mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 19:56:28 +07:00
389 lines
8.8 KiB
C
389 lines
8.8 KiB
C
|
/*
|
||
|
* linux/include/asm-arm/arch-ixp4xx/io.h
|
||
|
*
|
||
|
* Author: Deepak Saxena <dsaxena@plexity.net>
|
||
|
*
|
||
|
* Copyright (C) 2002-2004 MontaVista Software, Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#ifndef __ASM_ARM_ARCH_IO_H
|
||
|
#define __ASM_ARM_ARCH_IO_H
|
||
|
|
||
|
#include <asm/hardware.h>
|
||
|
|
||
|
#define IO_SPACE_LIMIT 0xffff0000
|
||
|
|
||
|
#define BIT(x) ((1)<<(x))
|
||
|
|
||
|
|
||
|
extern int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data);
|
||
|
extern int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* IXP4xx provides two methods of accessing PCI memory space:
|
||
|
*
|
||
|
* 1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB).
|
||
|
* To access PCI via this space, we simply ioremap() the BAR
|
||
|
* into the kernel and we can use the standard read[bwl]/write[bwl]
|
||
|
* macros. This is the preffered method due to speed but it
|
||
|
* limits the system to just 64MB of PCI memory. This can be
|
||
|
* problamatic if using video cards and other memory-heavy
|
||
|
* targets.
|
||
|
*
|
||
|
* 2) If > 64MB of memory space is required, the IXP4xx can be configured
|
||
|
* to use indirect registers to access PCI (as we do below for I/O
|
||
|
* transactions). This allows for up to 128MB (0x48000000 to 0x4fffffff)
|
||
|
* of memory on the bus. The disadvantadge of this is that every
|
||
|
* PCI access requires three local register accesses plus a spinlock,
|
||
|
* but in some cases the performance hit is acceptable. In addition,
|
||
|
* you cannot mmap() PCI devices in this case.
|
||
|
*
|
||
|
*/
|
||
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
||
|
|
||
|
#define __mem_pci(a) (a)
|
||
|
|
||
|
#else
|
||
|
|
||
|
#include <linux/mm.h>
|
||
|
|
||
|
/*
|
||
|
* In the case of using indirect PCI, we simply return the actual PCI
|
||
|
* address and our read/write implementation use that to drive the
|
||
|
* access registers. If something outside of PCI is ioremap'd, we
|
||
|
* fallback to the default.
|
||
|
*/
|
||
|
static inline void __iomem *
|
||
|
__ixp4xx_ioremap(unsigned long addr, size_t size, unsigned long flags, unsigned long align)
|
||
|
{
|
||
|
extern void __iomem * __ioremap(unsigned long, size_t, unsigned long, unsigned long);
|
||
|
if((addr < 0x48000000) || (addr > 0x4fffffff))
|
||
|
return __ioremap(addr, size, flags, align);
|
||
|
|
||
|
return (void *)addr;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_iounmap(void __iomem *addr)
|
||
|
{
|
||
|
extern void __iounmap(void __iomem *addr);
|
||
|
|
||
|
if ((u32)addr >= VMALLOC_START)
|
||
|
__iounmap(addr);
|
||
|
}
|
||
|
|
||
|
#define __arch_ioremap(a, s, f, x) __ixp4xx_ioremap(a, s, f, x)
|
||
|
#define __arch_iounmap(a) __ixp4xx_iounmap(a)
|
||
|
|
||
|
#define writeb(p, v) __ixp4xx_writeb(p, v)
|
||
|
#define writew(p, v) __ixp4xx_writew(p, v)
|
||
|
#define writel(p, v) __ixp4xx_writel(p, v)
|
||
|
|
||
|
#define writesb(p, v, l) __ixp4xx_writesb(p, v, l)
|
||
|
#define writesw(p, v, l) __ixp4xx_writesw(p, v, l)
|
||
|
#define writesl(p, v, l) __ixp4xx_writesl(p, v, l)
|
||
|
|
||
|
#define readb(p) __ixp4xx_readb(p)
|
||
|
#define readw(p) __ixp4xx_readw(p)
|
||
|
#define readl(p) __ixp4xx_readl(p)
|
||
|
|
||
|
#define readsb(p, v, l) __ixp4xx_readsb(p, v, l)
|
||
|
#define readsw(p, v, l) __ixp4xx_readsw(p, v, l)
|
||
|
#define readsl(p, v, l) __ixp4xx_readsl(p, v, l)
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writeb(u8 value, u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
|
||
|
if (addr >= VMALLOC_START) {
|
||
|
__raw_writeb(value, addr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
data = value << (8*n);
|
||
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writesb(u32 bus_addr, u8 *vaddr, int count)
|
||
|
{
|
||
|
while (count--)
|
||
|
writeb(*vaddr++, bus_addr);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writew(u16 value, u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
|
||
|
if (addr >= VMALLOC_START) {
|
||
|
__raw_writew(value, addr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
data = value << (8*n);
|
||
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writesw(u32 bus_addr, u16 *vaddr, int count)
|
||
|
{
|
||
|
while (count--)
|
||
|
writew(*vaddr++, bus_addr);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writel(u32 value, u32 addr)
|
||
|
{
|
||
|
if (addr >= VMALLOC_START) {
|
||
|
__raw_writel(value, addr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ixp4xx_pci_write(addr, NP_CMD_MEMWRITE, value);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_writesl(u32 bus_addr, u32 *vaddr, int count)
|
||
|
{
|
||
|
while (count--)
|
||
|
writel(*vaddr++, bus_addr);
|
||
|
}
|
||
|
|
||
|
static inline unsigned char
|
||
|
__ixp4xx_readb(u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
|
||
|
if (addr >= VMALLOC_START)
|
||
|
return __raw_readb(addr);
|
||
|
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
|
||
|
return 0xff;
|
||
|
|
||
|
return data >> (8*n);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_readsb(u32 bus_addr, u8 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = readb(bus_addr);
|
||
|
}
|
||
|
|
||
|
static inline unsigned short
|
||
|
__ixp4xx_readw(u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
|
||
|
if (addr >= VMALLOC_START)
|
||
|
return __raw_readw(addr);
|
||
|
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
|
||
|
return 0xffff;
|
||
|
|
||
|
return data>>(8*n);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_readsw(u32 bus_addr, u16 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = readw(bus_addr);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long
|
||
|
__ixp4xx_readl(u32 addr)
|
||
|
{
|
||
|
u32 data;
|
||
|
|
||
|
if (addr >= VMALLOC_START)
|
||
|
return __raw_readl(addr);
|
||
|
|
||
|
if (ixp4xx_pci_read(addr, NP_CMD_MEMREAD, &data))
|
||
|
return 0xffffffff;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_readsl(u32 bus_addr, u32 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = readl(bus_addr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* We can use the built-in functions b/c they end up calling writeb/readb
|
||
|
*/
|
||
|
#define memset_io(c,v,l) _memset_io((c),(v),(l))
|
||
|
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),(c),(l))
|
||
|
#define memcpy_toio(c,a,l) _memcpy_toio((c),(a),(l))
|
||
|
|
||
|
#define eth_io_copy_and_sum(s,c,l,b) \
|
||
|
eth_copy_and_sum((s),__mem_pci(c),(l),(b))
|
||
|
|
||
|
static inline int
|
||
|
check_signature(unsigned long bus_addr, const unsigned char *signature,
|
||
|
int length)
|
||
|
{
|
||
|
int retval = 0;
|
||
|
do {
|
||
|
if (readb(bus_addr) != *signature)
|
||
|
goto out;
|
||
|
bus_addr++;
|
||
|
signature++;
|
||
|
length--;
|
||
|
} while (length);
|
||
|
retval = 1;
|
||
|
out:
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* IXP4xx does not have a transparent cpu -> PCI I/O translation
|
||
|
* window. Instead, it has a set of registers that must be tweaked
|
||
|
* with the proper byte lanes, command types, and address for the
|
||
|
* transaction. This means that we need to override the default
|
||
|
* I/O functions.
|
||
|
*/
|
||
|
#define outb(p, v) __ixp4xx_outb(p, v)
|
||
|
#define outw(p, v) __ixp4xx_outw(p, v)
|
||
|
#define outl(p, v) __ixp4xx_outl(p, v)
|
||
|
|
||
|
#define outsb(p, v, l) __ixp4xx_outsb(p, v, l)
|
||
|
#define outsw(p, v, l) __ixp4xx_outsw(p, v, l)
|
||
|
#define outsl(p, v, l) __ixp4xx_outsl(p, v, l)
|
||
|
|
||
|
#define inb(p) __ixp4xx_inb(p)
|
||
|
#define inw(p) __ixp4xx_inw(p)
|
||
|
#define inl(p) __ixp4xx_inl(p)
|
||
|
|
||
|
#define insb(p, v, l) __ixp4xx_insb(p, v, l)
|
||
|
#define insw(p, v, l) __ixp4xx_insw(p, v, l)
|
||
|
#define insl(p, v, l) __ixp4xx_insl(p, v, l)
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outb(u8 value, u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
data = value << (8*n);
|
||
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outsb(u32 io_addr, const u8 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
outb(*vaddr++, io_addr);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outw(u16 value, u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
data = value << (8*n);
|
||
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outsw(u32 io_addr, const u16 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
outw(cpu_to_le16(*vaddr++), io_addr);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outl(u32 value, u32 addr)
|
||
|
{
|
||
|
ixp4xx_pci_write(addr, NP_CMD_IOWRITE, value);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_outsl(u32 io_addr, const u32 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
outl(*vaddr++, io_addr);
|
||
|
}
|
||
|
|
||
|
static inline u8
|
||
|
__ixp4xx_inb(u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
|
||
|
return 0xff;
|
||
|
|
||
|
return data >> (8*n);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_insb(u32 io_addr, u8 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = inb(io_addr);
|
||
|
}
|
||
|
|
||
|
static inline u16
|
||
|
__ixp4xx_inw(u32 addr)
|
||
|
{
|
||
|
u32 n, byte_enables, data;
|
||
|
n = addr % 4;
|
||
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
||
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
|
||
|
return 0xffff;
|
||
|
|
||
|
return data>>(8*n);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_insw(u32 io_addr, u16 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = le16_to_cpu(inw(io_addr));
|
||
|
}
|
||
|
|
||
|
static inline u32
|
||
|
__ixp4xx_inl(u32 addr)
|
||
|
{
|
||
|
u32 data;
|
||
|
if (ixp4xx_pci_read(addr, NP_CMD_IOREAD, &data))
|
||
|
return 0xffffffff;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
__ixp4xx_insl(u32 io_addr, u32 *vaddr, u32 count)
|
||
|
{
|
||
|
while (count--)
|
||
|
*vaddr++ = inl(io_addr);
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // __ASM_ARM_ARCH_IO_H
|
||
|
|