linux_dsm_epyc7002/include/linux/random.h

100 lines
2.6 KiB
C
Raw Normal View History

/*
* include/linux/random.h
*
* Include file for the random number generator.
*/
#ifndef _LINUX_RANDOM_H
#define _LINUX_RANDOM_H
#include <uapi/linux/random.h>
extern void add_device_randomness(const void *, unsigned int);
extern void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value);
extern void add_interrupt_randomness(int irq, int irq_flags);
extern void get_random_bytes(void *buf, int nbytes);
random: add new get_random_bytes_arch() function Create a new function, get_random_bytes_arch() which will use the architecture-specific hardware random number generator if it is present. Change get_random_bytes() to not use the HW RNG, even if it is avaiable. The reason for this is that the hw random number generator is fast (if it is present), but it requires that we trust the hardware manufacturer to have not put in a back door. (For example, an increasing counter encrypted by an AES key known to the NSA.) It's unlikely that Intel (for example) was paid off by the US Government to do this, but it's impossible for them to prove otherwise --- especially since Bull Mountain is documented to use AES as a whitener. Hence, the output of an evil, trojan-horse version of RDRAND is statistically indistinguishable from an RDRAND implemented to the specifications claimed by Intel. Short of using a tunnelling electronic microscope to reverse engineer an Ivy Bridge chip and disassembling and analyzing the CPU microcode, there's no way for us to tell for sure. Since users of get_random_bytes() in the Linux kernel need to be able to support hardware systems where the HW RNG is not present, most time-sensitive users of this interface have already created their own cryptographic RNG interface which uses get_random_bytes() as a seed. So it's much better to use the HW RNG to improve the existing random number generator, by mixing in any entropy returned by the HW RNG into /dev/random's entropy pool, but to always _use_ /dev/random's entropy pool. This way we get almost of the benefits of the HW RNG without any potential liabilities. The only benefits we forgo is the speed/performance enhancements --- and generic kernel code can't depend on depend on get_random_bytes() having the speed of a HW RNG anyway. For those places that really want access to the arch-specific HW RNG, if it is available, we provide get_random_bytes_arch(). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
2012-07-05 21:35:23 +07:00
extern void get_random_bytes_arch(void *buf, int nbytes);
void generate_random_uuid(unsigned char uuid_out[16]);
extern int random_int_secret_init(void);
#ifndef MODULE
extern const struct file_operations random_fops, urandom_fops;
#endif
unsigned int get_random_int(void);
unsigned long randomize_range(unsigned long start, unsigned long end, unsigned long len);
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 07:04:23 +07:00
u32 prandom_u32(void);
void prandom_bytes(void *buf, int nbytes);
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 07:04:23 +07:00
void prandom_seed(u32 seed);
void prandom_reseed_late(void);
struct rnd_state {
random32: upgrade taus88 generator to taus113 from errata paper Since we use prandom*() functions quite often in networking code i.e. in UDP port selection, netfilter code, etc, upgrade the PRNG from Pierre L'Ecuyer's original paper "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213 to the version published in his errata paper [1]. The Tausworthe generator is a maximally-equidistributed generator, that is fast and has good statistical properties [1]. The version presented there upgrades the 3 state LFSR to a 4 state LFSR with increased periodicity from about 2^88 to 2^113. The algorithm is presented in [1] by the very same author who also designed the original algorithm in [2]. Also, by increasing the state, we make it a bit harder for attackers to "guess" the PRNGs internal state. See also discussion in [3]. Now, as we use this sort of weak initialization discussed in [3] only between core_initcall() until late_initcall() time [*] for prandom32*() users, namely in prandom_init(), it is less relevant from late_initcall() onwards as we overwrite seeds through prandom_reseed() anyways with a seed source of higher entropy, that is, get_random_bytes(). In other words, a exhaustive keysearch of 96 bit would be needed. Now, with the help of this patch, this state-search increases further to 128 bit. Initialization needs to make sure that s1 > 1, s2 > 7, s3 > 15, s4 > 127. taus88 and taus113 algorithm is also part of GSL. I added a test case in the next patch to verify internal behaviour of this patch with GSL and ran tests with the dieharder 3.31.1 RNG test suite: $ dieharder -g 052 -a -m 10 -s 1 -S 4137730333 #taus88 $ dieharder -g 054 -a -m 10 -s 1 -S 4137730333 #taus113 With this seed configuration, in order to compare both, we get the following differences: algorithm taus88 taus113 rands/second [**] 1.61e+08 1.37e+08 sts_serial(4, 1st run) WEAK PASSED sts_serial(9, 2nd run) WEAK PASSED rgb_lagged_sum(31) WEAK PASSED We took out diehard_sums test as according to the authors it is considered broken and unusable [4]. Despite that and the slight decrease in performance (which is acceptable), taus113 here passes all 113 tests (only rgb_minimum_distance_5 in WEAK, the rest PASSED). In general, taus/taus113 is considered "very good" by the authors of dieharder [5]. The papers [1][2] states a single warm-up step is sufficient by running quicktaus once on each state to ensure proper initialization of ~s_{0}: Our selection of (s) according to Table 1 of [1] row 1 holds the condition L - k <= r - s, that is, (32 32 32 32) - (31 29 28 25) <= (25 27 15 22) - (18 2 7 13) with r = k - q and q = (6 2 13 3) as also stated by the paper. So according to [2] we are safe with one round of quicktaus for initialization. However we decided to include the warm-up phase of the PRNG as done in GSL in every case as a safety net. We also use the warm up phase to make the output of the RNG easier to verify by the GSL output. In prandom_init(), we also mix random_get_entropy() into it, just like drivers/char/random.c does it, jiffies ^ random_get_entropy(). random-get_entropy() is get_cycles(). xor is entropy preserving so it is fine if it is not implemented by some architectures. Note, this PRNG is *not* used for cryptography in the kernel, but rather as a fast PRNG for various randomizations i.e. in the networking code, or elsewhere for debugging purposes, for example. [*]: In order to generate some "sort of pseduo-randomness", since get_random_bytes() is not yet available for us, we use jiffies and initialize states s1 - s3 with a simple linear congruential generator (LCG), that is x <- x * 69069; and derive s2, s3, from the 32bit initialization from s1. So the above quote from [3] accounts only for the time from core to late initcall, not afterwards. [**] Single threaded run on MacBook Air w/ Intel Core i5-3317U [1] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps [2] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps [3] http://thread.gmane.org/gmane.comp.encryption.general/12103/ [4] http://code.google.com/p/dieharder/source/browse/trunk/libdieharder/diehard_sums.c?spec=svn490&r=490#20 [5] http://www.phy.duke.edu/~rgb/General/dieharder.php Joint work with Hannes Frederic Sowa. Cc: Florian Weimer <fweimer@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11 18:20:36 +07:00
__u32 s1, s2, s3, s4;
};
random32: upgrade taus88 generator to taus113 from errata paper Since we use prandom*() functions quite often in networking code i.e. in UDP port selection, netfilter code, etc, upgrade the PRNG from Pierre L'Ecuyer's original paper "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213 to the version published in his errata paper [1]. The Tausworthe generator is a maximally-equidistributed generator, that is fast and has good statistical properties [1]. The version presented there upgrades the 3 state LFSR to a 4 state LFSR with increased periodicity from about 2^88 to 2^113. The algorithm is presented in [1] by the very same author who also designed the original algorithm in [2]. Also, by increasing the state, we make it a bit harder for attackers to "guess" the PRNGs internal state. See also discussion in [3]. Now, as we use this sort of weak initialization discussed in [3] only between core_initcall() until late_initcall() time [*] for prandom32*() users, namely in prandom_init(), it is less relevant from late_initcall() onwards as we overwrite seeds through prandom_reseed() anyways with a seed source of higher entropy, that is, get_random_bytes(). In other words, a exhaustive keysearch of 96 bit would be needed. Now, with the help of this patch, this state-search increases further to 128 bit. Initialization needs to make sure that s1 > 1, s2 > 7, s3 > 15, s4 > 127. taus88 and taus113 algorithm is also part of GSL. I added a test case in the next patch to verify internal behaviour of this patch with GSL and ran tests with the dieharder 3.31.1 RNG test suite: $ dieharder -g 052 -a -m 10 -s 1 -S 4137730333 #taus88 $ dieharder -g 054 -a -m 10 -s 1 -S 4137730333 #taus113 With this seed configuration, in order to compare both, we get the following differences: algorithm taus88 taus113 rands/second [**] 1.61e+08 1.37e+08 sts_serial(4, 1st run) WEAK PASSED sts_serial(9, 2nd run) WEAK PASSED rgb_lagged_sum(31) WEAK PASSED We took out diehard_sums test as according to the authors it is considered broken and unusable [4]. Despite that and the slight decrease in performance (which is acceptable), taus113 here passes all 113 tests (only rgb_minimum_distance_5 in WEAK, the rest PASSED). In general, taus/taus113 is considered "very good" by the authors of dieharder [5]. The papers [1][2] states a single warm-up step is sufficient by running quicktaus once on each state to ensure proper initialization of ~s_{0}: Our selection of (s) according to Table 1 of [1] row 1 holds the condition L - k <= r - s, that is, (32 32 32 32) - (31 29 28 25) <= (25 27 15 22) - (18 2 7 13) with r = k - q and q = (6 2 13 3) as also stated by the paper. So according to [2] we are safe with one round of quicktaus for initialization. However we decided to include the warm-up phase of the PRNG as done in GSL in every case as a safety net. We also use the warm up phase to make the output of the RNG easier to verify by the GSL output. In prandom_init(), we also mix random_get_entropy() into it, just like drivers/char/random.c does it, jiffies ^ random_get_entropy(). random-get_entropy() is get_cycles(). xor is entropy preserving so it is fine if it is not implemented by some architectures. Note, this PRNG is *not* used for cryptography in the kernel, but rather as a fast PRNG for various randomizations i.e. in the networking code, or elsewhere for debugging purposes, for example. [*]: In order to generate some "sort of pseduo-randomness", since get_random_bytes() is not yet available for us, we use jiffies and initialize states s1 - s3 with a simple linear congruential generator (LCG), that is x <- x * 69069; and derive s2, s3, from the 32bit initialization from s1. So the above quote from [3] accounts only for the time from core to late initcall, not afterwards. [**] Single threaded run on MacBook Air w/ Intel Core i5-3317U [1] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps [2] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps [3] http://thread.gmane.org/gmane.comp.encryption.general/12103/ [4] http://code.google.com/p/dieharder/source/browse/trunk/libdieharder/diehard_sums.c?spec=svn490&r=490#20 [5] http://www.phy.duke.edu/~rgb/General/dieharder.php Joint work with Hannes Frederic Sowa. Cc: Florian Weimer <fweimer@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11 18:20:36 +07:00
u32 prandom_u32_state(struct rnd_state *state);
void prandom_bytes_state(struct rnd_state *state, void *buf, int nbytes);
/**
* prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro)
* @ep_ro: right open interval endpoint
*
* Returns a pseudo-random number that is in interval [0, ep_ro). Note
* that the result depends on PRNG being well distributed in [0, ~0U]
* u32 space. Here we use maximally equidistributed combined Tausworthe
* generator, that is, prandom_u32(). This is useful when requesting a
* random index of an array containing ep_ro elements, for example.
*
* Returns: pseudo-random number in interval [0, ep_ro)
*/
static inline u32 prandom_u32_max(u32 ep_ro)
{
return (u32)(((u64) prandom_u32() * ep_ro) >> 32);
}
/*
* Handle minimum values for seeds
*/
static inline u32 __seed(u32 x, u32 m)
{
return (x < m) ? x + m : x;
}
/**
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 07:04:23 +07:00
* prandom_seed_state - set seed for prandom_u32_state().
* @state: pointer to state structure to receive the seed.
* @seed: arbitrary 64-bit value to use as a seed.
*/
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 07:04:23 +07:00
static inline void prandom_seed_state(struct rnd_state *state, u64 seed)
{
u32 i = (seed >> 32) ^ (seed << 10) ^ seed;
random32: upgrade taus88 generator to taus113 from errata paper Since we use prandom*() functions quite often in networking code i.e. in UDP port selection, netfilter code, etc, upgrade the PRNG from Pierre L'Ecuyer's original paper "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213 to the version published in his errata paper [1]. The Tausworthe generator is a maximally-equidistributed generator, that is fast and has good statistical properties [1]. The version presented there upgrades the 3 state LFSR to a 4 state LFSR with increased periodicity from about 2^88 to 2^113. The algorithm is presented in [1] by the very same author who also designed the original algorithm in [2]. Also, by increasing the state, we make it a bit harder for attackers to "guess" the PRNGs internal state. See also discussion in [3]. Now, as we use this sort of weak initialization discussed in [3] only between core_initcall() until late_initcall() time [*] for prandom32*() users, namely in prandom_init(), it is less relevant from late_initcall() onwards as we overwrite seeds through prandom_reseed() anyways with a seed source of higher entropy, that is, get_random_bytes(). In other words, a exhaustive keysearch of 96 bit would be needed. Now, with the help of this patch, this state-search increases further to 128 bit. Initialization needs to make sure that s1 > 1, s2 > 7, s3 > 15, s4 > 127. taus88 and taus113 algorithm is also part of GSL. I added a test case in the next patch to verify internal behaviour of this patch with GSL and ran tests with the dieharder 3.31.1 RNG test suite: $ dieharder -g 052 -a -m 10 -s 1 -S 4137730333 #taus88 $ dieharder -g 054 -a -m 10 -s 1 -S 4137730333 #taus113 With this seed configuration, in order to compare both, we get the following differences: algorithm taus88 taus113 rands/second [**] 1.61e+08 1.37e+08 sts_serial(4, 1st run) WEAK PASSED sts_serial(9, 2nd run) WEAK PASSED rgb_lagged_sum(31) WEAK PASSED We took out diehard_sums test as according to the authors it is considered broken and unusable [4]. Despite that and the slight decrease in performance (which is acceptable), taus113 here passes all 113 tests (only rgb_minimum_distance_5 in WEAK, the rest PASSED). In general, taus/taus113 is considered "very good" by the authors of dieharder [5]. The papers [1][2] states a single warm-up step is sufficient by running quicktaus once on each state to ensure proper initialization of ~s_{0}: Our selection of (s) according to Table 1 of [1] row 1 holds the condition L - k <= r - s, that is, (32 32 32 32) - (31 29 28 25) <= (25 27 15 22) - (18 2 7 13) with r = k - q and q = (6 2 13 3) as also stated by the paper. So according to [2] we are safe with one round of quicktaus for initialization. However we decided to include the warm-up phase of the PRNG as done in GSL in every case as a safety net. We also use the warm up phase to make the output of the RNG easier to verify by the GSL output. In prandom_init(), we also mix random_get_entropy() into it, just like drivers/char/random.c does it, jiffies ^ random_get_entropy(). random-get_entropy() is get_cycles(). xor is entropy preserving so it is fine if it is not implemented by some architectures. Note, this PRNG is *not* used for cryptography in the kernel, but rather as a fast PRNG for various randomizations i.e. in the networking code, or elsewhere for debugging purposes, for example. [*]: In order to generate some "sort of pseduo-randomness", since get_random_bytes() is not yet available for us, we use jiffies and initialize states s1 - s3 with a simple linear congruential generator (LCG), that is x <- x * 69069; and derive s2, s3, from the 32bit initialization from s1. So the above quote from [3] accounts only for the time from core to late initcall, not afterwards. [**] Single threaded run on MacBook Air w/ Intel Core i5-3317U [1] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps [2] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps [3] http://thread.gmane.org/gmane.comp.encryption.general/12103/ [4] http://code.google.com/p/dieharder/source/browse/trunk/libdieharder/diehard_sums.c?spec=svn490&r=490#20 [5] http://www.phy.duke.edu/~rgb/General/dieharder.php Joint work with Hannes Frederic Sowa. Cc: Florian Weimer <fweimer@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11 18:20:36 +07:00
state->s1 = __seed(i, 2U);
state->s2 = __seed(i, 8U);
state->s3 = __seed(i, 16U);
state->s4 = __seed(i, 128U);
}
#ifdef CONFIG_ARCH_RANDOM
# include <asm/archrandom.h>
#else
static inline int arch_get_random_long(unsigned long *v)
{
return 0;
}
static inline int arch_get_random_int(unsigned int *v)
{
return 0;
}
#endif
/* Pseudo random number generator from numerical recipes. */
static inline u32 next_pseudo_random32(u32 seed)
{
return seed * 1664525 + 1013904223;
}
#endif /* _LINUX_RANDOM_H */