linux_dsm_epyc7002/drivers/mfd/htc-i2cpld.c

712 lines
18 KiB
C
Raw Normal View History

/*
* htc-i2cpld.c
* Chip driver for an unknown CPLD chip found on omap850 HTC devices like
* the HTC Wizard and HTC Herald.
* The cpld is located on the i2c bus and acts as an input/output GPIO
* extender.
*
* Copyright (C) 2009 Cory Maccarrone <darkstar6262@gmail.com>
*
* Based on work done in the linwizard project
* Copyright (C) 2008-2009 Angelo Arrifano <miknix@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/irq.h>
#include <linux/spinlock.h>
#include <linux/htcpld.h>
#include <linux/gpio.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
struct htcpld_chip {
spinlock_t lock;
/* chip info */
u8 reset;
u8 addr;
struct device *dev;
struct i2c_client *client;
/* Output details */
u8 cache_out;
struct gpio_chip chip_out;
/* Input details */
u8 cache_in;
struct gpio_chip chip_in;
u16 irqs_enabled;
uint irq_start;
int nirqs;
/*
* Work structure to allow for setting values outside of any
* possible interrupt context
*/
struct work_struct set_val_work;
};
struct htcpld_data {
/* irq info */
u16 irqs_enabled;
uint irq_start;
int nirqs;
uint chained_irq;
unsigned int int_reset_gpio_hi;
unsigned int int_reset_gpio_lo;
/* htcpld info */
struct htcpld_chip *chip;
unsigned int nchips;
};
/* There does not appear to be a way to proactively mask interrupts
* on the htcpld chip itself. So, we simply ignore interrupts that
* aren't desired. */
static void htcpld_mask(struct irq_data *data)
{
struct htcpld_chip *chip = irq_data_get_irq_chip_data(data);
chip->irqs_enabled &= ~(1 << (data->irq - chip->irq_start));
pr_debug("HTCPLD mask %d %04x\n", data->irq, chip->irqs_enabled);
}
static void htcpld_unmask(struct irq_data *data)
{
struct htcpld_chip *chip = irq_data_get_irq_chip_data(data);
chip->irqs_enabled |= 1 << (data->irq - chip->irq_start);
pr_debug("HTCPLD unmask %d %04x\n", data->irq, chip->irqs_enabled);
}
static int htcpld_set_type(struct irq_data *data, unsigned int flags)
{
struct irq_desc *d = irq_to_desc(data->irq);
if (!d) {
pr_err("HTCPLD invalid IRQ: %d\n", data->irq);
return -EINVAL;
}
if (flags & ~IRQ_TYPE_SENSE_MASK)
return -EINVAL;
/* We only allow edge triggering */
if (flags & (IRQ_TYPE_LEVEL_LOW|IRQ_TYPE_LEVEL_HIGH))
return -EINVAL;
d->status &= ~IRQ_TYPE_SENSE_MASK;
d->status |= flags;
return 0;
}
static struct irq_chip htcpld_muxed_chip = {
.name = "htcpld",
.irq_mask = htcpld_mask,
.irq_unmask = htcpld_unmask,
.irq_set_type = htcpld_set_type,
};
/* To properly dispatch IRQ events, we need to read from the
* chip. This is an I2C action that could possibly sleep
* (which is bad in interrupt context) -- so we use a threaded
* interrupt handler to get around that.
*/
static irqreturn_t htcpld_handler(int irq, void *dev)
{
struct htcpld_data *htcpld = dev;
unsigned int i;
unsigned long flags;
int irqpin;
struct irq_desc *desc;
if (!htcpld) {
pr_debug("htcpld is null in ISR\n");
return IRQ_HANDLED;
}
/*
* For each chip, do a read of the chip and trigger any interrupts
* desired. The interrupts will be triggered from LSB to MSB (i.e.
* bit 0 first, then bit 1, etc.)
*
* For chips that have no interrupt range specified, just skip 'em.
*/
for (i = 0; i < htcpld->nchips; i++) {
struct htcpld_chip *chip = &htcpld->chip[i];
struct i2c_client *client;
int val;
unsigned long uval, old_val;
if (!chip) {
pr_debug("chip %d is null in ISR\n", i);
continue;
}
if (chip->nirqs == 0)
continue;
client = chip->client;
if (!client) {
pr_debug("client %d is null in ISR\n", i);
continue;
}
/* Scan the chip */
val = i2c_smbus_read_byte_data(client, chip->cache_out);
if (val < 0) {
/* Throw a warning and skip this chip */
dev_warn(chip->dev, "Unable to read from chip: %d\n",
val);
continue;
}
uval = (unsigned long)val;
spin_lock_irqsave(&chip->lock, flags);
/* Save away the old value so we can compare it */
old_val = chip->cache_in;
/* Write the new value */
chip->cache_in = uval;
spin_unlock_irqrestore(&chip->lock, flags);
/*
* For each bit in the data (starting at bit 0), trigger
* associated interrupts.
*/
for (irqpin = 0; irqpin < chip->nirqs; irqpin++) {
unsigned oldb, newb;
int flags;
irq = chip->irq_start + irqpin;
desc = irq_to_desc(irq);
flags = desc->status;
/* Run the IRQ handler, but only if the bit value
* changed, and the proper flags are set */
oldb = (old_val >> irqpin) & 1;
newb = (uval >> irqpin) & 1;
if ((!oldb && newb && (flags & IRQ_TYPE_EDGE_RISING)) ||
(oldb && !newb &&
(flags & IRQ_TYPE_EDGE_FALLING))) {
pr_debug("fire IRQ %d\n", irqpin);
desc->handle_irq(irq, desc);
}
}
}
/*
* In order to continue receiving interrupts, the int_reset_gpio must
* be asserted.
*/
if (htcpld->int_reset_gpio_hi)
gpio_set_value(htcpld->int_reset_gpio_hi, 1);
if (htcpld->int_reset_gpio_lo)
gpio_set_value(htcpld->int_reset_gpio_lo, 0);
return IRQ_HANDLED;
}
/*
* The GPIO set routines can be called from interrupt context, especially if,
* for example they're attached to the led-gpio framework and a trigger is
* enabled. As such, we declared work above in the htcpld_chip structure,
* and that work is scheduled in the set routine. The kernel can then run
* the I2C functions, which will sleep, in process context.
*/
static void htcpld_chip_set(struct gpio_chip *chip, unsigned offset, int val)
{
struct i2c_client *client;
struct htcpld_chip *chip_data;
unsigned long flags;
chip_data = container_of(chip, struct htcpld_chip, chip_out);
if (!chip_data)
return;
client = chip_data->client;
if (client == NULL)
return;
spin_lock_irqsave(&chip_data->lock, flags);
if (val)
chip_data->cache_out |= (1 << offset);
else
chip_data->cache_out &= ~(1 << offset);
spin_unlock_irqrestore(&chip_data->lock, flags);
schedule_work(&(chip_data->set_val_work));
}
static void htcpld_chip_set_ni(struct work_struct *work)
{
struct htcpld_chip *chip_data;
struct i2c_client *client;
chip_data = container_of(work, struct htcpld_chip, set_val_work);
client = chip_data->client;
i2c_smbus_read_byte_data(client, chip_data->cache_out);
}
static int htcpld_chip_get(struct gpio_chip *chip, unsigned offset)
{
struct htcpld_chip *chip_data;
int val = 0;
int is_input = 0;
/* Try out first */
chip_data = container_of(chip, struct htcpld_chip, chip_out);
if (!chip_data) {
/* Try in */
is_input = 1;
chip_data = container_of(chip, struct htcpld_chip, chip_in);
if (!chip_data)
return -EINVAL;
}
/* Determine if this is an input or output GPIO */
if (!is_input)
/* Use the output cache */
val = (chip_data->cache_out >> offset) & 1;
else
/* Use the input cache */
val = (chip_data->cache_in >> offset) & 1;
if (val)
return 1;
else
return 0;
}
static int htcpld_direction_output(struct gpio_chip *chip,
unsigned offset, int value)
{
htcpld_chip_set(chip, offset, value);
return 0;
}
static int htcpld_direction_input(struct gpio_chip *chip,
unsigned offset)
{
/*
* No-op: this function can only be called on the input chip.
* We do however make sure the offset is within range.
*/
return (offset < chip->ngpio) ? 0 : -EINVAL;
}
static int htcpld_chip_to_irq(struct gpio_chip *chip, unsigned offset)
{
struct htcpld_chip *chip_data;
chip_data = container_of(chip, struct htcpld_chip, chip_in);
if (offset < chip_data->nirqs)
return chip_data->irq_start + offset;
else
return -EINVAL;
}
static void htcpld_chip_reset(struct i2c_client *client)
{
struct htcpld_chip *chip_data = i2c_get_clientdata(client);
if (!chip_data)
return;
i2c_smbus_read_byte_data(
client, (chip_data->cache_out = chip_data->reset));
}
static int __devinit htcpld_setup_chip_irq(
struct platform_device *pdev,
int chip_index)
{
struct htcpld_data *htcpld;
struct device *dev = &pdev->dev;
struct htcpld_core_platform_data *pdata;
struct htcpld_chip *chip;
struct htcpld_chip_platform_data *plat_chip_data;
unsigned int irq, irq_end;
int ret = 0;
/* Get the platform and driver data */
pdata = dev->platform_data;
htcpld = platform_get_drvdata(pdev);
chip = &htcpld->chip[chip_index];
plat_chip_data = &pdata->chip[chip_index];
/* Setup irq handlers */
irq_end = chip->irq_start + chip->nirqs;
for (irq = chip->irq_start; irq < irq_end; irq++) {
set_irq_chip(irq, &htcpld_muxed_chip);
set_irq_chip_data(irq, chip);
set_irq_handler(irq, handle_simple_irq);
#ifdef CONFIG_ARM
set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
#else
set_irq_probe(irq);
#endif
}
return ret;
}
static int __devinit htcpld_register_chip_i2c(
struct platform_device *pdev,
int chip_index)
{
struct htcpld_data *htcpld;
struct device *dev = &pdev->dev;
struct htcpld_core_platform_data *pdata;
struct htcpld_chip *chip;
struct htcpld_chip_platform_data *plat_chip_data;
struct i2c_adapter *adapter;
struct i2c_client *client;
struct i2c_board_info info;
/* Get the platform and driver data */
pdata = dev->platform_data;
htcpld = platform_get_drvdata(pdev);
chip = &htcpld->chip[chip_index];
plat_chip_data = &pdata->chip[chip_index];
adapter = i2c_get_adapter(pdata->i2c_adapter_id);
if (adapter == NULL) {
/* Eek, no such I2C adapter! Bail out. */
dev_warn(dev, "Chip at i2c address 0x%x: Invalid i2c adapter %d\n",
plat_chip_data->addr, pdata->i2c_adapter_id);
return -ENODEV;
}
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
dev_warn(dev, "i2c adapter %d non-functional\n",
pdata->i2c_adapter_id);
return -EINVAL;
}
memset(&info, 0, sizeof(struct i2c_board_info));
info.addr = plat_chip_data->addr;
strlcpy(info.type, "htcpld-chip", I2C_NAME_SIZE);
info.platform_data = chip;
/* Add the I2C device. This calls the probe() function. */
client = i2c_new_device(adapter, &info);
if (!client) {
/* I2C device registration failed, contineu with the next */
dev_warn(dev, "Unable to add I2C device for 0x%x\n",
plat_chip_data->addr);
return -ENODEV;
}
i2c_set_clientdata(client, chip);
snprintf(client->name, I2C_NAME_SIZE, "Chip_0x%d", client->addr);
chip->client = client;
/* Reset the chip */
htcpld_chip_reset(client);
chip->cache_in = i2c_smbus_read_byte_data(client, chip->cache_out);
return 0;
}
static void __devinit htcpld_unregister_chip_i2c(
struct platform_device *pdev,
int chip_index)
{
struct htcpld_data *htcpld;
struct htcpld_chip *chip;
/* Get the platform and driver data */
htcpld = platform_get_drvdata(pdev);
chip = &htcpld->chip[chip_index];
if (chip->client)
i2c_unregister_device(chip->client);
}
static int __devinit htcpld_register_chip_gpio(
struct platform_device *pdev,
int chip_index)
{
struct htcpld_data *htcpld;
struct device *dev = &pdev->dev;
struct htcpld_core_platform_data *pdata;
struct htcpld_chip *chip;
struct htcpld_chip_platform_data *plat_chip_data;
struct gpio_chip *gpio_chip;
int ret = 0;
/* Get the platform and driver data */
pdata = dev->platform_data;
htcpld = platform_get_drvdata(pdev);
chip = &htcpld->chip[chip_index];
plat_chip_data = &pdata->chip[chip_index];
/* Setup the GPIO chips */
gpio_chip = &(chip->chip_out);
gpio_chip->label = "htcpld-out";
gpio_chip->dev = dev;
gpio_chip->owner = THIS_MODULE;
gpio_chip->get = htcpld_chip_get;
gpio_chip->set = htcpld_chip_set;
gpio_chip->direction_input = NULL;
gpio_chip->direction_output = htcpld_direction_output;
gpio_chip->base = plat_chip_data->gpio_out_base;
gpio_chip->ngpio = plat_chip_data->num_gpios;
gpio_chip = &(chip->chip_in);
gpio_chip->label = "htcpld-in";
gpio_chip->dev = dev;
gpio_chip->owner = THIS_MODULE;
gpio_chip->get = htcpld_chip_get;
gpio_chip->set = NULL;
gpio_chip->direction_input = htcpld_direction_input;
gpio_chip->direction_output = NULL;
gpio_chip->to_irq = htcpld_chip_to_irq;
gpio_chip->base = plat_chip_data->gpio_in_base;
gpio_chip->ngpio = plat_chip_data->num_gpios;
/* Add the GPIO chips */
ret = gpiochip_add(&(chip->chip_out));
if (ret) {
dev_warn(dev, "Unable to register output GPIOs for 0x%x: %d\n",
plat_chip_data->addr, ret);
return ret;
}
ret = gpiochip_add(&(chip->chip_in));
if (ret) {
int error;
dev_warn(dev, "Unable to register input GPIOs for 0x%x: %d\n",
plat_chip_data->addr, ret);
error = gpiochip_remove(&(chip->chip_out));
if (error)
dev_warn(dev, "Error while trying to unregister gpio chip: %d\n", error);
return ret;
}
return 0;
}
static int __devinit htcpld_setup_chips(struct platform_device *pdev)
{
struct htcpld_data *htcpld;
struct device *dev = &pdev->dev;
struct htcpld_core_platform_data *pdata;
int i;
/* Get the platform and driver data */
pdata = dev->platform_data;
htcpld = platform_get_drvdata(pdev);
/* Setup each chip's output GPIOs */
htcpld->nchips = pdata->num_chip;
htcpld->chip = kzalloc(sizeof(struct htcpld_chip) * htcpld->nchips,
GFP_KERNEL);
if (!htcpld->chip) {
dev_warn(dev, "Unable to allocate memory for chips\n");
return -ENOMEM;
}
/* Add the chips as best we can */
for (i = 0; i < htcpld->nchips; i++) {
int ret;
/* Setup the HTCPLD chips */
htcpld->chip[i].reset = pdata->chip[i].reset;
htcpld->chip[i].cache_out = pdata->chip[i].reset;
htcpld->chip[i].cache_in = 0;
htcpld->chip[i].dev = dev;
htcpld->chip[i].irq_start = pdata->chip[i].irq_base;
htcpld->chip[i].nirqs = pdata->chip[i].num_irqs;
INIT_WORK(&(htcpld->chip[i].set_val_work), &htcpld_chip_set_ni);
spin_lock_init(&(htcpld->chip[i].lock));
/* Setup the interrupts for the chip */
if (htcpld->chained_irq) {
ret = htcpld_setup_chip_irq(pdev, i);
if (ret)
continue;
}
/* Register the chip with I2C */
ret = htcpld_register_chip_i2c(pdev, i);
if (ret)
continue;
/* Register the chips with the GPIO subsystem */
ret = htcpld_register_chip_gpio(pdev, i);
if (ret) {
/* Unregister the chip from i2c and continue */
htcpld_unregister_chip_i2c(pdev, i);
continue;
}
dev_info(dev, "Registered chip at 0x%x\n", pdata->chip[i].addr);
}
return 0;
}
static int __devinit htcpld_core_probe(struct platform_device *pdev)
{
struct htcpld_data *htcpld;
struct device *dev = &pdev->dev;
struct htcpld_core_platform_data *pdata;
struct resource *res;
int ret = 0;
if (!dev)
return -ENODEV;
pdata = dev->platform_data;
if (!pdata) {
dev_warn(dev, "Platform data not found for htcpld core!\n");
return -ENXIO;
}
htcpld = kzalloc(sizeof(struct htcpld_data), GFP_KERNEL);
if (!htcpld)
return -ENOMEM;
/* Find chained irq */
ret = -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res) {
int flags;
htcpld->chained_irq = res->start;
/* Setup the chained interrupt handler */
flags = IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING;
ret = request_threaded_irq(htcpld->chained_irq,
NULL, htcpld_handler,
flags, pdev->name, htcpld);
if (ret) {
dev_warn(dev, "Unable to setup chained irq handler: %d\n", ret);
goto fail;
} else
device_init_wakeup(dev, 0);
}
/* Set the driver data */
platform_set_drvdata(pdev, htcpld);
/* Setup the htcpld chips */
ret = htcpld_setup_chips(pdev);
if (ret)
goto fail;
/* Request the GPIO(s) for the int reset and set them up */
if (pdata->int_reset_gpio_hi) {
ret = gpio_request(pdata->int_reset_gpio_hi, "htcpld-core");
if (ret) {
/*
* If it failed, that sucks, but we can probably
* continue on without it.
*/
dev_warn(dev, "Unable to request int_reset_gpio_hi -- interrupts may not work\n");
htcpld->int_reset_gpio_hi = 0;
} else {
htcpld->int_reset_gpio_hi = pdata->int_reset_gpio_hi;
gpio_set_value(htcpld->int_reset_gpio_hi, 1);
}
}
if (pdata->int_reset_gpio_lo) {
ret = gpio_request(pdata->int_reset_gpio_lo, "htcpld-core");
if (ret) {
/*
* If it failed, that sucks, but we can probably
* continue on without it.
*/
dev_warn(dev, "Unable to request int_reset_gpio_lo -- interrupts may not work\n");
htcpld->int_reset_gpio_lo = 0;
} else {
htcpld->int_reset_gpio_lo = pdata->int_reset_gpio_lo;
gpio_set_value(htcpld->int_reset_gpio_lo, 0);
}
}
dev_info(dev, "Initialized successfully\n");
return 0;
fail:
kfree(htcpld);
return ret;
}
/* The I2C Driver -- used internally */
static const struct i2c_device_id htcpld_chip_id[] = {
{ "htcpld-chip", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, htcpld_chip_id);
static struct i2c_driver htcpld_chip_driver = {
.driver = {
.name = "htcpld-chip",
},
.id_table = htcpld_chip_id,
};
/* The Core Driver */
static struct platform_driver htcpld_core_driver = {
.driver = {
.name = "i2c-htcpld",
},
};
static int __init htcpld_core_init(void)
{
int ret;
/* Register the I2C Chip driver */
ret = i2c_add_driver(&htcpld_chip_driver);
if (ret)
return ret;
/* Probe for our chips */
return platform_driver_probe(&htcpld_core_driver, htcpld_core_probe);
}
static void __exit htcpld_core_exit(void)
{
i2c_del_driver(&htcpld_chip_driver);
platform_driver_unregister(&htcpld_core_driver);
}
module_init(htcpld_core_init);
module_exit(htcpld_core_exit);
MODULE_AUTHOR("Cory Maccarrone <darkstar6262@gmail.com>");
MODULE_DESCRIPTION("I2C HTC PLD Driver");
MODULE_LICENSE("GPL");