linux_dsm_epyc7002/arch/arm/kernel/vmlinux-xip.lds.S

326 lines
6.7 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/* ld script to make ARM Linux kernel
* taken from the i386 version by Russell King
* Written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*/
/* No __ro_after_init data in the .rodata section - which will always be ro */
#define RO_AFTER_INIT_DATA
#include <asm-generic/vmlinux.lds.h>
#include <asm/cache.h>
#include <asm/thread_info.h>
#include <asm/memory.h>
#include <asm/page.h>
#define PROC_INFO \
. = ALIGN(4); \
VMLINUX_SYMBOL(__proc_info_begin) = .; \
*(.proc.info.init) \
VMLINUX_SYMBOL(__proc_info_end) = .;
#define IDMAP_TEXT \
ALIGN_FUNCTION(); \
VMLINUX_SYMBOL(__idmap_text_start) = .; \
*(.idmap.text) \
VMLINUX_SYMBOL(__idmap_text_end) = .; \
. = ALIGN(PAGE_SIZE); \
VMLINUX_SYMBOL(__hyp_idmap_text_start) = .; \
*(.hyp.idmap.text) \
VMLINUX_SYMBOL(__hyp_idmap_text_end) = .;
#ifdef CONFIG_HOTPLUG_CPU
#define ARM_CPU_DISCARD(x)
#define ARM_CPU_KEEP(x) x
#else
#define ARM_CPU_DISCARD(x) x
#define ARM_CPU_KEEP(x)
#endif
#if (defined(CONFIG_SMP_ON_UP) && !defined(CONFIG_DEBUG_SPINLOCK)) || \
defined(CONFIG_GENERIC_BUG)
#define ARM_EXIT_KEEP(x) x
#define ARM_EXIT_DISCARD(x)
#else
#define ARM_EXIT_KEEP(x)
#define ARM_EXIT_DISCARD(x) x
#endif
OUTPUT_ARCH(arm)
ENTRY(stext)
#ifndef __ARMEB__
jiffies = jiffies_64;
#else
jiffies = jiffies_64 + 4;
#endif
SECTIONS
{
/*
* XXX: The linker does not define how output sections are
* assigned to input sections when there are multiple statements
* matching the same input section name. There is no documented
* order of matching.
*
* unwind exit sections must be discarded before the rest of the
* unwind sections get included.
*/
/DISCARD/ : {
*(.ARM.exidx.exit.text)
*(.ARM.extab.exit.text)
ARM_CPU_DISCARD(*(.ARM.exidx.cpuexit.text))
ARM_CPU_DISCARD(*(.ARM.extab.cpuexit.text))
ARM_EXIT_DISCARD(EXIT_TEXT)
ARM_EXIT_DISCARD(EXIT_DATA)
EXIT_CALL
#ifndef CONFIG_MMU
*(.text.fixup)
*(__ex_table)
#endif
#ifndef CONFIG_SMP_ON_UP
*(.alt.smp.init)
#endif
*(.discard)
*(.discard.*)
}
. = XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR);
_xiprom = .; /* XIP ROM area to be mapped */
.head.text : {
_text = .;
HEAD_TEXT
}
.text : { /* Real text segment */
_stext = .; /* Text and read-only data */
IDMAP_TEXT
__exception_text_start = .;
*(.exception.text)
__exception_text_end = .;
IRQENTRY_TEXT
TEXT_TEXT
SCHED_TEXT
CPUIDLE_TEXT
LOCK_TEXT
KPROBES_TEXT
*(.gnu.warning)
*(.glue_7)
*(.glue_7t)
. = ALIGN(4);
*(.got) /* Global offset table */
ARM_CPU_KEEP(PROC_INFO)
}
RO_DATA(PAGE_SIZE)
. = ALIGN(4);
__ex_table : AT(ADDR(__ex_table) - LOAD_OFFSET) {
__start___ex_table = .;
#ifdef CONFIG_MMU
*(__ex_table)
#endif
__stop___ex_table = .;
}
#ifdef CONFIG_ARM_UNWIND
/*
* Stack unwinding tables
*/
. = ALIGN(8);
.ARM.unwind_idx : {
__start_unwind_idx = .;
*(.ARM.exidx*)
__stop_unwind_idx = .;
}
.ARM.unwind_tab : {
__start_unwind_tab = .;
*(.ARM.extab*)
__stop_unwind_tab = .;
}
#endif
NOTES
_etext = .; /* End of text and rodata section */
/*
* The vectors and stubs are relocatable code, and the
* only thing that matters is their relative offsets
*/
__vectors_start = .;
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs") updated the linker script to emit the .vectors and .stubs sections into a VMA range that is zero based and disjoint from the normal static kernel region. The reason for that was that this way, the sections can be placed exactly 4 KB apart, while the payload of the .vectors section is only 32 bytes. Since the symbols that are part of the .stubs section are emitted into the kallsyms table, they appear with zero based addresses as well, e.g., 00001004 t vector_rst 00001020 t vector_irq 000010a0 t vector_dabt 00001120 t vector_pabt 000011a0 t vector_und 00001220 t vector_addrexcptn 00001240 t vector_fiq 00001240 T vector_fiq_offset As this confuses perf when it accesses the kallsyms tables, commit 7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for arm") implemented a somewhat ugly special case for ARM, where the value of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose addresses are below it are filtered out. Note that this special case only applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses exists only in that case, but because finding a limit below which to apply the filtering is not entirely straightforward. Since the .vectors and .stubs sections contain position independent code that is never executed in place, we can emit it at its most likely runtime VMA (for more recent CPUs), which is 0xffff0000 for the vector table and 0xffff1000 for the stubs. Not only does this fix the perf issue with kallsyms, allowing us to drop the special case in scripts/kallsyms entirely, it also gives debuggers a more realistic view of the address space, and setting breakpoints or single stepping through code in the vector table or the stubs is more likely to work as expected on CPUs that use a high vector address. E.g., 00001240 A vector_fiq_offset ... c0c35000 T __init_begin c0c35000 T __vectors_start c0c35020 T __stubs_start c0c35020 T __vectors_end c0c352e0 T _sinittext c0c352e0 T __stubs_end ... ffff1004 t vector_rst ffff1020 t vector_irq ffff10a0 t vector_dabt ffff1120 t vector_pabt ffff11a0 t vector_und ffff1220 t vector_addrexcptn ffff1240 T vector_fiq (Note that vector_fiq_offset is now an absolute symbol, which kallsyms already ignores by default) The LMA footprint is identical with or without this change, only the VMAs are different: Before: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 00000000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... After: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Chris Brandt <chris.brandt@renesas.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
.vectors 0xffff0000 : AT(__vectors_start) {
*(.vectors)
}
. = __vectors_start + SIZEOF(.vectors);
__vectors_end = .;
__stubs_start = .;
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs") updated the linker script to emit the .vectors and .stubs sections into a VMA range that is zero based and disjoint from the normal static kernel region. The reason for that was that this way, the sections can be placed exactly 4 KB apart, while the payload of the .vectors section is only 32 bytes. Since the symbols that are part of the .stubs section are emitted into the kallsyms table, they appear with zero based addresses as well, e.g., 00001004 t vector_rst 00001020 t vector_irq 000010a0 t vector_dabt 00001120 t vector_pabt 000011a0 t vector_und 00001220 t vector_addrexcptn 00001240 t vector_fiq 00001240 T vector_fiq_offset As this confuses perf when it accesses the kallsyms tables, commit 7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for arm") implemented a somewhat ugly special case for ARM, where the value of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose addresses are below it are filtered out. Note that this special case only applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses exists only in that case, but because finding a limit below which to apply the filtering is not entirely straightforward. Since the .vectors and .stubs sections contain position independent code that is never executed in place, we can emit it at its most likely runtime VMA (for more recent CPUs), which is 0xffff0000 for the vector table and 0xffff1000 for the stubs. Not only does this fix the perf issue with kallsyms, allowing us to drop the special case in scripts/kallsyms entirely, it also gives debuggers a more realistic view of the address space, and setting breakpoints or single stepping through code in the vector table or the stubs is more likely to work as expected on CPUs that use a high vector address. E.g., 00001240 A vector_fiq_offset ... c0c35000 T __init_begin c0c35000 T __vectors_start c0c35020 T __stubs_start c0c35020 T __vectors_end c0c352e0 T _sinittext c0c352e0 T __stubs_end ... ffff1004 t vector_rst ffff1020 t vector_irq ffff10a0 t vector_dabt ffff1120 t vector_pabt ffff11a0 t vector_und ffff1220 t vector_addrexcptn ffff1240 T vector_fiq (Note that vector_fiq_offset is now an absolute symbol, which kallsyms already ignores by default) The LMA footprint is identical with or without this change, only the VMAs are different: Before: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 00000000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... After: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Chris Brandt <chris.brandt@renesas.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
.stubs ADDR(.vectors) + 0x1000 : AT(__stubs_start) {
*(.stubs)
}
. = __stubs_start + SIZEOF(.stubs);
__stubs_end = .;
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs") updated the linker script to emit the .vectors and .stubs sections into a VMA range that is zero based and disjoint from the normal static kernel region. The reason for that was that this way, the sections can be placed exactly 4 KB apart, while the payload of the .vectors section is only 32 bytes. Since the symbols that are part of the .stubs section are emitted into the kallsyms table, they appear with zero based addresses as well, e.g., 00001004 t vector_rst 00001020 t vector_irq 000010a0 t vector_dabt 00001120 t vector_pabt 000011a0 t vector_und 00001220 t vector_addrexcptn 00001240 t vector_fiq 00001240 T vector_fiq_offset As this confuses perf when it accesses the kallsyms tables, commit 7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for arm") implemented a somewhat ugly special case for ARM, where the value of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose addresses are below it are filtered out. Note that this special case only applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses exists only in that case, but because finding a limit below which to apply the filtering is not entirely straightforward. Since the .vectors and .stubs sections contain position independent code that is never executed in place, we can emit it at its most likely runtime VMA (for more recent CPUs), which is 0xffff0000 for the vector table and 0xffff1000 for the stubs. Not only does this fix the perf issue with kallsyms, allowing us to drop the special case in scripts/kallsyms entirely, it also gives debuggers a more realistic view of the address space, and setting breakpoints or single stepping through code in the vector table or the stubs is more likely to work as expected on CPUs that use a high vector address. E.g., 00001240 A vector_fiq_offset ... c0c35000 T __init_begin c0c35000 T __vectors_start c0c35020 T __stubs_start c0c35020 T __vectors_end c0c352e0 T _sinittext c0c352e0 T __stubs_end ... ffff1004 t vector_rst ffff1020 t vector_irq ffff10a0 t vector_dabt ffff1120 t vector_pabt ffff11a0 t vector_und ffff1220 t vector_addrexcptn ffff1240 T vector_fiq (Note that vector_fiq_offset is now an absolute symbol, which kallsyms already ignores by default) The LMA footprint is identical with or without this change, only the VMAs are different: Before: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 00000000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... After: Idx Name Size VMA LMA File off Algn ... 14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2 CONTENTS, ALLOC, LOAD, READONLY, CODE 15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE 17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5 CONTENTS, ALLOC, LOAD, READONLY, CODE ... Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Chris Brandt <chris.brandt@renesas.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
PROVIDE(vector_fiq_offset = vector_fiq - ADDR(.vectors));
INIT_TEXT_SECTION(8)
.exit.text : {
ARM_EXIT_KEEP(EXIT_TEXT)
}
.init.proc.info : {
ARM_CPU_DISCARD(PROC_INFO)
}
.init.arch.info : {
__arch_info_begin = .;
*(.arch.info.init)
__arch_info_end = .;
}
.init.tagtable : {
__tagtable_begin = .;
*(.taglist.init)
__tagtable_end = .;
}
#ifdef CONFIG_SMP_ON_UP
.init.smpalt : {
__smpalt_begin = .;
*(.alt.smp.init)
__smpalt_end = .;
}
#endif
.init.pv_table : {
__pv_table_begin = .;
*(.pv_table)
__pv_table_end = .;
}
.init.data : {
INIT_SETUP(16)
INIT_CALLS
CON_INITCALL
SECURITY_INITCALL
INIT_RAM_FS
}
#ifdef CONFIG_SMP
PERCPU_SECTION(L1_CACHE_BYTES)
#endif
_exiprom = .; /* End of XIP ROM area */
__data_loc = ALIGN(4); /* location in binary */
. = PAGE_OFFSET + TEXT_OFFSET;
.data : AT(__data_loc) {
_data = .; /* address in memory */
_sdata = .;
/*
* first, the init task union, aligned
* to an 8192 byte boundary.
*/
INIT_TASK_DATA(THREAD_SIZE)
. = ALIGN(PAGE_SIZE);
__init_begin = .;
INIT_DATA
ARM_EXIT_KEEP(EXIT_DATA)
. = ALIGN(PAGE_SIZE);
__init_end = .;
*(.data..ro_after_init)
NOSAVE_DATA
CACHELINE_ALIGNED_DATA(L1_CACHE_BYTES)
READ_MOSTLY_DATA(L1_CACHE_BYTES)
/*
* and the usual data section
*/
DATA_DATA
CONSTRUCTORS
_edata = .;
}
_edata_loc = __data_loc + SIZEOF(.data);
BUG_TABLE
#ifdef CONFIG_HAVE_TCM
/*
* We align everything to a page boundary so we can
* free it after init has commenced and TCM contents have
* been copied to its destination.
*/
.tcm_start : {
. = ALIGN(PAGE_SIZE);
__tcm_start = .;
__itcm_start = .;
}
/*
* Link these to the ITCM RAM
* Put VMA to the TCM address and LMA to the common RAM
* and we'll upload the contents from RAM to TCM and free
* the used RAM after that.
*/
.text_itcm ITCM_OFFSET : AT(__itcm_start)
{
__sitcm_text = .;
*(.tcm.text)
*(.tcm.rodata)
. = ALIGN(4);
__eitcm_text = .;
}
/*
* Reset the dot pointer, this is needed to create the
* relative __dtcm_start below (to be used as extern in code).
*/
. = ADDR(.tcm_start) + SIZEOF(.tcm_start) + SIZEOF(.text_itcm);
.dtcm_start : {
__dtcm_start = .;
}
/* TODO: add remainder of ITCM as well, that can be used for data! */
.data_dtcm DTCM_OFFSET : AT(__dtcm_start)
{
. = ALIGN(4);
__sdtcm_data = .;
*(.tcm.data)
. = ALIGN(4);
__edtcm_data = .;
}
/* Reset the dot pointer or the linker gets confused */
. = ADDR(.dtcm_start) + SIZEOF(.data_dtcm);
/* End marker for freeing TCM copy in linked object */
.tcm_end : AT(ADDR(.dtcm_start) + SIZEOF(.data_dtcm)){
. = ALIGN(PAGE_SIZE);
__tcm_end = .;
}
#endif
BSS_SECTION(0, 0, 0)
_end = .;
STABS_DEBUG
}
/*
* These must never be empty
* If you have to comment these two assert statements out, your
* binutils is too old (for other reasons as well)
*/
ASSERT((__proc_info_end - __proc_info_begin), "missing CPU support")
ASSERT((__arch_info_end - __arch_info_begin), "no machine record defined")
/*
* The HYP init code can't be more than a page long,
* and should not cross a page boundary.
* The above comment applies as well.
*/
ASSERT(__hyp_idmap_text_end - (__hyp_idmap_text_start & PAGE_MASK) <= PAGE_SIZE,
"HYP init code too big or misaligned")