linux_dsm_epyc7002/net/ipv4/af_inet.c

2074 lines
51 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* PF_INET protocol family socket handler.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Florian La Roche, <flla@stud.uni-sb.de>
* Alan Cox, <A.Cox@swansea.ac.uk>
*
* Changes (see also sock.c)
*
* piggy,
* Karl Knutson : Socket protocol table
* A.N.Kuznetsov : Socket death error in accept().
* John Richardson : Fix non blocking error in connect()
* so sockets that fail to connect
* don't return -EINPROGRESS.
* Alan Cox : Asynchronous I/O support
* Alan Cox : Keep correct socket pointer on sock
* structures
* when accept() ed
* Alan Cox : Semantics of SO_LINGER aren't state
* moved to close when you look carefully.
* With this fixed and the accept bug fixed
* some RPC stuff seems happier.
* Niibe Yutaka : 4.4BSD style write async I/O
* Alan Cox,
* Tony Gale : Fixed reuse semantics.
* Alan Cox : bind() shouldn't abort existing but dead
* sockets. Stops FTP netin:.. I hope.
* Alan Cox : bind() works correctly for RAW sockets.
* Note that FreeBSD at least was broken
* in this respect so be careful with
* compatibility tests...
* Alan Cox : routing cache support
* Alan Cox : memzero the socket structure for
* compactness.
* Matt Day : nonblock connect error handler
* Alan Cox : Allow large numbers of pending sockets
* (eg for big web sites), but only if
* specifically application requested.
* Alan Cox : New buffering throughout IP. Used
* dumbly.
* Alan Cox : New buffering now used smartly.
* Alan Cox : BSD rather than common sense
* interpretation of listen.
* Germano Caronni : Assorted small races.
* Alan Cox : sendmsg/recvmsg basic support.
* Alan Cox : Only sendmsg/recvmsg now supported.
* Alan Cox : Locked down bind (see security list).
* Alan Cox : Loosened bind a little.
* Mike McLagan : ADD/DEL DLCI Ioctls
* Willy Konynenberg : Transparent proxying support.
* David S. Miller : New socket lookup architecture.
* Some other random speedups.
* Cyrus Durgin : Cleaned up file for kmod hacks.
* Andi Kleen : Fix inet_stream_connect TCP race.
*/
#define pr_fmt(fmt) "IPv4: " fmt
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/netfilter_ipv4.h>
#include <linux/random.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/inet.h>
#include <linux/igmp.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/ip_fib.h>
#include <net/inet_connection_sock.h>
#include <net/tcp.h>
#include <net/udp.h>
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-11-28 02:10:57 +07:00
#include <net/udplite.h>
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
#include <net/ping.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/raw.h>
#include <net/icmp.h>
#include <net/inet_common.h>
#include <net/ip_tunnels.h>
#include <net/xfrm.h>
#include <net/net_namespace.h>
#include <net/secure_seq.h>
#ifdef CONFIG_IP_MROUTE
#include <linux/mroute.h>
#endif
#include <net/l3mdev.h>
#include <trace/events/sock.h>
/* The inetsw table contains everything that inet_create needs to
* build a new socket.
*/
static struct list_head inetsw[SOCK_MAX];
static DEFINE_SPINLOCK(inetsw_lock);
/* New destruction routine */
void inet_sock_destruct(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
__skb_queue_purge(&sk->sk_receive_queue);
tcp: add one skb cache for rx Often times, recvmsg() system calls and BH handling for a particular TCP socket are done on different cpus. This means the incoming skb had to be allocated on a cpu, but freed on another. This incurs a high spinlock contention in slab layer for small rpc, but also a high number of cache line ping pongs for larger packets. A full size GRO packet might use 45 page fragments, meaning that up to 45 put_page() can be involved. More over performing the __kfree_skb() in the recvmsg() context adds a latency for user applications, and increase probability of trapping them in backlog processing, since the BH handler might found the socket owned by the user. This patch, combined with the prior one increases the rpc performance by about 10 % on servers with large number of cores. (tcp_rr workload with 10,000 flows and 112 threads reach 9 Mpps instead of 8 Mpps) This also increases single bulk flow performance on 40Gbit+ links, since in this case there are often two cpus working in tandem : - CPU handling the NIC rx interrupts, feeding the receive queue, and (after this patch) freeing the skbs that were consumed. - CPU in recvmsg() system call, essentially 100 % busy copying out data to user space. Having at most one skb in a per-socket cache has very little risk of memory exhaustion, and since it is protected by socket lock, its management is essentially free. Note that if rps/rfs is used, we do not enable this feature, because there is high chance that the same cpu is handling both the recvmsg() system call and the TCP rx path, but that another cpu did the skb allocations in the device driver right before the RPS/RFS logic. To properly handle this case, it seems we would need to record on which cpu skb was allocated, and use a different channel to give skbs back to this cpu. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-22 22:56:40 +07:00
if (sk->sk_rx_skb_cache) {
__kfree_skb(sk->sk_rx_skb_cache);
sk->sk_rx_skb_cache = NULL;
}
__skb_queue_purge(&sk->sk_error_queue);
sk_mem_reclaim(sk);
if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
pr_err("Attempt to release TCP socket in state %d %p\n",
sk->sk_state, sk);
return;
}
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive inet socket %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(refcount_read(&sk->sk_wmem_alloc));
WARN_ON(sk->sk_wmem_queued);
WARN_ON(sk->sk_forward_alloc);
kfree(rcu_dereference_protected(inet->inet_opt, 1));
dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
dst_release(sk->sk_rx_dst);
sk_refcnt_debug_dec(sk);
}
EXPORT_SYMBOL(inet_sock_destruct);
/*
* The routines beyond this point handle the behaviour of an AF_INET
* socket object. Mostly it punts to the subprotocols of IP to do
* the work.
*/
/*
* Automatically bind an unbound socket.
*/
static int inet_autobind(struct sock *sk)
{
struct inet_sock *inet;
/* We may need to bind the socket. */
lock_sock(sk);
inet = inet_sk(sk);
if (!inet->inet_num) {
if (sk->sk_prot->get_port(sk, 0)) {
release_sock(sk);
return -EAGAIN;
}
inet->inet_sport = htons(inet->inet_num);
}
release_sock(sk);
return 0;
}
/*
* Move a socket into listening state.
*/
int inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err, tcp_fastopen;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
goto out;
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != TCP_LISTEN) {
/* Enable TFO w/o requiring TCP_FASTOPEN socket option.
* Note that only TCP sockets (SOCK_STREAM) will reach here.
* Also fastopen backlog may already been set via the option
* because the socket was in TCP_LISTEN state previously but
* was shutdown() rather than close().
*/
tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
(tcp_fastopen & TFO_SERVER_ENABLE) &&
!inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
fastopen_queue_tune(sk, backlog);
tcp_fastopen_init_key_once(sock_net(sk));
}
err = inet_csk_listen_start(sk, backlog);
if (err)
goto out;
tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
}
err = 0;
out:
release_sock(sk);
return err;
}
EXPORT_SYMBOL(inet_listen);
/*
* Create an inet socket.
*/
static int inet_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
struct inet_protosw *answer;
struct inet_sock *inet;
struct proto *answer_prot;
unsigned char answer_flags;
int try_loading_module = 0;
int err;
if (protocol < 0 || protocol >= IPPROTO_MAX)
return -EINVAL;
sock->state = SS_UNCONNECTED;
/* Look for the requested type/protocol pair. */
lookup_protocol:
err = -ESOCKTNOSUPPORT;
rcu_read_lock();
list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
err = 0;
/* Check the non-wild match. */
if (protocol == answer->protocol) {
if (protocol != IPPROTO_IP)
break;
} else {
/* Check for the two wild cases. */
if (IPPROTO_IP == protocol) {
protocol = answer->protocol;
break;
}
if (IPPROTO_IP == answer->protocol)
break;
}
err = -EPROTONOSUPPORT;
}
if (unlikely(err)) {
if (try_loading_module < 2) {
rcu_read_unlock();
/*
* Be more specific, e.g. net-pf-2-proto-132-type-1
* (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
*/
if (++try_loading_module == 1)
request_module("net-pf-%d-proto-%d-type-%d",
PF_INET, protocol, sock->type);
/*
* Fall back to generic, e.g. net-pf-2-proto-132
* (net-pf-PF_INET-proto-IPPROTO_SCTP)
*/
else
request_module("net-pf-%d-proto-%d",
PF_INET, protocol);
goto lookup_protocol;
} else
goto out_rcu_unlock;
}
err = -EPERM;
net: Allow userns root to control ipv4 Allow an unpriviled user who has created a user namespace, and then created a network namespace to effectively use the new network namespace, by reducing capable(CAP_NET_ADMIN) and capable(CAP_NET_RAW) calls to be ns_capable(net->user_ns, CAP_NET_ADMIN), or capable(net->user_ns, CAP_NET_RAW) calls. Settings that merely control a single network device are allowed. Either the network device is a logical network device where restrictions make no difference or the network device is hardware NIC that has been explicity moved from the initial network namespace. In general policy and network stack state changes are allowed while resource control is left unchanged. Allow creating raw sockets. Allow the SIOCSARP ioctl to control the arp cache. Allow the SIOCSIFFLAG ioctl to allow setting network device flags. Allow the SIOCSIFADDR ioctl to allow setting a netdevice ipv4 address. Allow the SIOCSIFBRDADDR ioctl to allow setting a netdevice ipv4 broadcast address. Allow the SIOCSIFDSTADDR ioctl to allow setting a netdevice ipv4 destination address. Allow the SIOCSIFNETMASK ioctl to allow setting a netdevice ipv4 netmask. Allow the SIOCADDRT and SIOCDELRT ioctls to allow adding and deleting ipv4 routes. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL and SIOCDELTUNNEL ioctls for adding, changing and deleting gre tunnels. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL and SIOCDELTUNNEL ioctls for adding, changing and deleting ipip tunnels. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL and SIOCDELTUNNEL ioctls for adding, changing and deleting ipsec virtual tunnel interfaces. Allow setting the MRT_INIT, MRT_DONE, MRT_ADD_VIF, MRT_DEL_VIF, MRT_ADD_MFC, MRT_DEL_MFC, MRT_ASSERT, MRT_PIM, MRT_TABLE socket options on multicast routing sockets. Allow setting and receiving IPOPT_CIPSO, IP_OPT_SEC, IP_OPT_SID and arbitrary ip options. Allow setting IP_SEC_POLICY/IP_XFRM_POLICY ipv4 socket option. Allow setting the IP_TRANSPARENT ipv4 socket option. Allow setting the TCP_REPAIR socket option. Allow setting the TCP_CONGESTION socket option. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-16 10:03:05 +07:00
if (sock->type == SOCK_RAW && !kern &&
!ns_capable(net->user_ns, CAP_NET_RAW))
goto out_rcu_unlock;
sock->ops = answer->ops;
answer_prot = answer->prot;
answer_flags = answer->flags;
rcu_read_unlock();
WARN_ON(!answer_prot->slab);
err = -ENOBUFS;
sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
if (!sk)
goto out;
err = 0;
if (INET_PROTOSW_REUSE & answer_flags)
sk->sk_reuse = SK_CAN_REUSE;
inet = inet_sk(sk);
inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
inet->nodefrag = 0;
if (SOCK_RAW == sock->type) {
inet->inet_num = protocol;
if (IPPROTO_RAW == protocol)
inet->hdrincl = 1;
}
if (net->ipv4.sysctl_ip_no_pmtu_disc)
inet->pmtudisc = IP_PMTUDISC_DONT;
else
inet->pmtudisc = IP_PMTUDISC_WANT;
inet->inet_id = 0;
sock_init_data(sock, sk);
sk->sk_destruct = inet_sock_destruct;
sk->sk_protocol = protocol;
sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
inet->uc_ttl = -1;
inet->mc_loop = 1;
inet->mc_ttl = 1;
inet->mc_all = 1;
inet->mc_index = 0;
inet->mc_list = NULL;
inet->rcv_tos = 0;
sk_refcnt_debug_inc(sk);
if (inet->inet_num) {
/* It assumes that any protocol which allows
* the user to assign a number at socket
* creation time automatically
* shares.
*/
inet->inet_sport = htons(inet->inet_num);
/* Add to protocol hash chains. */
err = sk->sk_prot->hash(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
if (sk->sk_prot->init) {
err = sk->sk_prot->init(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
if (!kern) {
err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
out:
return err;
out_rcu_unlock:
rcu_read_unlock();
goto out;
}
/*
* The peer socket should always be NULL (or else). When we call this
* function we are destroying the object and from then on nobody
* should refer to it.
*/
int inet_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (sk) {
long timeout;
/* Applications forget to leave groups before exiting */
ip_mc_drop_socket(sk);
/* If linger is set, we don't return until the close
* is complete. Otherwise we return immediately. The
* actually closing is done the same either way.
*
* If the close is due to the process exiting, we never
* linger..
*/
timeout = 0;
if (sock_flag(sk, SOCK_LINGER) &&
!(current->flags & PF_EXITING))
timeout = sk->sk_lingertime;
sk->sk_prot->close(sk, timeout);
net: don't clear sock->sk early to avoid trouble in strparser af_inet sets sock->sk to NULL which trips strparser over: BUG: kernel NULL pointer dereference, address: 0000000000000012 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 7 PID: 0 Comm: swapper/7 Not tainted 5.2.0-rc1-00139-g14629453a6d3 #21 RIP: 0010:tcp_peek_len+0x10/0x60 RSP: 0018:ffffc02e41c54b98 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff9cf924c4e030 RCX: 0000000000000051 RDX: 0000000000000000 RSI: 000000000000000c RDI: ffff9cf97128f480 RBP: ffff9cf9365e0300 R08: ffff9cf94fe7d2c0 R09: 0000000000000000 R10: 000000000000036b R11: ffff9cf939735e00 R12: ffff9cf91ad9ae40 R13: ffff9cf924c4e000 R14: ffff9cf9a8fcbaae R15: 0000000000000020 FS: 0000000000000000(0000) GS:ffff9cf9af7c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000012 CR3: 000000013920a003 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> strp_data_ready+0x48/0x90 tls_data_ready+0x22/0xd0 [tls] tcp_rcv_established+0x569/0x620 tcp_v4_do_rcv+0x127/0x1e0 tcp_v4_rcv+0xad7/0xbf0 ip_protocol_deliver_rcu+0x2c/0x1c0 ip_local_deliver_finish+0x41/0x50 ip_local_deliver+0x6b/0xe0 ? ip_protocol_deliver_rcu+0x1c0/0x1c0 ip_rcv+0x52/0xd0 ? ip_rcv_finish_core.isra.20+0x380/0x380 __netif_receive_skb_one_core+0x7e/0x90 netif_receive_skb_internal+0x42/0xf0 napi_gro_receive+0xed/0x150 nfp_net_poll+0x7a2/0xd30 [nfp] ? kmem_cache_free_bulk+0x286/0x310 net_rx_action+0x149/0x3b0 __do_softirq+0xe3/0x30a ? handle_irq_event_percpu+0x6a/0x80 irq_exit+0xe8/0xf0 do_IRQ+0x85/0xd0 common_interrupt+0xf/0xf </IRQ> RIP: 0010:cpuidle_enter_state+0xbc/0x450 To avoid this issue set sock->sk after sk_prot->close. My grepping and testing did not discover any code which would depend on the current behaviour. Fixes: c46234ebb4d1 ("tls: RX path for ktls") Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Dirk van der Merwe <dirk.vandermerwe@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-30 06:33:23 +07:00
sock->sk = NULL;
}
return 0;
}
EXPORT_SYMBOL(inet_release);
int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sock *sk = sock->sk;
int err;
/* If the socket has its own bind function then use it. (RAW) */
if (sk->sk_prot->bind) {
return sk->sk_prot->bind(sk, uaddr, addr_len);
}
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 05:08:02 +07:00
/* BPF prog is run before any checks are done so that if the prog
* changes context in a wrong way it will be caught.
*/
err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr);
if (err)
return err;
return __inet_bind(sk, uaddr, addr_len, false, true);
}
EXPORT_SYMBOL(inet_bind);
int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
bool force_bind_address_no_port, bool with_lock)
{
struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
unsigned short snum;
int chk_addr_ret;
u32 tb_id = RT_TABLE_LOCAL;
int err;
if (addr->sin_family != AF_INET) {
/* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
* only if s_addr is INADDR_ANY.
*/
err = -EAFNOSUPPORT;
if (addr->sin_family != AF_UNSPEC ||
addr->sin_addr.s_addr != htonl(INADDR_ANY))
goto out;
}
tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
/* Not specified by any standard per-se, however it breaks too
* many applications when removed. It is unfortunate since
* allowing applications to make a non-local bind solves
* several problems with systems using dynamic addressing.
* (ie. your servers still start up even if your ISDN link
* is temporarily down)
*/
err = -EADDRNOTAVAIL;
if (!inet_can_nonlocal_bind(net, inet) &&
addr->sin_addr.s_addr != htonl(INADDR_ANY) &&
chk_addr_ret != RTN_LOCAL &&
chk_addr_ret != RTN_MULTICAST &&
chk_addr_ret != RTN_BROADCAST)
goto out;
snum = ntohs(addr->sin_port);
err = -EACCES;
if (snum && inet_port_requires_bind_service(net, snum) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
goto out;
/* We keep a pair of addresses. rcv_saddr is the one
* used by hash lookups, and saddr is used for transmit.
*
* In the BSD API these are the same except where it
* would be illegal to use them (multicast/broadcast) in
* which case the sending device address is used.
*/
if (with_lock)
lock_sock(sk);
/* Check these errors (active socket, double bind). */
err = -EINVAL;
if (sk->sk_state != TCP_CLOSE || inet->inet_num)
goto out_release_sock;
inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
inet->inet_saddr = 0; /* Use device */
/* Make sure we are allowed to bind here. */
bpf: Post-hooks for sys_bind "Post-hooks" are hooks that are called right before returning from sys_bind. At this time IP and port are already allocated and no further changes to `struct sock` can happen before returning from sys_bind but BPF program has a chance to inspect the socket and change sys_bind result. Specifically it can e.g. inspect what port was allocated and if it doesn't satisfy some policy, BPF program can force sys_bind to fail and return EPERM to user. Another example of usage is recording the IP:port pair to some map to use it in later calls to sys_connect. E.g. if some TCP server inside cgroup was bound to some IP:port_n, it can be recorded to a map. And later when some TCP client inside same cgroup is trying to connect to 127.0.0.1:port_n, BPF hook for sys_connect can override the destination and connect application to IP:port_n instead of 127.0.0.1:port_n. That helps forcing all applications inside a cgroup to use desired IP and not break those applications if they e.g. use localhost to communicate between each other. == Implementation details == Post-hooks are implemented as two new attach types `BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`. Separate attach types for IPv4 and IPv6 are introduced to avoid access to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from `inet6_bind()` since those fields might not make sense in such cases. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 05:08:07 +07:00
if (snum || !(inet->bind_address_no_port ||
force_bind_address_no_port)) {
if (sk->sk_prot->get_port(sk, snum)) {
inet->inet_saddr = inet->inet_rcv_saddr = 0;
err = -EADDRINUSE;
goto out_release_sock;
}
err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
if (err) {
inet->inet_saddr = inet->inet_rcv_saddr = 0;
goto out_release_sock;
}
}
if (inet->inet_rcv_saddr)
sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
if (snum)
sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
inet->inet_sport = htons(inet->inet_num);
inet->inet_daddr = 0;
inet->inet_dport = 0;
sk_dst_reset(sk);
err = 0;
out_release_sock:
if (with_lock)
release_sock(sk);
out:
return err;
}
int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 05:08:05 +07:00
int err;
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC)
return sk->sk_prot->disconnect(sk, flags);
bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 05:08:05 +07:00
if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
if (err)
return err;
}
if (!inet_sk(sk)->inet_num && inet_autobind(sk))
return -EAGAIN;
return sk->sk_prot->connect(sk, uaddr, addr_len);
}
EXPORT_SYMBOL(inet_dgram_connect);
static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
{
inet: fix sleeping inside inet_wait_for_connect() Andrey reported this kernel warning: WARNING: CPU: 0 PID: 4608 at kernel/sched/core.c:7724 __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff811f5a5c>] prepare_to_wait+0xbc/0x210 kernel/sched/wait.c:178 Modules linked in: CPU: 0 PID: 4608 Comm: syz-executor Not tainted 4.9.0-rc2+ #320 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 ffff88006625f7a0 ffffffff81b46914 ffff88006625f818 0000000000000000 ffffffff84052960 0000000000000000 ffff88006625f7e8 ffffffff81111237 ffff88006aceac00 ffffffff00001e2c ffffed000cc4beff ffffffff84052960 Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff81b46914>] dump_stack+0xb3/0x10f lib/dump_stack.c:51 [<ffffffff81111237>] __warn+0x1a7/0x1f0 kernel/panic.c:550 [<ffffffff8111132c>] warn_slowpath_fmt+0xac/0xd0 kernel/panic.c:565 [<ffffffff811922fc>] __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 [< inline >] slab_pre_alloc_hook mm/slab.h:393 [< inline >] slab_alloc_node mm/slub.c:2634 [< inline >] slab_alloc mm/slub.c:2716 [<ffffffff81508da0>] __kmalloc_track_caller+0x150/0x2a0 mm/slub.c:4240 [<ffffffff8146be14>] kmemdup+0x24/0x50 mm/util.c:113 [<ffffffff8388b2cf>] dccp_feat_clone_sp_val.part.5+0x4f/0xe0 net/dccp/feat.c:374 [< inline >] dccp_feat_clone_sp_val net/dccp/feat.c:1141 [< inline >] dccp_feat_change_recv net/dccp/feat.c:1141 [<ffffffff8388d491>] dccp_feat_parse_options+0xaa1/0x13d0 net/dccp/feat.c:1411 [<ffffffff83894f01>] dccp_parse_options+0x721/0x1010 net/dccp/options.c:128 [<ffffffff83891280>] dccp_rcv_state_process+0x200/0x15b0 net/dccp/input.c:644 [<ffffffff838b8a94>] dccp_v4_do_rcv+0xf4/0x1a0 net/dccp/ipv4.c:681 [< inline >] sk_backlog_rcv ./include/net/sock.h:872 [<ffffffff82b7ceb6>] __release_sock+0x126/0x3a0 net/core/sock.c:2044 [<ffffffff82b7d189>] release_sock+0x59/0x1c0 net/core/sock.c:2502 [< inline >] inet_wait_for_connect net/ipv4/af_inet.c:547 [<ffffffff8316b2a2>] __inet_stream_connect+0x5d2/0xbb0 net/ipv4/af_inet.c:617 [<ffffffff8316b8d5>] inet_stream_connect+0x55/0xa0 net/ipv4/af_inet.c:656 [<ffffffff82b705e4>] SYSC_connect+0x244/0x2f0 net/socket.c:1533 [<ffffffff82b72dd4>] SyS_connect+0x24/0x30 net/socket.c:1514 [<ffffffff83fbf701>] entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:209 Unlike commit 26cabd31259ba43f68026ce3f62b78094124333f ("sched, net: Clean up sk_wait_event() vs. might_sleep()"), the sleeping function is called before schedule_timeout(), this is indeed a bug. Fix this by moving the wait logic to the new API, it is similar to commit ff960a731788a7408b6f66ec4fd772ff18833211 ("netdev, sched/wait: Fix sleeping inside wait event"). Reported-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-02 06:04:36 +07:00
DEFINE_WAIT_FUNC(wait, woken_wake_function);
inet: fix sleeping inside inet_wait_for_connect() Andrey reported this kernel warning: WARNING: CPU: 0 PID: 4608 at kernel/sched/core.c:7724 __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff811f5a5c>] prepare_to_wait+0xbc/0x210 kernel/sched/wait.c:178 Modules linked in: CPU: 0 PID: 4608 Comm: syz-executor Not tainted 4.9.0-rc2+ #320 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 ffff88006625f7a0 ffffffff81b46914 ffff88006625f818 0000000000000000 ffffffff84052960 0000000000000000 ffff88006625f7e8 ffffffff81111237 ffff88006aceac00 ffffffff00001e2c ffffed000cc4beff ffffffff84052960 Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff81b46914>] dump_stack+0xb3/0x10f lib/dump_stack.c:51 [<ffffffff81111237>] __warn+0x1a7/0x1f0 kernel/panic.c:550 [<ffffffff8111132c>] warn_slowpath_fmt+0xac/0xd0 kernel/panic.c:565 [<ffffffff811922fc>] __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 [< inline >] slab_pre_alloc_hook mm/slab.h:393 [< inline >] slab_alloc_node mm/slub.c:2634 [< inline >] slab_alloc mm/slub.c:2716 [<ffffffff81508da0>] __kmalloc_track_caller+0x150/0x2a0 mm/slub.c:4240 [<ffffffff8146be14>] kmemdup+0x24/0x50 mm/util.c:113 [<ffffffff8388b2cf>] dccp_feat_clone_sp_val.part.5+0x4f/0xe0 net/dccp/feat.c:374 [< inline >] dccp_feat_clone_sp_val net/dccp/feat.c:1141 [< inline >] dccp_feat_change_recv net/dccp/feat.c:1141 [<ffffffff8388d491>] dccp_feat_parse_options+0xaa1/0x13d0 net/dccp/feat.c:1411 [<ffffffff83894f01>] dccp_parse_options+0x721/0x1010 net/dccp/options.c:128 [<ffffffff83891280>] dccp_rcv_state_process+0x200/0x15b0 net/dccp/input.c:644 [<ffffffff838b8a94>] dccp_v4_do_rcv+0xf4/0x1a0 net/dccp/ipv4.c:681 [< inline >] sk_backlog_rcv ./include/net/sock.h:872 [<ffffffff82b7ceb6>] __release_sock+0x126/0x3a0 net/core/sock.c:2044 [<ffffffff82b7d189>] release_sock+0x59/0x1c0 net/core/sock.c:2502 [< inline >] inet_wait_for_connect net/ipv4/af_inet.c:547 [<ffffffff8316b2a2>] __inet_stream_connect+0x5d2/0xbb0 net/ipv4/af_inet.c:617 [<ffffffff8316b8d5>] inet_stream_connect+0x55/0xa0 net/ipv4/af_inet.c:656 [<ffffffff82b705e4>] SYSC_connect+0x244/0x2f0 net/socket.c:1533 [<ffffffff82b72dd4>] SyS_connect+0x24/0x30 net/socket.c:1514 [<ffffffff83fbf701>] entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:209 Unlike commit 26cabd31259ba43f68026ce3f62b78094124333f ("sched, net: Clean up sk_wait_event() vs. might_sleep()"), the sleeping function is called before schedule_timeout(), this is indeed a bug. Fix this by moving the wait logic to the new API, it is similar to commit ff960a731788a7408b6f66ec4fd772ff18833211 ("netdev, sched/wait: Fix sleeping inside wait event"). Reported-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-02 06:04:36 +07:00
add_wait_queue(sk_sleep(sk), &wait);
sk->sk_write_pending += writebias;
/* Basic assumption: if someone sets sk->sk_err, he _must_
* change state of the socket from TCP_SYN_*.
* Connect() does not allow to get error notifications
* without closing the socket.
*/
while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
release_sock(sk);
inet: fix sleeping inside inet_wait_for_connect() Andrey reported this kernel warning: WARNING: CPU: 0 PID: 4608 at kernel/sched/core.c:7724 __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff811f5a5c>] prepare_to_wait+0xbc/0x210 kernel/sched/wait.c:178 Modules linked in: CPU: 0 PID: 4608 Comm: syz-executor Not tainted 4.9.0-rc2+ #320 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 ffff88006625f7a0 ffffffff81b46914 ffff88006625f818 0000000000000000 ffffffff84052960 0000000000000000 ffff88006625f7e8 ffffffff81111237 ffff88006aceac00 ffffffff00001e2c ffffed000cc4beff ffffffff84052960 Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff81b46914>] dump_stack+0xb3/0x10f lib/dump_stack.c:51 [<ffffffff81111237>] __warn+0x1a7/0x1f0 kernel/panic.c:550 [<ffffffff8111132c>] warn_slowpath_fmt+0xac/0xd0 kernel/panic.c:565 [<ffffffff811922fc>] __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 [< inline >] slab_pre_alloc_hook mm/slab.h:393 [< inline >] slab_alloc_node mm/slub.c:2634 [< inline >] slab_alloc mm/slub.c:2716 [<ffffffff81508da0>] __kmalloc_track_caller+0x150/0x2a0 mm/slub.c:4240 [<ffffffff8146be14>] kmemdup+0x24/0x50 mm/util.c:113 [<ffffffff8388b2cf>] dccp_feat_clone_sp_val.part.5+0x4f/0xe0 net/dccp/feat.c:374 [< inline >] dccp_feat_clone_sp_val net/dccp/feat.c:1141 [< inline >] dccp_feat_change_recv net/dccp/feat.c:1141 [<ffffffff8388d491>] dccp_feat_parse_options+0xaa1/0x13d0 net/dccp/feat.c:1411 [<ffffffff83894f01>] dccp_parse_options+0x721/0x1010 net/dccp/options.c:128 [<ffffffff83891280>] dccp_rcv_state_process+0x200/0x15b0 net/dccp/input.c:644 [<ffffffff838b8a94>] dccp_v4_do_rcv+0xf4/0x1a0 net/dccp/ipv4.c:681 [< inline >] sk_backlog_rcv ./include/net/sock.h:872 [<ffffffff82b7ceb6>] __release_sock+0x126/0x3a0 net/core/sock.c:2044 [<ffffffff82b7d189>] release_sock+0x59/0x1c0 net/core/sock.c:2502 [< inline >] inet_wait_for_connect net/ipv4/af_inet.c:547 [<ffffffff8316b2a2>] __inet_stream_connect+0x5d2/0xbb0 net/ipv4/af_inet.c:617 [<ffffffff8316b8d5>] inet_stream_connect+0x55/0xa0 net/ipv4/af_inet.c:656 [<ffffffff82b705e4>] SYSC_connect+0x244/0x2f0 net/socket.c:1533 [<ffffffff82b72dd4>] SyS_connect+0x24/0x30 net/socket.c:1514 [<ffffffff83fbf701>] entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:209 Unlike commit 26cabd31259ba43f68026ce3f62b78094124333f ("sched, net: Clean up sk_wait_event() vs. might_sleep()"), the sleeping function is called before schedule_timeout(), this is indeed a bug. Fix this by moving the wait logic to the new API, it is similar to commit ff960a731788a7408b6f66ec4fd772ff18833211 ("netdev, sched/wait: Fix sleeping inside wait event"). Reported-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-02 06:04:36 +07:00
timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
lock_sock(sk);
if (signal_pending(current) || !timeo)
break;
}
inet: fix sleeping inside inet_wait_for_connect() Andrey reported this kernel warning: WARNING: CPU: 0 PID: 4608 at kernel/sched/core.c:7724 __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff811f5a5c>] prepare_to_wait+0xbc/0x210 kernel/sched/wait.c:178 Modules linked in: CPU: 0 PID: 4608 Comm: syz-executor Not tainted 4.9.0-rc2+ #320 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 ffff88006625f7a0 ffffffff81b46914 ffff88006625f818 0000000000000000 ffffffff84052960 0000000000000000 ffff88006625f7e8 ffffffff81111237 ffff88006aceac00 ffffffff00001e2c ffffed000cc4beff ffffffff84052960 Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff81b46914>] dump_stack+0xb3/0x10f lib/dump_stack.c:51 [<ffffffff81111237>] __warn+0x1a7/0x1f0 kernel/panic.c:550 [<ffffffff8111132c>] warn_slowpath_fmt+0xac/0xd0 kernel/panic.c:565 [<ffffffff811922fc>] __might_sleep+0x14c/0x1a0 kernel/sched/core.c:7719 [< inline >] slab_pre_alloc_hook mm/slab.h:393 [< inline >] slab_alloc_node mm/slub.c:2634 [< inline >] slab_alloc mm/slub.c:2716 [<ffffffff81508da0>] __kmalloc_track_caller+0x150/0x2a0 mm/slub.c:4240 [<ffffffff8146be14>] kmemdup+0x24/0x50 mm/util.c:113 [<ffffffff8388b2cf>] dccp_feat_clone_sp_val.part.5+0x4f/0xe0 net/dccp/feat.c:374 [< inline >] dccp_feat_clone_sp_val net/dccp/feat.c:1141 [< inline >] dccp_feat_change_recv net/dccp/feat.c:1141 [<ffffffff8388d491>] dccp_feat_parse_options+0xaa1/0x13d0 net/dccp/feat.c:1411 [<ffffffff83894f01>] dccp_parse_options+0x721/0x1010 net/dccp/options.c:128 [<ffffffff83891280>] dccp_rcv_state_process+0x200/0x15b0 net/dccp/input.c:644 [<ffffffff838b8a94>] dccp_v4_do_rcv+0xf4/0x1a0 net/dccp/ipv4.c:681 [< inline >] sk_backlog_rcv ./include/net/sock.h:872 [<ffffffff82b7ceb6>] __release_sock+0x126/0x3a0 net/core/sock.c:2044 [<ffffffff82b7d189>] release_sock+0x59/0x1c0 net/core/sock.c:2502 [< inline >] inet_wait_for_connect net/ipv4/af_inet.c:547 [<ffffffff8316b2a2>] __inet_stream_connect+0x5d2/0xbb0 net/ipv4/af_inet.c:617 [<ffffffff8316b8d5>] inet_stream_connect+0x55/0xa0 net/ipv4/af_inet.c:656 [<ffffffff82b705e4>] SYSC_connect+0x244/0x2f0 net/socket.c:1533 [<ffffffff82b72dd4>] SyS_connect+0x24/0x30 net/socket.c:1514 [<ffffffff83fbf701>] entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:209 Unlike commit 26cabd31259ba43f68026ce3f62b78094124333f ("sched, net: Clean up sk_wait_event() vs. might_sleep()"), the sleeping function is called before schedule_timeout(), this is indeed a bug. Fix this by moving the wait logic to the new API, it is similar to commit ff960a731788a7408b6f66ec4fd772ff18833211 ("netdev, sched/wait: Fix sleeping inside wait event"). Reported-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-02 06:04:36 +07:00
remove_wait_queue(sk_sleep(sk), &wait);
sk->sk_write_pending -= writebias;
return timeo;
}
/*
* Connect to a remote host. There is regrettably still a little
* TCP 'magic' in here.
*/
int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
net/tcp-fastopen: make connect()'s return case more consistent with non-TFO Without TFO, any subsequent connect() call after a successful one returns -1 EISCONN. The last API update ensured that __inet_stream_connect() can return -1 EINPROGRESS in response to sendmsg() when TFO is in use to indicate that the connection is now in progress. Unfortunately since this function is used both for connect() and sendmsg(), it has the undesired side effect of making connect() now return -1 EINPROGRESS as well after a successful call, while at the same time poll() returns POLLOUT. This can confuse some applications which happen to call connect() and to check for -1 EISCONN to ensure the connection is usable, and for which EINPROGRESS indicates a need to poll, causing a loop. This problem was encountered in haproxy where a call to connect() is precisely used in certain cases to confirm a connection's readiness. While arguably haproxy's behaviour should be improved here, it seems important to aim at a more robust behaviour when the goal of the new API is to make it easier to implement TFO in existing applications. This patch simply ensures that we preserve the same semantics as in the non-TFO case on the connect() syscall when using TFO, while still returning -1 EINPROGRESS on sendmsg(). For this we simply tell __inet_stream_connect() whether we're doing a regular connect() or in fact connecting for a sendmsg() call. Cc: Wei Wang <weiwan@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-25 20:42:46 +07:00
int addr_len, int flags, int is_sendmsg)
{
struct sock *sk = sock->sk;
int err;
long timeo;
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:59:22 +07:00
/*
* uaddr can be NULL and addr_len can be 0 if:
* sk is a TCP fastopen active socket and
* TCP_FASTOPEN_CONNECT sockopt is set and
* we already have a valid cookie for this socket.
* In this case, user can call write() after connect().
* write() will invoke tcp_sendmsg_fastopen() which calls
* __inet_stream_connect().
*/
if (uaddr) {
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:59:22 +07:00
if (uaddr->sa_family == AF_UNSPEC) {
err = sk->sk_prot->disconnect(sk, flags);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
goto out;
}
}
switch (sock->state) {
default:
err = -EINVAL;
goto out;
case SS_CONNECTED:
err = -EISCONN;
goto out;
case SS_CONNECTING:
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:59:22 +07:00
if (inet_sk(sk)->defer_connect)
net/tcp-fastopen: make connect()'s return case more consistent with non-TFO Without TFO, any subsequent connect() call after a successful one returns -1 EISCONN. The last API update ensured that __inet_stream_connect() can return -1 EINPROGRESS in response to sendmsg() when TFO is in use to indicate that the connection is now in progress. Unfortunately since this function is used both for connect() and sendmsg(), it has the undesired side effect of making connect() now return -1 EINPROGRESS as well after a successful call, while at the same time poll() returns POLLOUT. This can confuse some applications which happen to call connect() and to check for -1 EISCONN to ensure the connection is usable, and for which EINPROGRESS indicates a need to poll, causing a loop. This problem was encountered in haproxy where a call to connect() is precisely used in certain cases to confirm a connection's readiness. While arguably haproxy's behaviour should be improved here, it seems important to aim at a more robust behaviour when the goal of the new API is to make it easier to implement TFO in existing applications. This patch simply ensures that we preserve the same semantics as in the non-TFO case on the connect() syscall when using TFO, while still returning -1 EINPROGRESS on sendmsg(). For this we simply tell __inet_stream_connect() whether we're doing a regular connect() or in fact connecting for a sendmsg() call. Cc: Wei Wang <weiwan@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-25 20:42:46 +07:00
err = is_sendmsg ? -EINPROGRESS : -EISCONN;
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:59:22 +07:00
else
err = -EALREADY;
/* Fall out of switch with err, set for this state */
break;
case SS_UNCONNECTED:
err = -EISCONN;
if (sk->sk_state != TCP_CLOSE)
goto out;
bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 05:08:05 +07:00
if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
if (err)
goto out;
}
err = sk->sk_prot->connect(sk, uaddr, addr_len);
if (err < 0)
goto out;
sock->state = SS_CONNECTING;
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:59:22 +07:00
if (!err && inet_sk(sk)->defer_connect)
goto out;
/* Just entered SS_CONNECTING state; the only
* difference is that return value in non-blocking
* case is EINPROGRESS, rather than EALREADY.
*/
err = -EINPROGRESS;
break;
}
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
tcp_sk(sk)->fastopen_req &&
tcp_sk(sk)->fastopen_req->data ? 1 : 0;
/* Error code is set above */
if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
goto out;
err = sock_intr_errno(timeo);
if (signal_pending(current))
goto out;
}
/* Connection was closed by RST, timeout, ICMP error
* or another process disconnected us.
*/
if (sk->sk_state == TCP_CLOSE)
goto sock_error;
/* sk->sk_err may be not zero now, if RECVERR was ordered by user
* and error was received after socket entered established state.
* Hence, it is handled normally after connect() return successfully.
*/
sock->state = SS_CONNECTED;
err = 0;
out:
return err;
sock_error:
err = sock_error(sk) ? : -ECONNABORTED;
sock->state = SS_UNCONNECTED;
if (sk->sk_prot->disconnect(sk, flags))
sock->state = SS_DISCONNECTING;
goto out;
}
EXPORT_SYMBOL(__inet_stream_connect);
int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
int err;
lock_sock(sock->sk);
net/tcp-fastopen: make connect()'s return case more consistent with non-TFO Without TFO, any subsequent connect() call after a successful one returns -1 EISCONN. The last API update ensured that __inet_stream_connect() can return -1 EINPROGRESS in response to sendmsg() when TFO is in use to indicate that the connection is now in progress. Unfortunately since this function is used both for connect() and sendmsg(), it has the undesired side effect of making connect() now return -1 EINPROGRESS as well after a successful call, while at the same time poll() returns POLLOUT. This can confuse some applications which happen to call connect() and to check for -1 EISCONN to ensure the connection is usable, and for which EINPROGRESS indicates a need to poll, causing a loop. This problem was encountered in haproxy where a call to connect() is precisely used in certain cases to confirm a connection's readiness. While arguably haproxy's behaviour should be improved here, it seems important to aim at a more robust behaviour when the goal of the new API is to make it easier to implement TFO in existing applications. This patch simply ensures that we preserve the same semantics as in the non-TFO case on the connect() syscall when using TFO, while still returning -1 EINPROGRESS on sendmsg(). For this we simply tell __inet_stream_connect() whether we're doing a regular connect() or in fact connecting for a sendmsg() call. Cc: Wei Wang <weiwan@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-25 20:42:46 +07:00
err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
release_sock(sock->sk);
return err;
}
EXPORT_SYMBOL(inet_stream_connect);
/*
* Accept a pending connection. The TCP layer now gives BSD semantics.
*/
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 15:09:05 +07:00
int inet_accept(struct socket *sock, struct socket *newsock, int flags,
bool kern)
{
struct sock *sk1 = sock->sk;
int err = -EINVAL;
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 15:09:05 +07:00
struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern);
if (!sk2)
goto do_err;
lock_sock(sk2);
sock_rps_record_flow(sk2);
WARN_ON(!((1 << sk2->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_RECV |
TCPF_CLOSE_WAIT | TCPF_CLOSE)));
sock_graft(sk2, newsock);
newsock->state = SS_CONNECTED;
err = 0;
release_sock(sk2);
do_err:
return err;
}
EXPORT_SYMBOL(inet_accept);
/*
* This does both peername and sockname.
*/
int inet_getname(struct socket *sock, struct sockaddr *uaddr,
net: make getname() functions return length rather than use int* parameter Changes since v1: Added changes in these files: drivers/infiniband/hw/usnic/usnic_transport.c drivers/staging/lustre/lnet/lnet/lib-socket.c drivers/target/iscsi/iscsi_target_login.c drivers/vhost/net.c fs/dlm/lowcomms.c fs/ocfs2/cluster/tcp.c security/tomoyo/network.c Before: All these functions either return a negative error indicator, or store length of sockaddr into "int *socklen" parameter and return zero on success. "int *socklen" parameter is awkward. For example, if caller does not care, it still needs to provide on-stack storage for the value it does not need. None of the many FOO_getname() functions of various protocols ever used old value of *socklen. They always just overwrite it. This change drops this parameter, and makes all these functions, on success, return length of sockaddr. It's always >= 0 and can be differentiated from an error. Tests in callers are changed from "if (err)" to "if (err < 0)", where needed. rpc_sockname() lost "int buflen" parameter, since its only use was to be passed to kernel_getsockname() as &buflen and subsequently not used in any way. Userspace API is not changed. text data bss dec hex filename 30108430 2633624 873672 33615726 200ef6e vmlinux.before.o 30108109 2633612 873672 33615393 200ee21 vmlinux.o Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: David S. Miller <davem@davemloft.net> CC: linux-kernel@vger.kernel.org CC: netdev@vger.kernel.org CC: linux-bluetooth@vger.kernel.org CC: linux-decnet-user@lists.sourceforge.net CC: linux-wireless@vger.kernel.org CC: linux-rdma@vger.kernel.org CC: linux-sctp@vger.kernel.org CC: linux-nfs@vger.kernel.org CC: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-13 02:00:20 +07:00
int peer)
{
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
sin->sin_family = AF_INET;
if (peer) {
if (!inet->inet_dport ||
(((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
peer == 1))
return -ENOTCONN;
sin->sin_port = inet->inet_dport;
sin->sin_addr.s_addr = inet->inet_daddr;
} else {
__be32 addr = inet->inet_rcv_saddr;
if (!addr)
addr = inet->inet_saddr;
sin->sin_port = inet->inet_sport;
sin->sin_addr.s_addr = addr;
}
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
net: make getname() functions return length rather than use int* parameter Changes since v1: Added changes in these files: drivers/infiniband/hw/usnic/usnic_transport.c drivers/staging/lustre/lnet/lnet/lib-socket.c drivers/target/iscsi/iscsi_target_login.c drivers/vhost/net.c fs/dlm/lowcomms.c fs/ocfs2/cluster/tcp.c security/tomoyo/network.c Before: All these functions either return a negative error indicator, or store length of sockaddr into "int *socklen" parameter and return zero on success. "int *socklen" parameter is awkward. For example, if caller does not care, it still needs to provide on-stack storage for the value it does not need. None of the many FOO_getname() functions of various protocols ever used old value of *socklen. They always just overwrite it. This change drops this parameter, and makes all these functions, on success, return length of sockaddr. It's always >= 0 and can be differentiated from an error. Tests in callers are changed from "if (err)" to "if (err < 0)", where needed. rpc_sockname() lost "int buflen" parameter, since its only use was to be passed to kernel_getsockname() as &buflen and subsequently not used in any way. Userspace API is not changed. text data bss dec hex filename 30108430 2633624 873672 33615726 200ef6e vmlinux.before.o 30108109 2633612 873672 33615393 200ee21 vmlinux.o Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: David S. Miller <davem@davemloft.net> CC: linux-kernel@vger.kernel.org CC: netdev@vger.kernel.org CC: linux-bluetooth@vger.kernel.org CC: linux-decnet-user@lists.sourceforge.net CC: linux-wireless@vger.kernel.org CC: linux-rdma@vger.kernel.org CC: linux-sctp@vger.kernel.org CC: linux-nfs@vger.kernel.org CC: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-13 02:00:20 +07:00
return sizeof(*sin);
}
EXPORT_SYMBOL(inet_getname);
int inet_send_prepare(struct sock *sk)
{
sock_rps_record_flow(sk);
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
/* We may need to bind the socket. */
if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind &&
inet_autobind(sk))
return -EAGAIN;
return 0;
}
EXPORT_SYMBOL_GPL(inet_send_prepare);
int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
struct sock *sk = sock->sk;
if (unlikely(inet_send_prepare(sk)))
return -EAGAIN;
return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
sk, msg, size);
}
EXPORT_SYMBOL(inet_sendmsg);
ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags)
{
struct sock *sk = sock->sk;
if (unlikely(inet_send_prepare(sk)))
return -EAGAIN;
if (sk->sk_prot->sendpage)
return sk->sk_prot->sendpage(sk, page, offset, size, flags);
return sock_no_sendpage(sock, page, offset, size, flags);
}
EXPORT_SYMBOL(inet_sendpage);
INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
size_t, int, int, int *));
int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
int flags)
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
{
struct sock *sk = sock->sk;
int addr_len = 0;
int err;
if (likely(!(flags & MSG_ERRQUEUE)))
sock_rps_record_flow(sk);
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
sk, msg, size, flags & MSG_DONTWAIT,
flags & ~MSG_DONTWAIT, &addr_len);
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
if (err >= 0)
msg->msg_namelen = addr_len;
return err;
}
EXPORT_SYMBOL(inet_recvmsg);
int inet_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
int err = 0;
/* This should really check to make sure
* the socket is a TCP socket. (WHY AC...)
*/
how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
1->2 bit 2 snds.
2->3 */
if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
return -EINVAL;
lock_sock(sk);
if (sock->state == SS_CONNECTING) {
if ((1 << sk->sk_state) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
sock->state = SS_DISCONNECTING;
else
sock->state = SS_CONNECTED;
}
switch (sk->sk_state) {
case TCP_CLOSE:
err = -ENOTCONN;
/* Hack to wake up other listeners, who can poll for
EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
/* fall through */
default:
sk->sk_shutdown |= how;
if (sk->sk_prot->shutdown)
sk->sk_prot->shutdown(sk, how);
break;
/* Remaining two branches are temporary solution for missing
* close() in multithreaded environment. It is _not_ a good idea,
* but we have no choice until close() is repaired at VFS level.
*/
case TCP_LISTEN:
if (!(how & RCV_SHUTDOWN))
break;
/* fall through */
case TCP_SYN_SENT:
err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
break;
}
/* Wake up anyone sleeping in poll. */
sk->sk_state_change(sk);
release_sock(sk);
return err;
}
EXPORT_SYMBOL(inet_shutdown);
/*
* ioctl() calls you can issue on an INET socket. Most of these are
* device configuration and stuff and very rarely used. Some ioctls
* pass on to the socket itself.
*
* NOTE: I like the idea of a module for the config stuff. ie ifconfig
* loads the devconfigure module does its configuring and unloads it.
* There's a good 20K of config code hanging around the kernel.
*/
int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
int err = 0;
struct net *net = sock_net(sk);
void __user *p = (void __user *)arg;
struct ifreq ifr;
struct rtentry rt;
switch (cmd) {
case SIOCADDRT:
case SIOCDELRT:
if (copy_from_user(&rt, p, sizeof(struct rtentry)))
return -EFAULT;
err = ip_rt_ioctl(net, cmd, &rt);
break;
case SIOCRTMSG:
err = -EINVAL;
break;
case SIOCDARP:
case SIOCGARP:
case SIOCSARP:
err = arp_ioctl(net, cmd, (void __user *)arg);
break;
case SIOCGIFADDR:
case SIOCGIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFPFLAGS:
if (copy_from_user(&ifr, p, sizeof(struct ifreq)))
return -EFAULT;
err = devinet_ioctl(net, cmd, &ifr);
if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq)))
err = -EFAULT;
break;
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:
case SIOCSIFPFLAGS:
case SIOCSIFFLAGS:
if (copy_from_user(&ifr, p, sizeof(struct ifreq)))
return -EFAULT;
err = devinet_ioctl(net, cmd, &ifr);
break;
default:
if (sk->sk_prot->ioctl)
err = sk->sk_prot->ioctl(sk, cmd, arg);
else
err = -ENOIOCTLCMD;
break;
}
return err;
}
EXPORT_SYMBOL(inet_ioctl);
#ifdef CONFIG_COMPAT
static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
int err = -ENOIOCTLCMD;
if (sk->sk_prot->compat_ioctl)
err = sk->sk_prot->compat_ioctl(sk, cmd, arg);
return err;
}
#endif
const struct proto_ops inet_stream_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = tcp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = inet_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
.recvmsg = inet_recvmsg,
tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive When adding tcp mmap() implementation, I forgot that socket lock had to be taken before current->mm->mmap_sem. syzbot eventually caught the bug. Since we can not lock the socket in tcp mmap() handler we have to split the operation in two phases. 1) mmap() on a tcp socket simply reserves VMA space, and nothing else. This operation does not involve any TCP locking. 2) getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) implements the transfert of pages from skbs to one VMA. This operation only uses down_read(&current->mm->mmap_sem) after holding TCP lock, thus solving the lockdep issue. This new implementation was suggested by Andy Lutomirski with great details. Benefits are : - Better scalability, in case multiple threads reuse VMAS (without mmap()/munmap() calls) since mmap_sem wont be write locked. - Better error recovery. The previous mmap() model had to provide the expected size of the mapping. If for some reason one part could not be mapped (partial MSS), the whole operation had to be aborted. With the tcp_zerocopy_receive struct, kernel can report how many bytes were successfuly mapped, and how many bytes should be read to skip the problematic sequence. - No more memory allocation to hold an array of page pointers. 16 MB mappings needed 32 KB for this array, potentially using vmalloc() :/ - skbs are freed while mmap_sem has been released Following patch makes the change in tcp_mmap tool to demonstrate one possible use of mmap() and setsockopt(... TCP_ZEROCOPY_RECEIVE ...) Note that memcg might require additional changes. Fixes: 93ab6cc69162 ("tcp: implement mmap() for zero copy receive") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-27 22:58:08 +07:00
#ifdef CONFIG_MMU
tcp: implement mmap() for zero copy receive Some networks can make sure TCP payload can exactly fit 4KB pages, with well chosen MSS/MTU and architectures. Implement mmap() system call so that applications can avoid copying data without complex splice() games. Note that a successful mmap( X bytes) on TCP socket is consuming bytes, as if recvmsg() has been done. (tp->copied += X) Only PROT_READ mappings are accepted, as skb page frags are fundamentally shared and read only. If tcp_mmap() finds data that is not a full page, or a patch of urgent data, -EINVAL is returned, no bytes are consumed. Application must fallback to recvmsg() to read the problematic sequence. mmap() wont block, regardless of socket being in blocking or non-blocking mode. If not enough bytes are in receive queue, mmap() would return -EAGAIN, or -EIO if socket is in a state where no other bytes can be added into receive queue. An application might use SO_RCVLOWAT, poll() and/or ioctl( FIONREAD) to efficiently use mmap() On the sender side, MSG_EOR might help to clearly separate unaligned headers and 4K-aligned chunks if necessary. Tested: mlx4 (cx-3) 40Gbit NIC, with tcp_mmap program provided in following patch. MTU set to 4168 (4096 TCP payload, 40 bytes IPv6 header, 32 bytes TCP header) Without mmap() (tcp_mmap -s) received 32768 MB (0 % mmap'ed) in 8.13342 s, 33.7961 Gbit, cpu usage user:0.034 sys:3.778, 116.333 usec per MB, 63062 c-switches received 32768 MB (0 % mmap'ed) in 8.14501 s, 33.748 Gbit, cpu usage user:0.029 sys:3.997, 122.864 usec per MB, 61903 c-switches received 32768 MB (0 % mmap'ed) in 8.11723 s, 33.8635 Gbit, cpu usage user:0.048 sys:3.964, 122.437 usec per MB, 62983 c-switches received 32768 MB (0 % mmap'ed) in 8.39189 s, 32.7552 Gbit, cpu usage user:0.038 sys:4.181, 128.754 usec per MB, 55834 c-switches With mmap() on receiver (tcp_mmap -s -z) received 32768 MB (100 % mmap'ed) in 8.03083 s, 34.2278 Gbit, cpu usage user:0.024 sys:1.466, 45.4712 usec per MB, 65479 c-switches received 32768 MB (100 % mmap'ed) in 7.98805 s, 34.4111 Gbit, cpu usage user:0.026 sys:1.401, 43.5486 usec per MB, 65447 c-switches received 32768 MB (100 % mmap'ed) in 7.98377 s, 34.4296 Gbit, cpu usage user:0.028 sys:1.452, 45.166 usec per MB, 65496 c-switches received 32768 MB (99.9969 % mmap'ed) in 8.01838 s, 34.281 Gbit, cpu usage user:0.02 sys:1.446, 44.7388 usec per MB, 65505 c-switches Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-17 00:33:38 +07:00
.mmap = tcp_mmap,
tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive When adding tcp mmap() implementation, I forgot that socket lock had to be taken before current->mm->mmap_sem. syzbot eventually caught the bug. Since we can not lock the socket in tcp mmap() handler we have to split the operation in two phases. 1) mmap() on a tcp socket simply reserves VMA space, and nothing else. This operation does not involve any TCP locking. 2) getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) implements the transfert of pages from skbs to one VMA. This operation only uses down_read(&current->mm->mmap_sem) after holding TCP lock, thus solving the lockdep issue. This new implementation was suggested by Andy Lutomirski with great details. Benefits are : - Better scalability, in case multiple threads reuse VMAS (without mmap()/munmap() calls) since mmap_sem wont be write locked. - Better error recovery. The previous mmap() model had to provide the expected size of the mapping. If for some reason one part could not be mapped (partial MSS), the whole operation had to be aborted. With the tcp_zerocopy_receive struct, kernel can report how many bytes were successfuly mapped, and how many bytes should be read to skip the problematic sequence. - No more memory allocation to hold an array of page pointers. 16 MB mappings needed 32 KB for this array, potentially using vmalloc() :/ - skbs are freed while mmap_sem has been released Following patch makes the change in tcp_mmap tool to demonstrate one possible use of mmap() and setsockopt(... TCP_ZEROCOPY_RECEIVE ...) Note that memcg might require additional changes. Fixes: 93ab6cc69162 ("tcp: implement mmap() for zero copy receive") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-27 22:58:08 +07:00
#endif
.sendpage = inet_sendpage,
.splice_read = tcp_splice_read,
.read_sock = tcp_read_sock,
.sendmsg_locked = tcp_sendmsg_locked,
.sendpage_locked = tcp_sendpage_locked,
.peek_len = tcp_peek_len,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
.compat_ioctl = inet_compat_ioctl,
#endif
.set_rcvlowat = tcp_set_rcvlowat,
};
EXPORT_SYMBOL(inet_stream_ops);
const struct proto_ops inet_dgram_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = udp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
.set_peek_off = sk_set_peek_off,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
.compat_ioctl = inet_compat_ioctl,
#endif
};
EXPORT_SYMBOL(inet_dgram_ops);
/*
* For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
* udp_poll
*/
static const struct proto_ops inet_sockraw_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = datagram_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
rfs: Receive Flow Steering This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 06:01:27 +07:00
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
.compat_ioctl = inet_compat_ioctl,
#endif
};
static const struct net_proto_family inet_family_ops = {
.family = PF_INET,
.create = inet_create,
.owner = THIS_MODULE,
};
/* Upon startup we insert all the elements in inetsw_array[] into
* the linked list inetsw.
*/
static struct inet_protosw inetsw_array[] =
{
{
.type = SOCK_STREAM,
.protocol = IPPROTO_TCP,
.prot = &tcp_prot,
.ops = &inet_stream_ops,
.flags = INET_PROTOSW_PERMANENT |
INET_PROTOSW_ICSK,
},
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_UDP,
.prot = &udp_prot,
.ops = &inet_dgram_ops,
.flags = INET_PROTOSW_PERMANENT,
},
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_ICMP,
.prot = &ping_prot,
.ops = &inet_sockraw_ops,
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
.flags = INET_PROTOSW_REUSE,
},
{
.type = SOCK_RAW,
.protocol = IPPROTO_IP, /* wild card */
.prot = &raw_prot,
.ops = &inet_sockraw_ops,
.flags = INET_PROTOSW_REUSE,
}
};
#define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
void inet_register_protosw(struct inet_protosw *p)
{
struct list_head *lh;
struct inet_protosw *answer;
int protocol = p->protocol;
struct list_head *last_perm;
spin_lock_bh(&inetsw_lock);
if (p->type >= SOCK_MAX)
goto out_illegal;
/* If we are trying to override a permanent protocol, bail. */
last_perm = &inetsw[p->type];
list_for_each(lh, &inetsw[p->type]) {
answer = list_entry(lh, struct inet_protosw, list);
/* Check only the non-wild match. */
if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
break;
if (protocol == answer->protocol)
goto out_permanent;
last_perm = lh;
}
/* Add the new entry after the last permanent entry if any, so that
* the new entry does not override a permanent entry when matched with
* a wild-card protocol. But it is allowed to override any existing
* non-permanent entry. This means that when we remove this entry, the
* system automatically returns to the old behavior.
*/
list_add_rcu(&p->list, last_perm);
out:
spin_unlock_bh(&inetsw_lock);
return;
out_permanent:
pr_err("Attempt to override permanent protocol %d\n", protocol);
goto out;
out_illegal:
pr_err("Ignoring attempt to register invalid socket type %d\n",
p->type);
goto out;
}
EXPORT_SYMBOL(inet_register_protosw);
void inet_unregister_protosw(struct inet_protosw *p)
{
if (INET_PROTOSW_PERMANENT & p->flags) {
pr_err("Attempt to unregister permanent protocol %d\n",
p->protocol);
} else {
spin_lock_bh(&inetsw_lock);
list_del_rcu(&p->list);
spin_unlock_bh(&inetsw_lock);
synchronize_net();
}
}
EXPORT_SYMBOL(inet_unregister_protosw);
static int inet_sk_reselect_saddr(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
__be32 old_saddr = inet->inet_saddr;
__be32 daddr = inet->inet_daddr;
struct flowi4 *fl4;
struct rtable *rt;
__be32 new_saddr;
struct ip_options_rcu *inet_opt;
inet_opt = rcu_dereference_protected(inet->inet_opt,
lockdep_sock_is_held(sk));
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* Query new route. */
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if, sk->sk_protocol,
inet->inet_sport, inet->inet_dport, sk);
if (IS_ERR(rt))
return PTR_ERR(rt);
sk_setup_caps(sk, &rt->dst);
new_saddr = fl4->saddr;
if (new_saddr == old_saddr)
return 0;
if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) {
pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
__func__, &old_saddr, &new_saddr);
}
inet->inet_saddr = inet->inet_rcv_saddr = new_saddr;
/*
* XXX The only one ugly spot where we need to
* XXX really change the sockets identity after
* XXX it has entered the hashes. -DaveM
*
* Besides that, it does not check for connection
* uniqueness. Wait for troubles.
*/
return __sk_prot_rehash(sk);
}
int inet_sk_rebuild_header(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
__be32 daddr;
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
int err;
/* Route is OK, nothing to do. */
if (rt)
return 0;
/* Reroute. */
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
rcu_read_unlock();
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
inet->inet_dport, inet->inet_sport,
sk->sk_protocol, RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if);
if (!IS_ERR(rt)) {
err = 0;
sk_setup_caps(sk, &rt->dst);
} else {
err = PTR_ERR(rt);
/* Routing failed... */
sk->sk_route_caps = 0;
/*
* Other protocols have to map its equivalent state to TCP_SYN_SENT.
* DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
*/
if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr ||
sk->sk_state != TCP_SYN_SENT ||
(sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
(err = inet_sk_reselect_saddr(sk)) != 0)
sk->sk_err_soft = -err;
}
return err;
}
EXPORT_SYMBOL(inet_sk_rebuild_header);
void inet_sk_set_state(struct sock *sk, int state)
{
trace_inet_sock_set_state(sk, sk->sk_state, state);
sk->sk_state = state;
}
EXPORT_SYMBOL(inet_sk_set_state);
void inet_sk_state_store(struct sock *sk, int newstate)
{
trace_inet_sock_set_state(sk, sk->sk_state, newstate);
smp_store_release(&sk->sk_state, newstate);
}
struct sk_buff *inet_gso_segment(struct sk_buff *skb,
netdev_features_t features)
{
net: accept UFO datagrams from tuntap and packet Tuntap and similar devices can inject GSO packets. Accept type VIRTIO_NET_HDR_GSO_UDP, even though not generating UFO natively. Processes are expected to use feature negotiation such as TUNSETOFFLOAD to detect supported offload types and refrain from injecting other packets. This process breaks down with live migration: guest kernels do not renegotiate flags, so destination hosts need to expose all features that the source host does. Partially revert the UFO removal from 182e0b6b5846~1..d9d30adf5677. This patch introduces nearly(*) no new code to simplify verification. It brings back verbatim tuntap UFO negotiation, VIRTIO_NET_HDR_GSO_UDP insertion and software UFO segmentation. It does not reinstate protocol stack support, hardware offload (NETIF_F_UFO), SKB_GSO_UDP tunneling in SKB_GSO_SOFTWARE or reception of VIRTIO_NET_HDR_GSO_UDP packets in tuntap. To support SKB_GSO_UDP reappearing in the stack, also reinstate logic in act_csum and openvswitch. Achieve equivalence with v4.13 HEAD by squashing in commit 939912216fa8 ("net: skb_needs_check() removes CHECKSUM_UNNECESSARY check for tx.") and reverting commit 8d63bee643f1 ("net: avoid skb_warn_bad_offload false positives on UFO"). (*) To avoid having to bring back skb_shinfo(skb)->ip6_frag_id, ipv6_proxy_select_ident is changed to return a __be32 and this is assigned directly to the frag_hdr. Also, SKB_GSO_UDP is inserted at the end of the enum to minimize code churn. Tested Booted a v4.13 guest kernel with QEMU. On a host kernel before this patch `ethtool -k eth0` shows UFO disabled. After the patch, it is enabled, same as on a v4.13 host kernel. A UFO packet sent from the guest appears on the tap device: host: nc -l -p -u 8000 & tcpdump -n -i tap0 guest: dd if=/dev/zero of=payload.txt bs=1 count=2000 nc -u 192.16.1.1 8000 < payload.txt Direct tap to tap transmission of VIRTIO_NET_HDR_GSO_UDP succeeds, packets arriving fragmented: ./with_tap_pair.sh ./tap_send_ufo tap0 tap1 (from https://github.com/wdebruij/kerneltools/tree/master/tests) Changes v1 -> v2 - simplified set_offload change (review comment) - documented test procedure Link: http://lkml.kernel.org/r/<CAF=yD-LuUeDuL9YWPJD9ykOZ0QCjNeznPDr6whqZ9NGMNF12Mw@mail.gmail.com> Fixes: fb652fdfe837 ("macvlan/macvtap: Remove NETIF_F_UFO advertisement.") Reported-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: Willem de Bruijn <willemb@google.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-21 22:22:25 +07:00
bool udpfrag = false, fixedid = false, gso_partial, encap;
struct sk_buff *segs = ERR_PTR(-EINVAL);
const struct net_offload *ops;
net: accept UFO datagrams from tuntap and packet Tuntap and similar devices can inject GSO packets. Accept type VIRTIO_NET_HDR_GSO_UDP, even though not generating UFO natively. Processes are expected to use feature negotiation such as TUNSETOFFLOAD to detect supported offload types and refrain from injecting other packets. This process breaks down with live migration: guest kernels do not renegotiate flags, so destination hosts need to expose all features that the source host does. Partially revert the UFO removal from 182e0b6b5846~1..d9d30adf5677. This patch introduces nearly(*) no new code to simplify verification. It brings back verbatim tuntap UFO negotiation, VIRTIO_NET_HDR_GSO_UDP insertion and software UFO segmentation. It does not reinstate protocol stack support, hardware offload (NETIF_F_UFO), SKB_GSO_UDP tunneling in SKB_GSO_SOFTWARE or reception of VIRTIO_NET_HDR_GSO_UDP packets in tuntap. To support SKB_GSO_UDP reappearing in the stack, also reinstate logic in act_csum and openvswitch. Achieve equivalence with v4.13 HEAD by squashing in commit 939912216fa8 ("net: skb_needs_check() removes CHECKSUM_UNNECESSARY check for tx.") and reverting commit 8d63bee643f1 ("net: avoid skb_warn_bad_offload false positives on UFO"). (*) To avoid having to bring back skb_shinfo(skb)->ip6_frag_id, ipv6_proxy_select_ident is changed to return a __be32 and this is assigned directly to the frag_hdr. Also, SKB_GSO_UDP is inserted at the end of the enum to minimize code churn. Tested Booted a v4.13 guest kernel with QEMU. On a host kernel before this patch `ethtool -k eth0` shows UFO disabled. After the patch, it is enabled, same as on a v4.13 host kernel. A UFO packet sent from the guest appears on the tap device: host: nc -l -p -u 8000 & tcpdump -n -i tap0 guest: dd if=/dev/zero of=payload.txt bs=1 count=2000 nc -u 192.16.1.1 8000 < payload.txt Direct tap to tap transmission of VIRTIO_NET_HDR_GSO_UDP succeeds, packets arriving fragmented: ./with_tap_pair.sh ./tap_send_ufo tap0 tap1 (from https://github.com/wdebruij/kerneltools/tree/master/tests) Changes v1 -> v2 - simplified set_offload change (review comment) - documented test procedure Link: http://lkml.kernel.org/r/<CAF=yD-LuUeDuL9YWPJD9ykOZ0QCjNeznPDr6whqZ9NGMNF12Mw@mail.gmail.com> Fixes: fb652fdfe837 ("macvlan/macvtap: Remove NETIF_F_UFO advertisement.") Reported-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: Willem de Bruijn <willemb@google.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-21 22:22:25 +07:00
unsigned int offset = 0;
struct iphdr *iph;
int proto, tot_len;
int nhoff;
int ihl;
int id;
skb_reset_network_header(skb);
nhoff = skb_network_header(skb) - skb_mac_header(skb);
if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
goto out;
iph = ip_hdr(skb);
ihl = iph->ihl * 4;
if (ihl < sizeof(*iph))
goto out;
id = ntohs(iph->id);
proto = iph->protocol;
/* Warning: after this point, iph might be no longer valid */
if (unlikely(!pskb_may_pull(skb, ihl)))
goto out;
__skb_pull(skb, ihl);
encap = SKB_GSO_CB(skb)->encap_level > 0;
if (encap)
features &= skb->dev->hw_enc_features;
SKB_GSO_CB(skb)->encap_level += ihl;
skb_reset_transport_header(skb);
segs = ERR_PTR(-EPROTONOSUPPORT);
if (!skb->encapsulation || encap) {
net: accept UFO datagrams from tuntap and packet Tuntap and similar devices can inject GSO packets. Accept type VIRTIO_NET_HDR_GSO_UDP, even though not generating UFO natively. Processes are expected to use feature negotiation such as TUNSETOFFLOAD to detect supported offload types and refrain from injecting other packets. This process breaks down with live migration: guest kernels do not renegotiate flags, so destination hosts need to expose all features that the source host does. Partially revert the UFO removal from 182e0b6b5846~1..d9d30adf5677. This patch introduces nearly(*) no new code to simplify verification. It brings back verbatim tuntap UFO negotiation, VIRTIO_NET_HDR_GSO_UDP insertion and software UFO segmentation. It does not reinstate protocol stack support, hardware offload (NETIF_F_UFO), SKB_GSO_UDP tunneling in SKB_GSO_SOFTWARE or reception of VIRTIO_NET_HDR_GSO_UDP packets in tuntap. To support SKB_GSO_UDP reappearing in the stack, also reinstate logic in act_csum and openvswitch. Achieve equivalence with v4.13 HEAD by squashing in commit 939912216fa8 ("net: skb_needs_check() removes CHECKSUM_UNNECESSARY check for tx.") and reverting commit 8d63bee643f1 ("net: avoid skb_warn_bad_offload false positives on UFO"). (*) To avoid having to bring back skb_shinfo(skb)->ip6_frag_id, ipv6_proxy_select_ident is changed to return a __be32 and this is assigned directly to the frag_hdr. Also, SKB_GSO_UDP is inserted at the end of the enum to minimize code churn. Tested Booted a v4.13 guest kernel with QEMU. On a host kernel before this patch `ethtool -k eth0` shows UFO disabled. After the patch, it is enabled, same as on a v4.13 host kernel. A UFO packet sent from the guest appears on the tap device: host: nc -l -p -u 8000 & tcpdump -n -i tap0 guest: dd if=/dev/zero of=payload.txt bs=1 count=2000 nc -u 192.16.1.1 8000 < payload.txt Direct tap to tap transmission of VIRTIO_NET_HDR_GSO_UDP succeeds, packets arriving fragmented: ./with_tap_pair.sh ./tap_send_ufo tap0 tap1 (from https://github.com/wdebruij/kerneltools/tree/master/tests) Changes v1 -> v2 - simplified set_offload change (review comment) - documented test procedure Link: http://lkml.kernel.org/r/<CAF=yD-LuUeDuL9YWPJD9ykOZ0QCjNeznPDr6whqZ9NGMNF12Mw@mail.gmail.com> Fixes: fb652fdfe837 ("macvlan/macvtap: Remove NETIF_F_UFO advertisement.") Reported-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: Willem de Bruijn <willemb@google.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-21 22:22:25 +07:00
udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
/* fixed ID is invalid if DF bit is not set */
if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
goto out;
}
ops = rcu_dereference(inet_offloads[proto]);
if (likely(ops && ops->callbacks.gso_segment))
segs = ops->callbacks.gso_segment(skb, features);
if (IS_ERR_OR_NULL(segs))
goto out;
gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
skb = segs;
do {
iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
net: accept UFO datagrams from tuntap and packet Tuntap and similar devices can inject GSO packets. Accept type VIRTIO_NET_HDR_GSO_UDP, even though not generating UFO natively. Processes are expected to use feature negotiation such as TUNSETOFFLOAD to detect supported offload types and refrain from injecting other packets. This process breaks down with live migration: guest kernels do not renegotiate flags, so destination hosts need to expose all features that the source host does. Partially revert the UFO removal from 182e0b6b5846~1..d9d30adf5677. This patch introduces nearly(*) no new code to simplify verification. It brings back verbatim tuntap UFO negotiation, VIRTIO_NET_HDR_GSO_UDP insertion and software UFO segmentation. It does not reinstate protocol stack support, hardware offload (NETIF_F_UFO), SKB_GSO_UDP tunneling in SKB_GSO_SOFTWARE or reception of VIRTIO_NET_HDR_GSO_UDP packets in tuntap. To support SKB_GSO_UDP reappearing in the stack, also reinstate logic in act_csum and openvswitch. Achieve equivalence with v4.13 HEAD by squashing in commit 939912216fa8 ("net: skb_needs_check() removes CHECKSUM_UNNECESSARY check for tx.") and reverting commit 8d63bee643f1 ("net: avoid skb_warn_bad_offload false positives on UFO"). (*) To avoid having to bring back skb_shinfo(skb)->ip6_frag_id, ipv6_proxy_select_ident is changed to return a __be32 and this is assigned directly to the frag_hdr. Also, SKB_GSO_UDP is inserted at the end of the enum to minimize code churn. Tested Booted a v4.13 guest kernel with QEMU. On a host kernel before this patch `ethtool -k eth0` shows UFO disabled. After the patch, it is enabled, same as on a v4.13 host kernel. A UFO packet sent from the guest appears on the tap device: host: nc -l -p -u 8000 & tcpdump -n -i tap0 guest: dd if=/dev/zero of=payload.txt bs=1 count=2000 nc -u 192.16.1.1 8000 < payload.txt Direct tap to tap transmission of VIRTIO_NET_HDR_GSO_UDP succeeds, packets arriving fragmented: ./with_tap_pair.sh ./tap_send_ufo tap0 tap1 (from https://github.com/wdebruij/kerneltools/tree/master/tests) Changes v1 -> v2 - simplified set_offload change (review comment) - documented test procedure Link: http://lkml.kernel.org/r/<CAF=yD-LuUeDuL9YWPJD9ykOZ0QCjNeznPDr6whqZ9NGMNF12Mw@mail.gmail.com> Fixes: fb652fdfe837 ("macvlan/macvtap: Remove NETIF_F_UFO advertisement.") Reported-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: Willem de Bruijn <willemb@google.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-21 22:22:25 +07:00
if (udpfrag) {
iph->frag_off = htons(offset >> 3);
if (skb->next)
iph->frag_off |= htons(IP_MF);
offset += skb->len - nhoff - ihl;
tot_len = skb->len - nhoff;
} else if (skb_is_gso(skb)) {
if (!fixedid) {
iph->id = htons(id);
id += skb_shinfo(skb)->gso_segs;
}
if (gso_partial)
tot_len = skb_shinfo(skb)->gso_size +
SKB_GSO_CB(skb)->data_offset +
skb->head - (unsigned char *)iph;
else
tot_len = skb->len - nhoff;
} else {
if (!fixedid)
iph->id = htons(id++);
tot_len = skb->len - nhoff;
}
iph->tot_len = htons(tot_len);
ip_send_check(iph);
if (encap)
skb_reset_inner_headers(skb);
skb->network_header = (u8 *)iph - skb->head;
skb_reset_mac_len(skb);
} while ((skb = skb->next));
out:
return segs;
}
EXPORT_SYMBOL(inet_gso_segment);
static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
netdev_features_t features)
{
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
return ERR_PTR(-EINVAL);
return inet_gso_segment(skb, features);
}
INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *,
struct sk_buff *));
INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *,
struct sk_buff *));
struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
{
const struct net_offload *ops;
struct sk_buff *pp = NULL;
const struct iphdr *iph;
struct sk_buff *p;
unsigned int hlen;
unsigned int off;
unsigned int id;
int flush = 1;
int proto;
off = skb_gro_offset(skb);
hlen = off + sizeof(*iph);
iph = skb_gro_header_fast(skb, off);
if (skb_gro_header_hard(skb, hlen)) {
iph = skb_gro_header_slow(skb, hlen, off);
if (unlikely(!iph))
goto out;
}
proto = iph->protocol;
rcu_read_lock();
ops = rcu_dereference(inet_offloads[proto]);
if (!ops || !ops->callbacks.gro_receive)
goto out_unlock;
if (*(u8 *)iph != 0x45)
goto out_unlock;
if (ip_is_fragment(iph))
goto out_unlock;
net: tcp: GRO should be ECN friendly While doing TCP ECN tests, I discovered GRO was reordering packets if it receives one packet with CE set, while previous packets in same NAPI run have ECT(0) for the same flow : 09:25:25.857620 IP (tos 0x2,ECT(0), ttl 64, id 27893, offset 0, flags [DF], proto TCP (6), length 4396) 172.30.42.19.54550 > 172.30.42.13.44139: Flags [.], seq 233801:238145, ack 1, win 115, options [nop,nop,TS val 3397779 ecr 1990627], length 4344 09:25:25.857626 IP (tos 0x3,CE, ttl 64, id 27892, offset 0, flags [DF], proto TCP (6), length 1500) 172.30.42.19.54550 > 172.30.42.13.44139: Flags [.], seq 232353:233801, ack 1, win 115, options [nop,nop,TS val 3397779 ecr 1990627], length 1448 09:25:25.857638 IP (tos 0x0, ttl 64, id 34581, offset 0, flags [DF], proto TCP (6), length 64) 172.30.42.13.44139 > 172.30.42.19.54550: Flags [.], cksum 0xac8f (incorrect -> 0xca69), ack 232353, win 1271, options [nop,nop,TS val 1990627 ecr 3397779,nop,nop,sack 1 {233801:238145}], length 0 We have two problems here : 1) GRO reorders packets If NIC gave packet1, then packet2, which happen to be from "different flows" GRO feeds stack with packet2, then packet1. I have yet to understand how to solve this problem. 2) GRO is not ECN friendly Delivering packets out of order makes TCP stack not as fast as it could be. In this patch I suggest we make the tos test not part of the 'same_flow' determination, but part of the 'should flush' logic Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-06 05:34:50 +07:00
if (unlikely(ip_fast_csum((u8 *)iph, 5)))
goto out_unlock;
id = ntohl(*(__be32 *)&iph->id);
flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
id >>= 16;
list_for_each_entry(p, head, list) {
struct iphdr *iph2;
u16 flush_id;
if (!NAPI_GRO_CB(p)->same_flow)
continue;
iph2 = (struct iphdr *)(p->data + off);
/* The above works because, with the exception of the top
* (inner most) layer, we only aggregate pkts with the same
* hdr length so all the hdrs we'll need to verify will start
* at the same offset.
*/
if ((iph->protocol ^ iph2->protocol) |
((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
/* All fields must match except length and checksum. */
NAPI_GRO_CB(p)->flush |=
(iph->ttl ^ iph2->ttl) |
net: tcp: GRO should be ECN friendly While doing TCP ECN tests, I discovered GRO was reordering packets if it receives one packet with CE set, while previous packets in same NAPI run have ECT(0) for the same flow : 09:25:25.857620 IP (tos 0x2,ECT(0), ttl 64, id 27893, offset 0, flags [DF], proto TCP (6), length 4396) 172.30.42.19.54550 > 172.30.42.13.44139: Flags [.], seq 233801:238145, ack 1, win 115, options [nop,nop,TS val 3397779 ecr 1990627], length 4344 09:25:25.857626 IP (tos 0x3,CE, ttl 64, id 27892, offset 0, flags [DF], proto TCP (6), length 1500) 172.30.42.19.54550 > 172.30.42.13.44139: Flags [.], seq 232353:233801, ack 1, win 115, options [nop,nop,TS val 3397779 ecr 1990627], length 1448 09:25:25.857638 IP (tos 0x0, ttl 64, id 34581, offset 0, flags [DF], proto TCP (6), length 64) 172.30.42.13.44139 > 172.30.42.19.54550: Flags [.], cksum 0xac8f (incorrect -> 0xca69), ack 232353, win 1271, options [nop,nop,TS val 1990627 ecr 3397779,nop,nop,sack 1 {233801:238145}], length 0 We have two problems here : 1) GRO reorders packets If NIC gave packet1, then packet2, which happen to be from "different flows" GRO feeds stack with packet2, then packet1. I have yet to understand how to solve this problem. 2) GRO is not ECN friendly Delivering packets out of order makes TCP stack not as fast as it could be. In this patch I suggest we make the tos test not part of the 'same_flow' determination, but part of the 'should flush' logic Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-06 05:34:50 +07:00
(iph->tos ^ iph2->tos) |
net-gre-gro: Add GRE support to the GRO stack This patch built on top of Commit 299603e8370a93dd5d8e8d800f0dff1ce2c53d36 ("net-gro: Prepare GRO stack for the upcoming tunneling support") to add the support of the standard GRE (RFC1701/RFC2784/RFC2890) to the GRO stack. It also serves as an example for supporting other encapsulation protocols in the GRO stack in the future. The patch supports version 0 and all the flags (key, csum, seq#) but will flush any pkt with the S (seq#) flag. This is because the S flag is not support by GSO, and a GRO pkt may end up in the forwarding path, thus requiring GSO support to break it up correctly. Currently the "packet_offload" structure only contains L3 (ETH_P_IP/ ETH_P_IPV6) GRO offload support so the encapped pkts are limited to IP pkts (i.e., w/o L2 hdr). But support for other protocol type can be easily added, so is the support for GRE variations like NVGRE. The patch also support csum offload. Specifically if the csum flag is on and the h/w is capable of checksumming the payload (CHECKSUM_COMPLETE), the code will take advantage of the csum computed by the h/w when validating the GRE csum. Note that commit 60769a5dcd8755715c7143b4571d5c44f01796f1 "ipv4: gre: add GRO capability" already introduces GRO capability to IPv4 GRE tunnels, using the gro_cells infrastructure. But GRO is done after GRE hdr has been removed (i.e., decapped). The following patch applies GRO when pkts first come in (before hitting the GRE tunnel code). There is some performance advantage for applying GRO as early as possible. Also this approach is transparent to other subsystem like Open vSwitch where GRE decap is handled outside of the IP stack hence making it harder for the gro_cells stuff to apply. On the other hand, some NICs are still not capable of hashing on the inner hdr of a GRE pkt (RSS). In that case the GRO processing of pkts from the same remote host will all happen on the same CPU and the performance may be suboptimal. I'm including some rough preliminary performance numbers below. Note that the performance will be highly dependent on traffic load, mix as usual. Moreover it also depends on NIC offload features hence the following is by no means a comprehesive study. Local testing and tuning will be needed to decide the best setting. All tests spawned 50 copies of netperf TCP_STREAM and ran for 30 secs. (super_netperf 50 -H 192.168.1.18 -l 30) An IP GRE tunnel with only the key flag on (e.g., ip tunnel add gre1 mode gre local 10.246.17.18 remote 10.246.17.17 ttl 255 key 123) is configured. The GRO support for pkts AFTER decap are controlled through the device feature of the GRE device (e.g., ethtool -K gre1 gro on/off). 1.1 ethtool -K gre1 gro off; ethtool -K eth0 gro off thruput: 9.16Gbps CPU utilization: 19% 1.2 ethtool -K gre1 gro on; ethtool -K eth0 gro off thruput: 5.9Gbps CPU utilization: 15% 1.3 ethtool -K gre1 gro off; ethtool -K eth0 gro on thruput: 9.26Gbps CPU utilization: 12-13% 1.4 ethtool -K gre1 gro on; ethtool -K eth0 gro on thruput: 9.26Gbps CPU utilization: 10% The following tests were performed on a different NIC that is capable of csum offload. I.e., the h/w is capable of computing IP payload csum (CHECKSUM_COMPLETE). 2.1 ethtool -K gre1 gro on (hence will use gro_cells) 2.1.1 ethtool -K eth0 gro off; csum offload disabled thruput: 8.53Gbps CPU utilization: 9% 2.1.2 ethtool -K eth0 gro off; csum offload enabled thruput: 8.97Gbps CPU utilization: 7-8% 2.1.3 ethtool -K eth0 gro on; csum offload disabled thruput: 8.83Gbps CPU utilization: 5-6% 2.1.4 ethtool -K eth0 gro on; csum offload enabled thruput: 8.98Gbps CPU utilization: 5% 2.2 ethtool -K gre1 gro off 2.2.1 ethtool -K eth0 gro off; csum offload disabled thruput: 5.93Gbps CPU utilization: 9% 2.2.2 ethtool -K eth0 gro off; csum offload enabled thruput: 5.62Gbps CPU utilization: 8% 2.2.3 ethtool -K eth0 gro on; csum offload disabled thruput: 7.69Gbps CPU utilization: 8% 2.2.4 ethtool -K eth0 gro on; csum offload enabled thruput: 8.96Gbps CPU utilization: 5-6% Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-08 01:23:19 +07:00
((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
NAPI_GRO_CB(p)->flush |= flush;
/* We need to store of the IP ID check to be included later
* when we can verify that this packet does in fact belong
* to a given flow.
*/
flush_id = (u16)(id - ntohs(iph2->id));
/* This bit of code makes it much easier for us to identify
* the cases where we are doing atomic vs non-atomic IP ID
* checks. Specifically an atomic check can return IP ID
* values 0 - 0xFFFF, while a non-atomic check can only
* return 0 or 0xFFFF.
*/
if (!NAPI_GRO_CB(p)->is_atomic ||
!(iph->frag_off & htons(IP_DF))) {
flush_id ^= NAPI_GRO_CB(p)->count;
flush_id = flush_id ? 0xFFFF : 0;
}
/* If the previous IP ID value was based on an atomic
* datagram we can overwrite the value and ignore it.
*/
if (NAPI_GRO_CB(skb)->is_atomic)
NAPI_GRO_CB(p)->flush_id = flush_id;
else
NAPI_GRO_CB(p)->flush_id |= flush_id;
}
NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
NAPI_GRO_CB(skb)->flush |= flush;
skb_set_network_header(skb, off);
/* The above will be needed by the transport layer if there is one
* immediately following this IP hdr.
*/
/* Note : No need to call skb_gro_postpull_rcsum() here,
* as we already checked checksum over ipv4 header was 0
*/
skb_gro_pull(skb, sizeof(*iph));
skb_set_transport_header(skb, skb_gro_offset(skb));
pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
ops->callbacks.gro_receive, head, skb);
out_unlock:
rcu_read_unlock();
out:
skb_gro_flush_final(skb, pp, flush);
return pp;
}
EXPORT_SYMBOL(inet_gro_receive);
static struct sk_buff *ipip_gro_receive(struct list_head *head,
struct sk_buff *skb)
{
if (NAPI_GRO_CB(skb)->encap_mark) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
NAPI_GRO_CB(skb)->encap_mark = 1;
return inet_gro_receive(head, skb);
}
#define SECONDS_PER_DAY 86400
/* inet_current_timestamp - Return IP network timestamp
*
* Return milliseconds since midnight in network byte order.
*/
__be32 inet_current_timestamp(void)
{
u32 secs;
u32 msecs;
struct timespec64 ts;
ktime_get_real_ts64(&ts);
/* Get secs since midnight. */
(void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
/* Convert to msecs. */
msecs = secs * MSEC_PER_SEC;
/* Convert nsec to msec. */
msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
/* Convert to network byte order. */
return htonl(msecs);
}
EXPORT_SYMBOL(inet_current_timestamp);
int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
{
if (sk->sk_family == AF_INET)
return ip_recv_error(sk, msg, len, addr_len);
#if IS_ENABLED(CONFIG_IPV6)
if (sk->sk_family == AF_INET6)
return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
#endif
return -EINVAL;
}
INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *, int));
INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int));
int inet_gro_complete(struct sk_buff *skb, int nhoff)
{
__be16 newlen = htons(skb->len - nhoff);
struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
const struct net_offload *ops;
int proto = iph->protocol;
int err = -ENOSYS;
if (skb->encapsulation) {
skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
skb_set_inner_network_header(skb, nhoff);
}
csum_replace2(&iph->check, iph->tot_len, newlen);
iph->tot_len = newlen;
rcu_read_lock();
ops = rcu_dereference(inet_offloads[proto]);
if (WARN_ON(!ops || !ops->callbacks.gro_complete))
goto out_unlock;
/* Only need to add sizeof(*iph) to get to the next hdr below
* because any hdr with option will have been flushed in
* inet_gro_receive().
*/
err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
tcp4_gro_complete, udp4_gro_complete,
skb, nhoff + sizeof(*iph));
out_unlock:
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(inet_gro_complete);
static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
{
skb->encapsulation = 1;
skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
return inet_gro_complete(skb, nhoff);
}
int inet_ctl_sock_create(struct sock **sk, unsigned short family,
unsigned short type, unsigned char protocol,
struct net *net)
{
struct socket *sock;
int rc = sock_create_kern(net, family, type, protocol, &sock);
if (rc == 0) {
*sk = sock->sk;
(*sk)->sk_allocation = GFP_ATOMIC;
/*
* Unhash it so that IP input processing does not even see it,
* we do not wish this socket to see incoming packets.
*/
(*sk)->sk_prot->unhash(*sk);
}
return rc;
}
EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt)
{
return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt);
}
EXPORT_SYMBOL_GPL(snmp_get_cpu_field);
unsigned long snmp_fold_field(void __percpu *mib, int offt)
{
unsigned long res = 0;
int i;
for_each_possible_cpu(i)
res += snmp_get_cpu_field(mib, i, offt);
return res;
}
EXPORT_SYMBOL_GPL(snmp_fold_field);
#if BITS_PER_LONG==32
u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
size_t syncp_offset)
{
void *bhptr;
struct u64_stats_sync *syncp;
u64 v;
unsigned int start;
bhptr = per_cpu_ptr(mib, cpu);
syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
do {
start = u64_stats_fetch_begin_irq(syncp);
v = *(((u64 *)bhptr) + offt);
} while (u64_stats_fetch_retry_irq(syncp, start));
return v;
}
EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
{
u64 res = 0;
int cpu;
for_each_possible_cpu(cpu) {
res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
}
return res;
}
EXPORT_SYMBOL_GPL(snmp_fold_field64);
#endif
#ifdef CONFIG_IP_MULTICAST
static const struct net_protocol igmp_protocol = {
.handler = igmp_rcv,
.netns_ok = 1,
};
#endif
/* thinking of making this const? Don't.
* early_demux can change based on sysctl.
*/
Revert "ipv4: make net_protocol const" This reverts commit aa8db499ea67cff1f5f049033810ffede2fe5ae4. Early demux structs can not be made const. Doing so results in: [ 84.967355] BUG: unable to handle kernel paging request at ffffffff81684b10 [ 84.969272] IP: proc_configure_early_demux+0x1e/0x3d [ 84.970544] PGD 1a0a067 [ 84.970546] P4D 1a0a067 [ 84.971212] PUD 1a0b063 [ 84.971733] PMD 80000000016001e1 [ 84.972669] Oops: 0003 [#1] SMP [ 84.973065] Modules linked in: ip6table_filter ip6_tables veth vrf [ 84.973833] CPU: 0 PID: 955 Comm: sysctl Not tainted 4.13.0-rc6+ #22 [ 84.974612] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_083030-gandalf 04/01/2014 [ 84.975855] task: ffff88003854ce00 task.stack: ffffc900005a4000 [ 84.976580] RIP: 0010:proc_configure_early_demux+0x1e/0x3d [ 84.977253] RSP: 0018:ffffc900005a7dd0 EFLAGS: 00010246 [ 84.977891] RAX: ffffffff81684b10 RBX: 0000000000000001 RCX: 0000000000000000 [ 84.978759] RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000000 [ 84.979628] RBP: ffffc900005a7dd0 R08: 0000000000000000 R09: 0000000000000000 [ 84.980501] R10: 0000000000000001 R11: 0000000000000008 R12: 0000000000000001 [ 84.981373] R13: ffffffffffffffea R14: ffffffff81a9b4c0 R15: 0000000000000002 [ 84.982249] FS: 00007feb237b7700(0000) GS:ffff88003fc00000(0000) knlGS:0000000000000000 [ 84.983231] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 84.983941] CR2: ffffffff81684b10 CR3: 0000000038492000 CR4: 00000000000406f0 [ 84.984817] Call Trace: [ 84.985133] proc_tcp_early_demux+0x29/0x30 I think this is the second time such a patch has been reverted. Cc: Bhumika Goyal <bhumirks@gmail.com> Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-29 03:23:09 +07:00
static struct net_protocol tcp_protocol = {
.early_demux = tcp_v4_early_demux,
.early_demux_handler = tcp_v4_early_demux,
.handler = tcp_v4_rcv,
.err_handler = tcp_v4_err,
.no_policy = 1,
.netns_ok = 1,
.icmp_strict_tag_validation = 1,
};
/* thinking of making this const? Don't.
* early_demux can change based on sysctl.
*/
Revert "ipv4: make net_protocol const" This reverts commit aa8db499ea67cff1f5f049033810ffede2fe5ae4. Early demux structs can not be made const. Doing so results in: [ 84.967355] BUG: unable to handle kernel paging request at ffffffff81684b10 [ 84.969272] IP: proc_configure_early_demux+0x1e/0x3d [ 84.970544] PGD 1a0a067 [ 84.970546] P4D 1a0a067 [ 84.971212] PUD 1a0b063 [ 84.971733] PMD 80000000016001e1 [ 84.972669] Oops: 0003 [#1] SMP [ 84.973065] Modules linked in: ip6table_filter ip6_tables veth vrf [ 84.973833] CPU: 0 PID: 955 Comm: sysctl Not tainted 4.13.0-rc6+ #22 [ 84.974612] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_083030-gandalf 04/01/2014 [ 84.975855] task: ffff88003854ce00 task.stack: ffffc900005a4000 [ 84.976580] RIP: 0010:proc_configure_early_demux+0x1e/0x3d [ 84.977253] RSP: 0018:ffffc900005a7dd0 EFLAGS: 00010246 [ 84.977891] RAX: ffffffff81684b10 RBX: 0000000000000001 RCX: 0000000000000000 [ 84.978759] RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000000 [ 84.979628] RBP: ffffc900005a7dd0 R08: 0000000000000000 R09: 0000000000000000 [ 84.980501] R10: 0000000000000001 R11: 0000000000000008 R12: 0000000000000001 [ 84.981373] R13: ffffffffffffffea R14: ffffffff81a9b4c0 R15: 0000000000000002 [ 84.982249] FS: 00007feb237b7700(0000) GS:ffff88003fc00000(0000) knlGS:0000000000000000 [ 84.983231] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 84.983941] CR2: ffffffff81684b10 CR3: 0000000038492000 CR4: 00000000000406f0 [ 84.984817] Call Trace: [ 84.985133] proc_tcp_early_demux+0x29/0x30 I think this is the second time such a patch has been reverted. Cc: Bhumika Goyal <bhumirks@gmail.com> Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-29 03:23:09 +07:00
static struct net_protocol udp_protocol = {
.early_demux = udp_v4_early_demux,
.early_demux_handler = udp_v4_early_demux,
.handler = udp_rcv,
.err_handler = udp_err,
.no_policy = 1,
.netns_ok = 1,
};
static const struct net_protocol icmp_protocol = {
.handler = icmp_rcv,
.err_handler = icmp_err,
.no_policy = 1,
.netns_ok = 1,
};
static __net_init int ipv4_mib_init_net(struct net *net)
{
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-08 05:51:58 +07:00
int i;
net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
if (!net->mib.tcp_statistics)
goto err_tcp_mib;
net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
if (!net->mib.ip_statistics)
goto err_ip_mib;
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-08 05:51:58 +07:00
for_each_possible_cpu(i) {
struct ipstats_mib *af_inet_stats;
af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-08 05:51:58 +07:00
u64_stats_init(&af_inet_stats->syncp);
}
net->mib.net_statistics = alloc_percpu(struct linux_mib);
if (!net->mib.net_statistics)
goto err_net_mib;
net->mib.udp_statistics = alloc_percpu(struct udp_mib);
if (!net->mib.udp_statistics)
goto err_udp_mib;
net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
if (!net->mib.udplite_statistics)
goto err_udplite_mib;
net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
if (!net->mib.icmp_statistics)
goto err_icmp_mib;
net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
GFP_KERNEL);
if (!net->mib.icmpmsg_statistics)
goto err_icmpmsg_mib;
tcp_mib_init(net);
return 0;
err_icmpmsg_mib:
free_percpu(net->mib.icmp_statistics);
err_icmp_mib:
free_percpu(net->mib.udplite_statistics);
err_udplite_mib:
free_percpu(net->mib.udp_statistics);
err_udp_mib:
free_percpu(net->mib.net_statistics);
err_net_mib:
free_percpu(net->mib.ip_statistics);
err_ip_mib:
free_percpu(net->mib.tcp_statistics);
err_tcp_mib:
return -ENOMEM;
}
static __net_exit void ipv4_mib_exit_net(struct net *net)
{
kfree(net->mib.icmpmsg_statistics);
free_percpu(net->mib.icmp_statistics);
free_percpu(net->mib.udplite_statistics);
free_percpu(net->mib.udp_statistics);
free_percpu(net->mib.net_statistics);
free_percpu(net->mib.ip_statistics);
free_percpu(net->mib.tcp_statistics);
}
static __net_initdata struct pernet_operations ipv4_mib_ops = {
.init = ipv4_mib_init_net,
.exit = ipv4_mib_exit_net,
};
static int __init init_ipv4_mibs(void)
{
return register_pernet_subsys(&ipv4_mib_ops);
}
static __net_init int inet_init_net(struct net *net)
{
/*
* Set defaults for local port range
*/
seqlock_init(&net->ipv4.ip_local_ports.lock);
net->ipv4.ip_local_ports.range[0] = 32768;
net->ipv4.ip_local_ports.range[1] = 60999;
seqlock_init(&net->ipv4.ping_group_range.lock);
/*
* Sane defaults - nobody may create ping sockets.
* Boot scripts should set this to distro-specific group.
*/
net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
/* Default values for sysctl-controlled parameters.
* We set them here, in case sysctl is not compiled.
*/
net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
net->ipv4.sysctl_ip_fwd_update_priority = 1;
net->ipv4.sysctl_ip_dynaddr = 0;
net->ipv4.sysctl_ip_early_demux = 1;
net->ipv4.sysctl_udp_early_demux = 1;
net->ipv4.sysctl_tcp_early_demux = 1;
#ifdef CONFIG_SYSCTL
net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
#endif
/* Some igmp sysctl, whose values are always used */
net->ipv4.sysctl_igmp_max_memberships = 20;
net->ipv4.sysctl_igmp_max_msf = 10;
/* IGMP reports for link-local multicast groups are enabled by default */
net->ipv4.sysctl_igmp_llm_reports = 1;
net->ipv4.sysctl_igmp_qrv = 2;
return 0;
}
static __net_initdata struct pernet_operations af_inet_ops = {
.init = inet_init_net,
};
static int __init init_inet_pernet_ops(void)
{
return register_pernet_subsys(&af_inet_ops);
}
static int ipv4_proc_init(void);
/*
* IP protocol layer initialiser
*/
static struct packet_offload ip_packet_offload __read_mostly = {
.type = cpu_to_be16(ETH_P_IP),
.callbacks = {
.gso_segment = inet_gso_segment,
.gro_receive = inet_gro_receive,
.gro_complete = inet_gro_complete,
},
};
static const struct net_offload ipip_offload = {
.callbacks = {
.gso_segment = ipip_gso_segment,
.gro_receive = ipip_gro_receive,
.gro_complete = ipip_gro_complete,
},
};
static int __init ipip_offload_init(void)
{
return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
}
static int __init ipv4_offload_init(void)
{
/*
* Add offloads
*/
if (udpv4_offload_init() < 0)
pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
if (tcpv4_offload_init() < 0)
pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
if (ipip_offload_init() < 0)
pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
dev_add_offload(&ip_packet_offload);
return 0;
}
fs_initcall(ipv4_offload_init);
static struct packet_type ip_packet_type __read_mostly = {
.type = cpu_to_be16(ETH_P_IP),
.func = ip_rcv,
.list_func = ip_list_rcv,
};
static int __init inet_init(void)
{
struct inet_protosw *q;
struct list_head *r;
int rc = -EINVAL;
sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
rc = proto_register(&tcp_prot, 1);
if (rc)
goto out;
rc = proto_register(&udp_prot, 1);
if (rc)
goto out_unregister_tcp_proto;
rc = proto_register(&raw_prot, 1);
if (rc)
goto out_unregister_udp_proto;
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
rc = proto_register(&ping_prot, 1);
if (rc)
goto out_unregister_raw_proto;
/*
* Tell SOCKET that we are alive...
*/
(void)sock_register(&inet_family_ops);
#ifdef CONFIG_SYSCTL
ip_static_sysctl_init();
#endif
/*
* Add all the base protocols.
*/
if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
pr_crit("%s: Cannot add ICMP protocol\n", __func__);
if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
pr_crit("%s: Cannot add UDP protocol\n", __func__);
if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
pr_crit("%s: Cannot add TCP protocol\n", __func__);
#ifdef CONFIG_IP_MULTICAST
if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
pr_crit("%s: Cannot add IGMP protocol\n", __func__);
#endif
/* Register the socket-side information for inet_create. */
for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
INIT_LIST_HEAD(r);
for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
inet_register_protosw(q);
/*
* Set the ARP module up
*/
arp_init();
/*
* Set the IP module up
*/
ip_init();
/* Setup TCP slab cache for open requests. */
tcp_init();
/* Setup UDP memory threshold */
udp_init();
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-11-28 02:10:57 +07:00
/* Add UDP-Lite (RFC 3828) */
udplite4_register();
raw_init();
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
ping_init();
/*
* Set the ICMP layer up
*/
if (icmp_init() < 0)
panic("Failed to create the ICMP control socket.\n");
/*
* Initialise the multicast router
*/
#if defined(CONFIG_IP_MROUTE)
if (ip_mr_init())
pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
#endif
if (init_inet_pernet_ops())
pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
/*
* Initialise per-cpu ipv4 mibs
*/
if (init_ipv4_mibs())
pr_crit("%s: Cannot init ipv4 mibs\n", __func__);
ipv4_proc_init();
ipfrag_init();
dev_add_pack(&ip_packet_type);
ip_tunnel_core_init();
rc = 0;
out:
return rc;
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
out_unregister_raw_proto:
proto_unregister(&raw_prot);
out_unregister_udp_proto:
proto_unregister(&udp_prot);
out_unregister_tcp_proto:
proto_unregister(&tcp_prot);
goto out;
}
fs_initcall(inet_init);
/* ------------------------------------------------------------------------ */
#ifdef CONFIG_PROC_FS
static int __init ipv4_proc_init(void)
{
int rc = 0;
if (raw_proc_init())
goto out_raw;
if (tcp4_proc_init())
goto out_tcp;
if (udp4_proc_init())
goto out_udp;
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
if (ping_proc_init())
goto out_ping;
if (ip_misc_proc_init())
goto out_misc;
out:
return rc;
out_misc:
net: ipv4: add IPPROTO_ICMP socket kind This patch adds IPPROTO_ICMP socket kind. It makes it possible to send ICMP_ECHO messages and receive the corresponding ICMP_ECHOREPLY messages without any special privileges. In other words, the patch makes it possible to implement setuid-less and CAP_NET_RAW-less /bin/ping. In order not to increase the kernel's attack surface, the new functionality is disabled by default, but is enabled at bootup by supporting Linux distributions, optionally with restriction to a group or a group range (see below). Similar functionality is implemented in Mac OS X: http://www.manpagez.com/man/4/icmp/ A new ping socket is created with socket(PF_INET, SOCK_DGRAM, PROT_ICMP) Message identifiers (octets 4-5 of ICMP header) are interpreted as local ports. Addresses are stored in struct sockaddr_in. No port numbers are reserved for privileged processes, port 0 is reserved for API ("let the kernel pick a free number"). There is no notion of remote ports, remote port numbers provided by the user (e.g. in connect()) are ignored. Data sent and received include ICMP headers. This is deliberate to: 1) Avoid the need to transport headers values like sequence numbers by other means. 2) Make it easier to port existing programs using raw sockets. ICMP headers given to send() are checked and sanitized. The type must be ICMP_ECHO and the code must be zero (future extensions might relax this, see below). The id is set to the number (local port) of the socket, the checksum is always recomputed. ICMP reply packets received from the network are demultiplexed according to their id's, and are returned by recv() without any modifications. IP header information and ICMP errors of those packets may be obtained via ancillary data (IP_RECVTTL, IP_RETOPTS, and IP_RECVERR). ICMP source quenches and redirects are reported as fake errors via the error queue (IP_RECVERR); the next hop address for redirects is saved to ee_info (in network order). socket(2) is restricted to the group range specified in "/proc/sys/net/ipv4/ping_group_range". It is "1 0" by default, meaning that nobody (not even root) may create ping sockets. Setting it to "100 100" would grant permissions to the single group (to either make /sbin/ping g+s and owned by this group or to grant permissions to the "netadmins" group), "0 4294967295" would enable it for the world, "100 4294967295" would enable it for the users, but not daemons. The existing code might be (in the unlikely case anyone needs it) extended rather easily to handle other similar pairs of ICMP messages (Timestamp/Reply, Information Request/Reply, Address Mask Request/Reply etc.). Userspace ping util & patch for it: http://openwall.info/wiki/people/segoon/ping For Openwall GNU/*/Linux it was the last step on the road to the setuid-less distro. A revision of this patch (for RHEL5/OpenVZ kernels) is in use in Owl-current, such as in the 2011/03/12 LiveCD ISOs: http://mirrors.kernel.org/openwall/Owl/current/iso/ Initially this functionality was written by Pavel Kankovsky for Linux 2.4.32, but unfortunately it was never made public. All ping options (-b, -p, -Q, -R, -s, -t, -T, -M, -I), are tested with the patch. PATCH v3: - switched to flowi4. - minor changes to be consistent with raw sockets code. PATCH v2: - changed ping_debug() to pr_debug(). - removed CONFIG_IP_PING. - removed ping_seq_fops.owner field (unused for procfs). - switched to proc_net_fops_create(). - switched to %pK in seq_printf(). PATCH v1: - fixed checksumming bug. - CAP_NET_RAW may not create icmp sockets anymore. RFC v2: - minor cleanups. - introduced sysctl'able group range to restrict socket(2). Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-13 17:01:00 +07:00
ping_proc_exit();
out_ping:
udp4_proc_exit();
out_udp:
tcp4_proc_exit();
out_tcp:
raw_proc_exit();
out_raw:
rc = -ENOMEM;
goto out;
}
#else /* CONFIG_PROC_FS */
static int __init ipv4_proc_init(void)
{
return 0;
}
#endif /* CONFIG_PROC_FS */