usb_stor_". These functions will be needed by the new subdriver modules. Split usb-storage's probe routine into two functions. The subdrivers will call the probe1 routine, then fill in their transport and protocol settings, and then call the probe2 routine. Take the default cases and error checking out of get_transport() and get_protocol(), which run during probe1, and instead put a check for invalid transport or protocol values into the probe2 function. Add a new probe routine to be used for standard devices, i.e., those that don't need a subdriver. This new routine checks whether the device should be ignored (because it should be handled by ub or by a subdriver), and if not, calls the probe1 and probe2 functions. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> CC: Matthew Dharm <mdharm-usb@one-eyed-alien.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-02-13 02:47:44 +07:00
extern int usb_usual_ignore_device(struct usb_interface *intf);
extern const struct usb_device_id usb_storage_usb_ids[];
usb-storage: prepare for subdriver separation This patch (as1206) is the first step in converting usb-storage's subdrivers into separate modules. It makes the following large-scale changes: Remove a bunch of unnecessary #ifdef's from usb_usual.h. Not truly necessary, but it does clean things up. Move the USB device-ID table (which is duplicated between libusual and usb-storage) into its own source file, usual-tables.c, and arrange for this to be linked with either libusual or usb-storage according to whether USB_LIBUSUAL is configured. Add to usual-tables.c a new usb_usual_ignore_device() function to detect whether a particular device needs to be managed by a subdriver and not by the standard handlers in usb-storage. Export a whole bunch of functions in usb-storage, renaming some of them because their names don't already begin with "usb_stor_". These functions will be needed by the new subdriver modules. Split usb-storage's probe routine into two functions. The subdrivers will call the probe1 routine, then fill in their transport and protocol settings, and then call the probe2 routine. Take the default cases and error checking out of get_transport() and get_protocol(), which run during probe1, and instead put a check for invalid transport or protocol values into the probe2 function. Add a new probe routine to be used for standard devices, i.e., those that don't need a subdriver. This new routine checks whether the device should be ignored (because it should be handled by ub or by a subdriver), and if not, calls the probe1 and probe2 functions. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> CC: Matthew Dharm <mdharm-usb@one-eyed-alien.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-02-13 02:47:44 +07:00
#endif /* __LINUX_USB_USUAL_H */