linux_dsm_epyc7002/security/keys/key.c

1182 lines
30 KiB
C
Raw Normal View History

/* Basic authentication token and access key management
*
* Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/export.h>
#include <linux/init.h>
#include <linux/poison.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/workqueue.h>
#include <linux/random.h>
#include <linux/err.h>
#include "internal.h"
struct kmem_cache *key_jar;
struct rb_root key_serial_tree; /* tree of keys indexed by serial */
DEFINE_SPINLOCK(key_serial_lock);
struct rb_root key_user_tree; /* tree of quota records indexed by UID */
DEFINE_SPINLOCK(key_user_lock);
unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
unsigned int key_quota_maxkeys = 200; /* general key count quota */
unsigned int key_quota_maxbytes = 20000; /* general key space quota */
static LIST_HEAD(key_types_list);
static DECLARE_RWSEM(key_types_sem);
/* We serialise key instantiation and link */
DEFINE_MUTEX(key_construction_mutex);
#ifdef KEY_DEBUGGING
void __key_check(const struct key *key)
{
printk("__key_check: key %p {%08x} should be {%08x}\n",
key, key->magic, KEY_DEBUG_MAGIC);
BUG();
}
#endif
/*
* Get the key quota record for a user, allocating a new record if one doesn't
* already exist.
*/
struct key_user *key_user_lookup(kuid_t uid)
{
struct key_user *candidate = NULL, *user;
struct rb_node *parent, **p;
try_again:
parent = NULL;
p = &key_user_tree.rb_node;
spin_lock(&key_user_lock);
/* search the tree for a user record with a matching UID */
while (*p) {
parent = *p;
user = rb_entry(parent, struct key_user, node);
if (uid_lt(uid, user->uid))
p = &(*p)->rb_left;
else if (uid_gt(uid, user->uid))
p = &(*p)->rb_right;
else
goto found;
}
/* if we get here, we failed to find a match in the tree */
if (!candidate) {
/* allocate a candidate user record if we don't already have
* one */
spin_unlock(&key_user_lock);
user = NULL;
candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
if (unlikely(!candidate))
goto out;
/* the allocation may have scheduled, so we need to repeat the
* search lest someone else added the record whilst we were
* asleep */
goto try_again;
}
/* if we get here, then the user record still hadn't appeared on the
* second pass - so we use the candidate record */
refcount_set(&candidate->usage, 1);
atomic_set(&candidate->nkeys, 0);
atomic_set(&candidate->nikeys, 0);
candidate->uid = uid;
candidate->qnkeys = 0;
candidate->qnbytes = 0;
spin_lock_init(&candidate->lock);
mutex_init(&candidate->cons_lock);
rb_link_node(&candidate->node, parent, p);
rb_insert_color(&candidate->node, &key_user_tree);
spin_unlock(&key_user_lock);
user = candidate;
goto out;
/* okay - we found a user record for this UID */
found:
refcount_inc(&user->usage);
spin_unlock(&key_user_lock);
kfree(candidate);
out:
return user;
}
/*
* Dispose of a user structure
*/
void key_user_put(struct key_user *user)
{
if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
rb_erase(&user->node, &key_user_tree);
spin_unlock(&key_user_lock);
kfree(user);
}
}
/*
* Allocate a serial number for a key. These are assigned randomly to avoid
* security issues through covert channel problems.
*/
static inline void key_alloc_serial(struct key *key)
{
struct rb_node *parent, **p;
struct key *xkey;
/* propose a random serial number and look for a hole for it in the
* serial number tree */
do {
get_random_bytes(&key->serial, sizeof(key->serial));
key->serial >>= 1; /* negative numbers are not permitted */
} while (key->serial < 3);
spin_lock(&key_serial_lock);
attempt_insertion:
parent = NULL;
p = &key_serial_tree.rb_node;
while (*p) {
parent = *p;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
p = &(*p)->rb_left;
else if (key->serial > xkey->serial)
p = &(*p)->rb_right;
else
goto serial_exists;
}
/* we've found a suitable hole - arrange for this key to occupy it */
rb_link_node(&key->serial_node, parent, p);
rb_insert_color(&key->serial_node, &key_serial_tree);
spin_unlock(&key_serial_lock);
return;
/* we found a key with the proposed serial number - walk the tree from
* that point looking for the next unused serial number */
serial_exists:
for (;;) {
key->serial++;
if (key->serial < 3) {
key->serial = 3;
goto attempt_insertion;
}
parent = rb_next(parent);
if (!parent)
goto attempt_insertion;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
goto attempt_insertion;
}
}
/**
* key_alloc - Allocate a key of the specified type.
* @type: The type of key to allocate.
* @desc: The key description to allow the key to be searched out.
* @uid: The owner of the new key.
* @gid: The group ID for the new key's group permissions.
* @cred: The credentials specifying UID namespace.
* @perm: The permissions mask of the new key.
* @flags: Flags specifying quota properties.
* @restrict_link: Optional link restriction for new keyrings.
*
* Allocate a key of the specified type with the attributes given. The key is
* returned in an uninstantiated state and the caller needs to instantiate the
* key before returning.
*
* The restrict_link structure (if not NULL) will be freed when the
* keyring is destroyed, so it must be dynamically allocated.
*
* The user's key count quota is updated to reflect the creation of the key and
* the user's key data quota has the default for the key type reserved. The
* instantiation function should amend this as necessary. If insufficient
* quota is available, -EDQUOT will be returned.
*
* The LSM security modules can prevent a key being created, in which case
* -EACCES will be returned.
*
* Returns a pointer to the new key if successful and an error code otherwise.
*
* Note that the caller needs to ensure the key type isn't uninstantiated.
* Internally this can be done by locking key_types_sem. Externally, this can
* be done by either never unregistering the key type, or making sure
* key_alloc() calls don't race with module unloading.
*/
struct key *key_alloc(struct key_type *type, const char *desc,
kuid_t uid, kgid_t gid, const struct cred *cred,
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
key_perm_t perm, unsigned long flags,
struct key_restriction *restrict_link)
{
struct key_user *user = NULL;
struct key *key;
size_t desclen, quotalen;
int ret;
key = ERR_PTR(-EINVAL);
if (!desc || !*desc)
goto error;
if (type->vet_description) {
ret = type->vet_description(desc);
if (ret < 0) {
key = ERR_PTR(ret);
goto error;
}
}
desclen = strlen(desc);
quotalen = desclen + 1 + type->def_datalen;
/* get hold of the key tracking for this user */
user = key_user_lookup(uid);
if (!user)
goto no_memory_1;
/* check that the user's quota permits allocation of another key and
* its description */
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxkeys : key_quota_maxkeys;
unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&user->lock);
if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
if (user->qnkeys + 1 >= maxkeys ||
user->qnbytes + quotalen >= maxbytes ||
user->qnbytes + quotalen < user->qnbytes)
goto no_quota;
}
user->qnkeys++;
user->qnbytes += quotalen;
spin_unlock(&user->lock);
}
/* allocate and initialise the key and its description */
KEYS: Pre-clear struct key on allocation The second word of key->payload does not get initialised in key_alloc(), but the big_key type is relying on it having been cleared. The problem comes when big_key fails to instantiate a large key and doesn't then set the payload. The big_key_destroy() op is called from the garbage collector and this assumes that the dentry pointer stored in the second word will be NULL if instantiation did not complete. Therefore just pre-clear the entire struct key on allocation rather than trying to be clever and only initialising to 0 only those bits that aren't otherwise initialised. The lack of initialisation can lead to a bug report like the following if big_key failed to initialise its file: general protection fault: 0000 [#1] SMP Modules linked in: ... CPU: 0 PID: 51 Comm: kworker/0:1 Not tainted 3.10.0-53.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge 1955/0HC513, BIOS 1.4.4 12/09/2008 Workqueue: events key_garbage_collector task: ffff8801294f5680 ti: ffff8801296e2000 task.ti: ffff8801296e2000 RIP: 0010:[<ffffffff811b4a51>] dput+0x21/0x2d0 ... Call Trace: [<ffffffff811a7b06>] path_put+0x16/0x30 [<ffffffff81235604>] big_key_destroy+0x44/0x60 [<ffffffff8122dc4b>] key_gc_unused_keys.constprop.2+0x5b/0xe0 [<ffffffff8122df2f>] key_garbage_collector+0x1df/0x3c0 [<ffffffff8107759b>] process_one_work+0x17b/0x460 [<ffffffff8107834b>] worker_thread+0x11b/0x400 [<ffffffff81078230>] ? rescuer_thread+0x3e0/0x3e0 [<ffffffff8107eb00>] kthread+0xc0/0xd0 [<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110 [<ffffffff815c4bec>] ret_from_fork+0x7c/0xb0 [<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110 Reported-by: Patrik Kis <pkis@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Stephen Gallagher <sgallagh@redhat.com>
2013-12-02 18:24:18 +07:00
key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
if (!key)
goto no_memory_2;
key->index_key.desc_len = desclen;
key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
if (!key->index_key.description)
goto no_memory_3;
refcount_set(&key->usage, 1);
init_rwsem(&key->sem);
lockdep_set_class(&key->sem, &type->lock_class);
key->index_key.type = type;
key->user = user;
key->quotalen = quotalen;
key->datalen = type->def_datalen;
key->uid = uid;
key->gid = gid;
key->perm = perm;
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
key->restrict_link = restrict_link;
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
[PATCH] keys: Discard key spinlock and use RCU for key payload The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:49 +07:00
key->flags |= 1 << KEY_FLAG_IN_QUOTA;
if (flags & KEY_ALLOC_BUILT_IN)
key->flags |= 1 << KEY_FLAG_BUILTIN;
if (flags & KEY_ALLOC_UID_KEYRING)
key->flags |= 1 << KEY_FLAG_UID_KEYRING;
#ifdef KEY_DEBUGGING
key->magic = KEY_DEBUG_MAGIC;
#endif
/* let the security module know about the key */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
ret = security_key_alloc(key, cred, flags);
if (ret < 0)
goto security_error;
/* publish the key by giving it a serial number */
atomic_inc(&user->nkeys);
key_alloc_serial(key);
error:
return key;
security_error:
kfree(key->description);
kmem_cache_free(key_jar, key);
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
key = ERR_PTR(ret);
goto error;
no_memory_3:
kmem_cache_free(key_jar, key);
no_memory_2:
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
no_memory_1:
key = ERR_PTR(-ENOMEM);
goto error;
no_quota:
spin_unlock(&user->lock);
key_user_put(user);
key = ERR_PTR(-EDQUOT);
goto error;
}
EXPORT_SYMBOL(key_alloc);
/**
* key_payload_reserve - Adjust data quota reservation for the key's payload
* @key: The key to make the reservation for.
* @datalen: The amount of data payload the caller now wants.
*
* Adjust the amount of the owning user's key data quota that a key reserves.
* If the amount is increased, then -EDQUOT may be returned if there isn't
* enough free quota available.
*
* If successful, 0 is returned.
*/
int key_payload_reserve(struct key *key, size_t datalen)
{
int delta = (int)datalen - key->datalen;
int ret = 0;
key_check(key);
/* contemplate the quota adjustment */
[PATCH] keys: Discard key spinlock and use RCU for key payload The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:49 +07:00
if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&key->user->lock);
if (delta > 0 &&
(key->user->qnbytes + delta >= maxbytes ||
key->user->qnbytes + delta < key->user->qnbytes)) {
ret = -EDQUOT;
}
else {
key->user->qnbytes += delta;
key->quotalen += delta;
}
spin_unlock(&key->user->lock);
}
/* change the recorded data length if that didn't generate an error */
if (ret == 0)
key->datalen = datalen;
return ret;
}
EXPORT_SYMBOL(key_payload_reserve);
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
/*
* Change the key state to being instantiated.
*/
static void mark_key_instantiated(struct key *key, int reject_error)
{
/* Commit the payload before setting the state; barrier versus
* key_read_state().
*/
smp_store_release(&key->state,
(reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
}
/*
* Instantiate a key and link it into the target keyring atomically. Must be
* called with the target keyring's semaphore writelocked. The target key's
* semaphore need not be locked as instantiation is serialised by
* key_construction_mutex.
*/
static int __key_instantiate_and_link(struct key *key,
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
struct key_preparsed_payload *prep,
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:56 +07:00
struct key *keyring,
struct key *authkey,
struct assoc_array_edit **_edit)
{
int ret, awaken;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
if (key->state == KEY_IS_UNINSTANTIATED) {
/* instantiate the key */
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
ret = key->type->instantiate(key, prep);
if (ret == 0) {
/* mark the key as being instantiated */
atomic_inc(&key->user->nikeys);
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
mark_key_instantiated(key, 0);
[PATCH] keys: Discard key spinlock and use RCU for key payload The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:49 +07:00
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
/* and link it into the destination keyring */
if (keyring) {
if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
set_bit(KEY_FLAG_KEEP, &key->flags);
__key_link(key, _edit);
}
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:56 +07:00
/* disable the authorisation key */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
if (authkey)
key_revoke(authkey);
if (prep->expiry != TIME64_MAX) {
key->expiry = prep->expiry;
key_schedule_gc(prep->expiry + key_gc_delay);
}
}
}
mutex_unlock(&key_construction_mutex);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret;
}
/**
* key_instantiate_and_link - Instantiate a key and link it into the keyring.
* @key: The key to instantiate.
* @data: The data to use to instantiate the keyring.
* @datalen: The length of @data.
* @keyring: Keyring to create a link in on success (or NULL).
* @authkey: The authorisation token permitting instantiation.
*
* Instantiate a key that's in the uninstantiated state using the provided data
* and, if successful, link it in to the destination keyring if one is
* supplied.
*
* If successful, 0 is returned, the authorisation token is revoked and anyone
* waiting for the key is woken up. If the key was already instantiated,
* -EBUSY will be returned.
*/
int key_instantiate_and_link(struct key *key,
const void *data,
size_t datalen,
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:56 +07:00
struct key *keyring,
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
struct key *authkey)
{
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
struct key_preparsed_payload prep;
struct assoc_array_edit *edit;
int ret;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
memset(&prep, 0, sizeof(prep));
prep.data = data;
prep.datalen = datalen;
prep.quotalen = key->type->def_datalen;
prep.expiry = TIME64_MAX;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (key->type->preparse) {
ret = key->type->preparse(&prep);
if (ret < 0)
goto error;
}
if (keyring) {
ret = __key_link_begin(keyring, &key->index_key, &edit);
if (ret < 0)
goto error;
if (keyring->restrict_link && keyring->restrict_link->check) {
struct key_restriction *keyres = keyring->restrict_link;
ret = keyres->check(keyring, key->type, &prep.payload,
keyres->key);
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
if (ret < 0)
goto error_link_end;
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
}
}
ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
error_link_end:
if (keyring)
__key_link_end(keyring, &key->index_key, edit);
error:
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (key->type->preparse)
key->type->free_preparse(&prep);
return ret;
}
EXPORT_SYMBOL(key_instantiate_and_link);
/**
* key_reject_and_link - Negatively instantiate a key and link it into the keyring.
* @key: The key to instantiate.
* @timeout: The timeout on the negative key.
* @error: The error to return when the key is hit.
* @keyring: Keyring to create a link in on success (or NULL).
* @authkey: The authorisation token permitting instantiation.
*
* Negatively instantiate a key that's in the uninstantiated state and, if
* successful, set its timeout and stored error and link it in to the
* destination keyring if one is supplied. The key and any links to the key
* will be automatically garbage collected after the timeout expires.
*
* Negative keys are used to rate limit repeated request_key() calls by causing
* them to return the stored error code (typically ENOKEY) until the negative
* key expires.
*
* If successful, 0 is returned, the authorisation token is revoked and anyone
* waiting for the key is woken up. If the key was already instantiated,
* -EBUSY will be returned.
*/
int key_reject_and_link(struct key *key,
unsigned timeout,
unsigned error,
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:56 +07:00
struct key *keyring,
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
struct key *authkey)
{
struct assoc_array_edit *edit;
int ret, awaken, link_ret = 0;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
if (keyring) {
if (keyring->restrict_link)
return -EPERM;
link_ret = __key_link_begin(keyring, &key->index_key, &edit);
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
}
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
if (key->state == KEY_IS_UNINSTANTIATED) {
/* mark the key as being negatively instantiated */
atomic_inc(&key->user->nikeys);
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
mark_key_instantiated(key, -error);
key->expiry = ktime_get_real_seconds() + timeout;
key_schedule_gc(key->expiry + key_gc_delay);
[PATCH] keys: Discard key spinlock and use RCU for key payload The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:49 +07:00
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
ret = 0;
/* and link it into the destination keyring */
if (keyring && link_ret == 0)
__key_link(key, &edit);
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:56 +07:00
/* disable the authorisation key */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
if (authkey)
key_revoke(authkey);
}
mutex_unlock(&key_construction_mutex);
KEYS: potential uninitialized variable If __key_link_begin() failed then "edit" would be uninitialized. I've added a check to fix that. This allows a random user to crash the kernel, though it's quite difficult to achieve. There are three ways it can be done as the user would have to cause an error to occur in __key_link(): (1) Cause the kernel to run out of memory. In practice, this is difficult to achieve without ENOMEM cropping up elsewhere and aborting the attempt. (2) Revoke the destination keyring between the keyring ID being looked up and it being tested for revocation. In practice, this is difficult to time correctly because the KEYCTL_REJECT function can only be used from the request-key upcall process. Further, users can only make use of what's in /sbin/request-key.conf, though this does including a rejection debugging test - which means that the destination keyring has to be the caller's session keyring in practice. (3) Have just enough key quota available to create a key, a new session keyring for the upcall and a link in the session keyring, but not then sufficient quota to create a link in the nominated destination keyring so that it fails with EDQUOT. The bug can be triggered using option (3) above using something like the following: echo 80 >/proc/sys/kernel/keys/root_maxbytes keyctl request2 user debug:fred negate @t The above sets the quota to something much lower (80) to make the bug easier to trigger, but this is dependent on the system. Note also that the name of the keyring created contains a random number that may be between 1 and 10 characters in size, so may throw the test off by changing the amount of quota used. Assuming the failure occurs, something like the following will be seen: kfree_debugcheck: out of range ptr 6b6b6b6b6b6b6b68h ------------[ cut here ]------------ kernel BUG at ../mm/slab.c:2821! ... RIP: 0010:[<ffffffff811600f9>] kfree_debugcheck+0x20/0x25 RSP: 0018:ffff8804014a7de8 EFLAGS: 00010092 RAX: 0000000000000034 RBX: 6b6b6b6b6b6b6b68 RCX: 0000000000000000 RDX: 0000000000040001 RSI: 00000000000000f6 RDI: 0000000000000300 RBP: ffff8804014a7df0 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8804014a7e68 R11: 0000000000000054 R12: 0000000000000202 R13: ffffffff81318a66 R14: 0000000000000000 R15: 0000000000000001 ... Call Trace: kfree+0xde/0x1bc assoc_array_cancel_edit+0x1f/0x36 __key_link_end+0x55/0x63 key_reject_and_link+0x124/0x155 keyctl_reject_key+0xb6/0xe0 keyctl_negate_key+0x10/0x12 SyS_keyctl+0x9f/0xe7 do_syscall_64+0x63/0x13a entry_SYSCALL64_slow_path+0x25/0x25 Fixes: f70e2e06196a ('KEYS: Do preallocation for __key_link()') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-16 21:48:57 +07:00
if (keyring && link_ret == 0)
__key_link_end(keyring, &key->index_key, edit);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret == 0 ? link_ret : ret;
}
EXPORT_SYMBOL(key_reject_and_link);
/**
* key_put - Discard a reference to a key.
* @key: The key to discard a reference from.
*
* Discard a reference to a key, and when all the references are gone, we
* schedule the cleanup task to come and pull it out of the tree in process
* context at some later time.
*/
void key_put(struct key *key)
{
if (key) {
key_check(key);
if (refcount_dec_and_test(&key->usage))
schedule_work(&key_gc_work);
}
}
EXPORT_SYMBOL(key_put);
/*
* Find a key by its serial number.
*/
struct key *key_lookup(key_serial_t id)
{
struct rb_node *n;
struct key *key;
spin_lock(&key_serial_lock);
/* search the tree for the specified key */
n = key_serial_tree.rb_node;
while (n) {
key = rb_entry(n, struct key, serial_node);
if (id < key->serial)
n = n->rb_left;
else if (id > key->serial)
n = n->rb_right;
else
goto found;
}
not_found:
key = ERR_PTR(-ENOKEY);
goto error;
found:
/* A key is allowed to be looked up only if someone still owns a
* reference to it - otherwise it's awaiting the gc.
*/
if (!refcount_inc_not_zero(&key->usage))
goto not_found;
error:
spin_unlock(&key_serial_lock);
return key;
}
/*
* Find and lock the specified key type against removal.
*
* We return with the sem read-locked if successful. If the type wasn't
* available -ENOKEY is returned instead.
*/
struct key_type *key_type_lookup(const char *type)
{
struct key_type *ktype;
down_read(&key_types_sem);
/* look up the key type to see if it's one of the registered kernel
* types */
list_for_each_entry(ktype, &key_types_list, link) {
if (strcmp(ktype->name, type) == 0)
goto found_kernel_type;
}
up_read(&key_types_sem);
ktype = ERR_PTR(-ENOKEY);
found_kernel_type:
return ktype;
}
void key_set_timeout(struct key *key, unsigned timeout)
{
time64_t expiry = 0;
/* make the changes with the locks held to prevent races */
down_write(&key->sem);
if (timeout > 0)
expiry = ktime_get_real_seconds() + timeout;
key->expiry = expiry;
key_schedule_gc(key->expiry + key_gc_delay);
up_write(&key->sem);
}
EXPORT_SYMBOL_GPL(key_set_timeout);
/*
* Unlock a key type locked by key_type_lookup().
*/
void key_type_put(struct key_type *ktype)
{
up_read(&key_types_sem);
}
/*
* Attempt to update an existing key.
*
* The key is given to us with an incremented refcount that we need to discard
* if we get an error.
*/
static inline key_ref_t __key_update(key_ref_t key_ref,
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
struct key_preparsed_payload *prep)
{
struct key *key = key_ref_to_ptr(key_ref);
int ret;
/* need write permission on the key to update it */
ret = key_permission(key_ref, KEY_NEED_WRITE);
if (ret < 0)
goto error;
ret = -EEXIST;
if (!key->type->update)
goto error;
down_write(&key->sem);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
ret = key->type->update(key, prep);
[PATCH] keys: Discard key spinlock and use RCU for key payload The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 12:00:49 +07:00
if (ret == 0)
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
/* Updating a negative key positively instantiates it */
mark_key_instantiated(key, 0);
up_write(&key->sem);
if (ret < 0)
goto error;
out:
return key_ref;
error:
key_put(key);
key_ref = ERR_PTR(ret);
goto out;
}
/**
* key_create_or_update - Update or create and instantiate a key.
* @keyring_ref: A pointer to the destination keyring with possession flag.
* @type: The type of key.
* @description: The searchable description for the key.
* @payload: The data to use to instantiate or update the key.
* @plen: The length of @payload.
* @perm: The permissions mask for a new key.
* @flags: The quota flags for a new key.
*
* Search the destination keyring for a key of the same description and if one
* is found, update it, otherwise create and instantiate a new one and create a
* link to it from that keyring.
*
* If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
* concocted.
*
* Returns a pointer to the new key if successful, -ENODEV if the key type
* wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
* caller isn't permitted to modify the keyring or the LSM did not permit
* creation of the key.
*
* On success, the possession flag from the keyring ref will be tacked on to
* the key ref before it is returned.
*/
key_ref_t key_create_or_update(key_ref_t keyring_ref,
const char *type,
const char *description,
const void *payload,
size_t plen,
key_perm_t perm,
unsigned long flags)
{
struct keyring_index_key index_key = {
.description = description,
};
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
struct key_preparsed_payload prep;
struct assoc_array_edit *edit;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
const struct cred *cred = current_cred();
struct key *keyring, *key = NULL;
key_ref_t key_ref;
int ret;
struct key_restriction *restrict_link = NULL;
/* look up the key type to see if it's one of the registered kernel
* types */
index_key.type = key_type_lookup(type);
if (IS_ERR(index_key.type)) {
key_ref = ERR_PTR(-ENODEV);
goto error;
}
key_ref = ERR_PTR(-EINVAL);
if (!index_key.type->instantiate ||
(!index_key.description && !index_key.type->preparse))
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_put_type;
keyring = key_ref_to_ptr(keyring_ref);
key_check(keyring);
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
restrict_link = keyring->restrict_link;
key_ref = ERR_PTR(-ENOTDIR);
if (keyring->type != &key_type_keyring)
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_put_type;
memset(&prep, 0, sizeof(prep));
prep.data = payload;
prep.datalen = plen;
prep.quotalen = index_key.type->def_datalen;
prep.expiry = TIME64_MAX;
if (index_key.type->preparse) {
ret = index_key.type->preparse(&prep);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_free_prep;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
}
if (!index_key.description)
index_key.description = prep.description;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
key_ref = ERR_PTR(-EINVAL);
if (!index_key.description)
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_free_prep;
}
index_key.desc_len = strlen(index_key.description);
ret = __key_link_begin(keyring, &index_key, &edit);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_free_prep;
}
if (restrict_link && restrict_link->check) {
ret = restrict_link->check(keyring, index_key.type,
&prep.payload, restrict_link->key);
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_link_end;
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
}
}
/* if we're going to allocate a new key, we're going to have
* to modify the keyring */
ret = key_permission(keyring_ref, KEY_NEED_WRITE);
if (ret < 0) {
key_ref = ERR_PTR(ret);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_link_end;
}
/* if it's possible to update this type of key, search for an existing
* key of the same type and description in the destination keyring and
* update that instead if possible
*/
if (index_key.type->update) {
key_ref = find_key_to_update(keyring_ref, &index_key);
if (key_ref)
goto found_matching_key;
}
/* if the client doesn't provide, decide on the permissions we want */
if (perm == KEY_PERM_UNDEF) {
perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
KEYS: Reduce initial permissions on keys Reduce the initial permissions on new keys to grant the possessor everything, view permission only to the user (so the keys can be seen in /proc/keys) and nothing else. This gives the creator a chance to adjust the permissions mask before other processes can access the new key or create a link to it. To aid with this, keyring_alloc() now takes a permission argument rather than setting the permissions itself. The following permissions are now set: (1) The user and user-session keyrings grant the user that owns them full permissions and grant a possessor everything bar SETATTR. (2) The process and thread keyrings grant the possessor full permissions but only grant the user VIEW. This permits the user to see them in /proc/keys, but not to do anything with them. (3) Anonymous session keyrings grant the possessor full permissions, but only grant the user VIEW and READ. This means that the user can see them in /proc/keys and can list them, but nothing else. Possibly READ shouldn't be provided either. (4) Named session keyrings grant everything an anonymous session keyring does, plus they grant the user LINK permission. The whole point of named session keyrings is that others can also subscribe to them. Possibly this should be a separate permission to LINK. (5) The temporary session keyring created by call_sbin_request_key() gets the same permissions as an anonymous session keyring. (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the possessor, plus READ and/or WRITE if the key type supports them. The used only gets VIEW now. (7) Keys created by request_key() now get the same as those created by add_key(). Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Stef Walter <stefw@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-03 01:24:56 +07:00
perm |= KEY_USR_VIEW;
if (index_key.type->read)
KEYS: Reduce initial permissions on keys Reduce the initial permissions on new keys to grant the possessor everything, view permission only to the user (so the keys can be seen in /proc/keys) and nothing else. This gives the creator a chance to adjust the permissions mask before other processes can access the new key or create a link to it. To aid with this, keyring_alloc() now takes a permission argument rather than setting the permissions itself. The following permissions are now set: (1) The user and user-session keyrings grant the user that owns them full permissions and grant a possessor everything bar SETATTR. (2) The process and thread keyrings grant the possessor full permissions but only grant the user VIEW. This permits the user to see them in /proc/keys, but not to do anything with them. (3) Anonymous session keyrings grant the possessor full permissions, but only grant the user VIEW and READ. This means that the user can see them in /proc/keys and can list them, but nothing else. Possibly READ shouldn't be provided either. (4) Named session keyrings grant everything an anonymous session keyring does, plus they grant the user LINK permission. The whole point of named session keyrings is that others can also subscribe to them. Possibly this should be a separate permission to LINK. (5) The temporary session keyring created by call_sbin_request_key() gets the same permissions as an anonymous session keyring. (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the possessor, plus READ and/or WRITE if the key type supports them. The used only gets VIEW now. (7) Keys created by request_key() now get the same as those created by add_key(). Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Stef Walter <stefw@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-03 01:24:56 +07:00
perm |= KEY_POS_READ;
if (index_key.type == &key_type_keyring ||
index_key.type->update)
KEYS: Reduce initial permissions on keys Reduce the initial permissions on new keys to grant the possessor everything, view permission only to the user (so the keys can be seen in /proc/keys) and nothing else. This gives the creator a chance to adjust the permissions mask before other processes can access the new key or create a link to it. To aid with this, keyring_alloc() now takes a permission argument rather than setting the permissions itself. The following permissions are now set: (1) The user and user-session keyrings grant the user that owns them full permissions and grant a possessor everything bar SETATTR. (2) The process and thread keyrings grant the possessor full permissions but only grant the user VIEW. This permits the user to see them in /proc/keys, but not to do anything with them. (3) Anonymous session keyrings grant the possessor full permissions, but only grant the user VIEW and READ. This means that the user can see them in /proc/keys and can list them, but nothing else. Possibly READ shouldn't be provided either. (4) Named session keyrings grant everything an anonymous session keyring does, plus they grant the user LINK permission. The whole point of named session keyrings is that others can also subscribe to them. Possibly this should be a separate permission to LINK. (5) The temporary session keyring created by call_sbin_request_key() gets the same permissions as an anonymous session keyring. (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the possessor, plus READ and/or WRITE if the key type supports them. The used only gets VIEW now. (7) Keys created by request_key() now get the same as those created by add_key(). Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Stef Walter <stefw@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-03 01:24:56 +07:00
perm |= KEY_POS_WRITE;
}
/* allocate a new key */
key = key_alloc(index_key.type, index_key.description,
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 22:14:24 +07:00
cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
if (IS_ERR(key)) {
key_ref = ERR_CAST(key);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_link_end;
}
/* instantiate it and link it into the target keyring */
ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
if (ret < 0) {
key_put(key);
key_ref = ERR_PTR(ret);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
goto error_link_end;
}
key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
error_link_end:
__key_link_end(keyring, &index_key, edit);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
error_free_prep:
if (index_key.type->preparse)
index_key.type->free_preparse(&prep);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
error_put_type:
key_type_put(index_key.type);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
error:
return key_ref;
found_matching_key:
/* we found a matching key, so we're going to try to update it
* - we can drop the locks first as we have the key pinned
*/
__key_link_end(keyring, &index_key, edit);
KEYS: don't let add_key() update an uninstantiated key Currently, when passed a key that already exists, add_key() will call the key's ->update() method if such exists. But this is heavily broken in the case where the key is uninstantiated because it doesn't call __key_instantiate_and_link(). Consequently, it doesn't do most of the things that are supposed to happen when the key is instantiated, such as setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and awakening tasks waiting on it, and incrementing key->user->nikeys. It also never takes key_construction_mutex, which means that ->instantiate() can run concurrently with ->update() on the same key. In the case of the "user" and "logon" key types this causes a memory leak, at best. Maybe even worse, the ->update() methods of the "encrypted" and "trusted" key types actually just dereference a NULL pointer when passed an uninstantiated key. Change key_create_or_update() to wait interruptibly for the key to finish construction before continuing. This patch only affects *uninstantiated* keys. For now we still allow a negatively instantiated key to be updated (thereby positively instantiating it), although that's broken too (the next patch fixes it) and I'm not sure that anyone actually uses that functionality either. Here is a simple reproducer for the bug using the "encrypted" key type (requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug pertained to more than just the "encrypted" key type: #include <stdlib.h> #include <unistd.h> #include <keyutils.h> int main(void) { int ringid = keyctl_join_session_keyring(NULL); if (fork()) { for (;;) { const char payload[] = "update user:foo 32"; usleep(rand() % 10000); add_key("encrypted", "desc", payload, sizeof(payload), ringid); keyctl_clear(ringid); } } else { for (;;) request_key("encrypted", "desc", "callout_info", ringid); } } It causes: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: encrypted_update+0xb0/0x170 PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0 PREEMPT SMP CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff8a467a39a340 task.stack: ffffb15c40770000 RIP: 0010:encrypted_update+0xb0/0x170 RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000 RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303 RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17 R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0 Call Trace: key_create_or_update+0x2bc/0x460 SyS_add_key+0x10c/0x1d0 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x7f5d7f211259 RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8 RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259 RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04 RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004 R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868 R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000 Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8 CR2: 0000000000000018 Cc: <stable@vger.kernel.org> # v2.6.12+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric Biggers <ebiggers@google.com>
2017-10-12 22:00:41 +07:00
key = key_ref_to_ptr(key_ref);
if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
ret = wait_for_key_construction(key, true);
if (ret < 0) {
key_ref_put(key_ref);
key_ref = ERR_PTR(ret);
goto error_free_prep;
}
}
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
key_ref = __key_update(key_ref, &prep);
goto error_free_prep;
}
EXPORT_SYMBOL(key_create_or_update);
/**
* key_update - Update a key's contents.
* @key_ref: The pointer (plus possession flag) to the key.
* @payload: The data to be used to update the key.
* @plen: The length of @payload.
*
* Attempt to update the contents of a key with the given payload data. The
* caller must be granted Write permission on the key. Negative keys can be
* instantiated by this method.
*
* Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
* type does not support updating. The key type may return other errors.
*/
int key_update(key_ref_t key_ref, const void *payload, size_t plen)
{
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
struct key_preparsed_payload prep;
struct key *key = key_ref_to_ptr(key_ref);
int ret;
key_check(key);
/* the key must be writable */
ret = key_permission(key_ref, KEY_NEED_WRITE);
if (ret < 0)
KEYS: fix freeing uninitialized memory in key_update() key_update() freed the key_preparsed_payload even if it was not initialized first. This would cause a crash if userspace called keyctl_update() on a key with type like "asymmetric" that has a ->preparse() method but not an ->update() method. Possibly it could even be triggered for other key types by racing with keyctl_setperm() to make the KEY_NEED_WRITE check fail (the permission was already checked, so normally it wouldn't fail there). Reproducer with key type "asymmetric", given a valid cert.der: keyctl new_session keyid=$(keyctl padd asymmetric desc @s < cert.der) keyctl setperm $keyid 0x3f000000 keyctl update $keyid data [ 150.686666] BUG: unable to handle kernel NULL pointer dereference at 0000000000000001 [ 150.687601] IP: asymmetric_key_free_kids+0x12/0x30 [ 150.688139] PGD 38a3d067 [ 150.688141] PUD 3b3de067 [ 150.688447] PMD 0 [ 150.688745] [ 150.689160] Oops: 0000 [#1] SMP [ 150.689455] Modules linked in: [ 150.689769] CPU: 1 PID: 2478 Comm: keyctl Not tainted 4.11.0-rc4-xfstests-00187-ga9f6b6b8cd2f #742 [ 150.690916] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 [ 150.692199] task: ffff88003b30c480 task.stack: ffffc90000350000 [ 150.692952] RIP: 0010:asymmetric_key_free_kids+0x12/0x30 [ 150.693556] RSP: 0018:ffffc90000353e58 EFLAGS: 00010202 [ 150.694142] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000004 [ 150.694845] RDX: ffffffff81ee3920 RSI: ffff88003d4b0700 RDI: 0000000000000001 [ 150.697569] RBP: ffffc90000353e60 R08: ffff88003d5d2140 R09: 0000000000000000 [ 150.702483] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [ 150.707393] R13: 0000000000000004 R14: ffff880038a4d2d8 R15: 000000000040411f [ 150.709720] FS: 00007fcbcee35700(0000) GS:ffff88003fd00000(0000) knlGS:0000000000000000 [ 150.711504] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 150.712733] CR2: 0000000000000001 CR3: 0000000039eab000 CR4: 00000000003406e0 [ 150.714487] Call Trace: [ 150.714975] asymmetric_key_free_preparse+0x2f/0x40 [ 150.715907] key_update+0xf7/0x140 [ 150.716560] ? key_default_cmp+0x20/0x20 [ 150.717319] keyctl_update_key+0xb0/0xe0 [ 150.718066] SyS_keyctl+0x109/0x130 [ 150.718663] entry_SYSCALL_64_fastpath+0x1f/0xc2 [ 150.719440] RIP: 0033:0x7fcbce75ff19 [ 150.719926] RSP: 002b:00007ffd5d167088 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa [ 150.720918] RAX: ffffffffffffffda RBX: 0000000000404d80 RCX: 00007fcbce75ff19 [ 150.721874] RDX: 00007ffd5d16785e RSI: 000000002866cd36 RDI: 0000000000000002 [ 150.722827] RBP: 0000000000000006 R08: 000000002866cd36 R09: 00007ffd5d16785e [ 150.723781] R10: 0000000000000004 R11: 0000000000000206 R12: 0000000000404d80 [ 150.724650] R13: 00007ffd5d16784d R14: 00007ffd5d167238 R15: 000000000040411f [ 150.725447] Code: 83 c4 08 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 85 ff 74 23 55 48 89 e5 53 48 89 fb <48> 8b 3f e8 06 21 c5 ff 48 8b 7b 08 e8 fd 20 c5 ff 48 89 df e8 [ 150.727489] RIP: asymmetric_key_free_kids+0x12/0x30 RSP: ffffc90000353e58 [ 150.728117] CR2: 0000000000000001 [ 150.728430] ---[ end trace f7f8fe1da2d5ae8d ]--- Fixes: 4d8c0250b841 ("KEYS: Call ->free_preparse() even after ->preparse() returns an error") Cc: stable@vger.kernel.org # 3.17+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-08 20:48:47 +07:00
return ret;
/* attempt to update it if supported */
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (!key->type->update)
KEYS: fix freeing uninitialized memory in key_update() key_update() freed the key_preparsed_payload even if it was not initialized first. This would cause a crash if userspace called keyctl_update() on a key with type like "asymmetric" that has a ->preparse() method but not an ->update() method. Possibly it could even be triggered for other key types by racing with keyctl_setperm() to make the KEY_NEED_WRITE check fail (the permission was already checked, so normally it wouldn't fail there). Reproducer with key type "asymmetric", given a valid cert.der: keyctl new_session keyid=$(keyctl padd asymmetric desc @s < cert.der) keyctl setperm $keyid 0x3f000000 keyctl update $keyid data [ 150.686666] BUG: unable to handle kernel NULL pointer dereference at 0000000000000001 [ 150.687601] IP: asymmetric_key_free_kids+0x12/0x30 [ 150.688139] PGD 38a3d067 [ 150.688141] PUD 3b3de067 [ 150.688447] PMD 0 [ 150.688745] [ 150.689160] Oops: 0000 [#1] SMP [ 150.689455] Modules linked in: [ 150.689769] CPU: 1 PID: 2478 Comm: keyctl Not tainted 4.11.0-rc4-xfstests-00187-ga9f6b6b8cd2f #742 [ 150.690916] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 [ 150.692199] task: ffff88003b30c480 task.stack: ffffc90000350000 [ 150.692952] RIP: 0010:asymmetric_key_free_kids+0x12/0x30 [ 150.693556] RSP: 0018:ffffc90000353e58 EFLAGS: 00010202 [ 150.694142] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000004 [ 150.694845] RDX: ffffffff81ee3920 RSI: ffff88003d4b0700 RDI: 0000000000000001 [ 150.697569] RBP: ffffc90000353e60 R08: ffff88003d5d2140 R09: 0000000000000000 [ 150.702483] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [ 150.707393] R13: 0000000000000004 R14: ffff880038a4d2d8 R15: 000000000040411f [ 150.709720] FS: 00007fcbcee35700(0000) GS:ffff88003fd00000(0000) knlGS:0000000000000000 [ 150.711504] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 150.712733] CR2: 0000000000000001 CR3: 0000000039eab000 CR4: 00000000003406e0 [ 150.714487] Call Trace: [ 150.714975] asymmetric_key_free_preparse+0x2f/0x40 [ 150.715907] key_update+0xf7/0x140 [ 150.716560] ? key_default_cmp+0x20/0x20 [ 150.717319] keyctl_update_key+0xb0/0xe0 [ 150.718066] SyS_keyctl+0x109/0x130 [ 150.718663] entry_SYSCALL_64_fastpath+0x1f/0xc2 [ 150.719440] RIP: 0033:0x7fcbce75ff19 [ 150.719926] RSP: 002b:00007ffd5d167088 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa [ 150.720918] RAX: ffffffffffffffda RBX: 0000000000404d80 RCX: 00007fcbce75ff19 [ 150.721874] RDX: 00007ffd5d16785e RSI: 000000002866cd36 RDI: 0000000000000002 [ 150.722827] RBP: 0000000000000006 R08: 000000002866cd36 R09: 00007ffd5d16785e [ 150.723781] R10: 0000000000000004 R11: 0000000000000206 R12: 0000000000404d80 [ 150.724650] R13: 00007ffd5d16784d R14: 00007ffd5d167238 R15: 000000000040411f [ 150.725447] Code: 83 c4 08 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 85 ff 74 23 55 48 89 e5 53 48 89 fb <48> 8b 3f e8 06 21 c5 ff 48 8b 7b 08 e8 fd 20 c5 ff 48 89 df e8 [ 150.727489] RIP: asymmetric_key_free_kids+0x12/0x30 RSP: ffffc90000353e58 [ 150.728117] CR2: 0000000000000001 [ 150.728430] ---[ end trace f7f8fe1da2d5ae8d ]--- Fixes: 4d8c0250b841 ("KEYS: Call ->free_preparse() even after ->preparse() returns an error") Cc: stable@vger.kernel.org # 3.17+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-08 20:48:47 +07:00
return -EOPNOTSUPP;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
memset(&prep, 0, sizeof(prep));
prep.data = payload;
prep.datalen = plen;
prep.quotalen = key->type->def_datalen;
prep.expiry = TIME64_MAX;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (key->type->preparse) {
ret = key->type->preparse(&prep);
if (ret < 0)
goto error;
}
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
down_write(&key->sem);
ret = key->type->update(key, &prep);
if (ret == 0)
KEYS: Fix race between updating and finding a negative key Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-04 22:43:25 +07:00
/* Updating a negative key positively instantiates it */
mark_key_instantiated(key, 0);
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
up_write(&key->sem);
error:
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 19:06:29 +07:00
if (key->type->preparse)
key->type->free_preparse(&prep);
return ret;
}
EXPORT_SYMBOL(key_update);
/**
* key_revoke - Revoke a key.
* @key: The key to be revoked.
*
* Mark a key as being revoked and ask the type to free up its resources. The
* revocation timeout is set and the key and all its links will be
* automatically garbage collected after key_gc_delay amount of time if they
* are not manually dealt with first.
*/
void key_revoke(struct key *key)
{
time64_t time;
key_check(key);
/* make sure no one's trying to change or use the key when we mark it
* - we tell lockdep that we might nest because we might be revoking an
* authorisation key whilst holding the sem on a key we've just
* instantiated
*/
down_write_nested(&key->sem, 1);
if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
key->type->revoke)
[PATCH] Keys: Fix race between two instantiators of a key Add a revocation notification method to the key type and calls it whilst the key's semaphore is still write-locked after setting the revocation flag. The patch then uses this to maintain a reference on the task_struct of the process that calls request_key() for as long as the authorisation key remains unrevoked. This fixes a potential race between two processes both of which have assumed the authority to instantiate a key (one may have forked the other for example). The problem is that there's no locking around the check for revocation of the auth key and the use of the task_struct it points to, nor does the auth key keep a reference on the task_struct. Access to the "context" pointer in the auth key must thenceforth be done with the auth key semaphore held. The revocation method is called with the target key semaphore held write-locked and the search of the context process's keyrings is done with the auth key semaphore read-locked. The check for the revocation state of the auth key just prior to searching it is done after the auth key is read-locked for the search. This ensures that the auth key can't be revoked between the check and the search. The revocation notification method is added so that the context task_struct can be released as soon as instantiation happens rather than waiting for the auth key to be destroyed, thus avoiding the unnecessary pinning of the requesting process. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 04:47:18 +07:00
key->type->revoke(key);
/* set the death time to no more than the expiry time */
time = ktime_get_real_seconds();
if (key->revoked_at == 0 || key->revoked_at > time) {
key->revoked_at = time;
key_schedule_gc(key->revoked_at + key_gc_delay);
}
up_write(&key->sem);
}
EXPORT_SYMBOL(key_revoke);
/**
* key_invalidate - Invalidate a key.
* @key: The key to be invalidated.
*
* Mark a key as being invalidated and have it cleaned up immediately. The key
* is ignored by all searches and other operations from this point.
*/
void key_invalidate(struct key *key)
{
kenter("%d", key_serial(key));
key_check(key);
if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
down_write_nested(&key->sem, 1);
if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
key_schedule_gc_links();
up_write(&key->sem);
}
}
EXPORT_SYMBOL(key_invalidate);
/**
* generic_key_instantiate - Simple instantiation of a key from preparsed data
* @key: The key to be instantiated
* @prep: The preparsed data to load.
*
* Instantiate a key from preparsed data. We assume we can just copy the data
* in directly and clear the old pointers.
*
* This can be pointed to directly by the key type instantiate op pointer.
*/
int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
{
int ret;
pr_devel("==>%s()\n", __func__);
ret = key_payload_reserve(key, prep->quotalen);
if (ret == 0) {
rcu_assign_keypointer(key, prep->payload.data[0]);
key->payload.data[1] = prep->payload.data[1];
key->payload.data[2] = prep->payload.data[2];
key->payload.data[3] = prep->payload.data[3];
prep->payload.data[0] = NULL;
prep->payload.data[1] = NULL;
prep->payload.data[2] = NULL;
prep->payload.data[3] = NULL;
}
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL(generic_key_instantiate);
/**
* register_key_type - Register a type of key.
* @ktype: The new key type.
*
* Register a new key type.
*
* Returns 0 on success or -EEXIST if a type of this name already exists.
*/
int register_key_type(struct key_type *ktype)
{
struct key_type *p;
int ret;
memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
ret = -EEXIST;
down_write(&key_types_sem);
/* disallow key types with the same name */
list_for_each_entry(p, &key_types_list, link) {
if (strcmp(p->name, ktype->name) == 0)
goto out;
}
/* store the type */
list_add(&ktype->link, &key_types_list);
pr_notice("Key type %s registered\n", ktype->name);
ret = 0;
out:
up_write(&key_types_sem);
return ret;
}
EXPORT_SYMBOL(register_key_type);
/**
* unregister_key_type - Unregister a type of key.
* @ktype: The key type.
*
* Unregister a key type and mark all the extant keys of this type as dead.
* Those keys of this type are then destroyed to get rid of their payloads and
* they and their links will be garbage collected as soon as possible.
*/
void unregister_key_type(struct key_type *ktype)
{
down_write(&key_types_sem);
list_del_init(&ktype->link);
KEYS: Correctly destroy key payloads when their keytype is removed unregister_key_type() has code to mark a key as dead and make it unavailable in one loop and then destroy all those unavailable key payloads in the next loop. However, the loop to mark keys dead renders the key undetectable to the second loop by changing the key type pointer also. Fix this by the following means: (1) The key code has two garbage collectors: one deletes unreferenced keys and the other alters keyrings to delete links to old dead, revoked and expired keys. They can end up holding each other up as both want to scan the key serial tree under spinlock. Combine these into a single routine. (2) Move the dead key marking, dead link removal and dead key removal into the garbage collector as a three phase process running over the three cycles of the normal garbage collection procedure. This is tracked by the KEY_GC_REAPING_DEAD_1, _2 and _3 state flags. unregister_key_type() then just unlinks the key type from the list, wakes up the garbage collector and waits for the third phase to complete. (3) Downgrade the key types sem in unregister_key_type() once it has deleted the key type from the list so that it doesn't block the keyctl() syscall. (4) Dead keys that cannot be simply removed in the third phase have their payloads destroyed with the key's semaphore write-locked to prevent interference by the keyctl() syscall. There should be no in-kernel users of dead keys of that type by the point of unregistration, though keyctl() may be holding a reference. (5) Only perform timer recalculation in the GC if the timer actually expired. If it didn't, we'll get another cycle when it goes off - and if the key that actually triggered it has been removed, it's not a problem. (6) Only garbage collect link if the timer expired or if we're doing dead key clean up phase 2. (7) As only key_garbage_collector() is permitted to use rb_erase() on the key serial tree, it doesn't need to revalidate its cursor after dropping the spinlock as the node the cursor points to must still exist in the tree. (8) Drop the spinlock in the GC if there is contention on it or if we need to reschedule. After dealing with that, get the spinlock again and resume scanning. This has been tested in the following ways: (1) Run the keyutils testsuite against it. (2) Using the AF_RXRPC and RxKAD modules to test keytype removal: Load the rxrpc_s key type: # insmod /tmp/af-rxrpc.ko # insmod /tmp/rxkad.ko Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c): # /tmp/listen & [1] 8173 Find the key: # grep rxrpc_s /proc/keys 091086e1 I--Q-- 1 perm 39390000 0 0 rxrpc_s 52:2 Link it to a session keyring, preferably one with a higher serial number: # keyctl link 0x20e36251 @s Kill the process (the key should remain as it's linked to another place): # fg /tmp/listen ^C Remove the key type: rmmod rxkad rmmod af-rxrpc This can be made a more effective test by altering the following part of the patch: if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) { /* Make sure everyone revalidates their keys if we marked a * bunch as being dead and make sure all keyring ex-payloads * are destroyed. */ kdebug("dead sync"); synchronize_rcu(); To call synchronize_rcu() in GC phase 1 instead. That causes that the keyring's old payload content to hang around longer until it's RCU destroyed - which usually happens after GC phase 3 is complete. This allows the destroy_dead_key branch to be tested. Reported-by: Benjamin Coddington <bcodding@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2011-08-22 20:09:36 +07:00
downgrade_write(&key_types_sem);
key_gc_keytype(ktype);
pr_notice("Key type %s unregistered\n", ktype->name);
KEYS: Correctly destroy key payloads when their keytype is removed unregister_key_type() has code to mark a key as dead and make it unavailable in one loop and then destroy all those unavailable key payloads in the next loop. However, the loop to mark keys dead renders the key undetectable to the second loop by changing the key type pointer also. Fix this by the following means: (1) The key code has two garbage collectors: one deletes unreferenced keys and the other alters keyrings to delete links to old dead, revoked and expired keys. They can end up holding each other up as both want to scan the key serial tree under spinlock. Combine these into a single routine. (2) Move the dead key marking, dead link removal and dead key removal into the garbage collector as a three phase process running over the three cycles of the normal garbage collection procedure. This is tracked by the KEY_GC_REAPING_DEAD_1, _2 and _3 state flags. unregister_key_type() then just unlinks the key type from the list, wakes up the garbage collector and waits for the third phase to complete. (3) Downgrade the key types sem in unregister_key_type() once it has deleted the key type from the list so that it doesn't block the keyctl() syscall. (4) Dead keys that cannot be simply removed in the third phase have their payloads destroyed with the key's semaphore write-locked to prevent interference by the keyctl() syscall. There should be no in-kernel users of dead keys of that type by the point of unregistration, though keyctl() may be holding a reference. (5) Only perform timer recalculation in the GC if the timer actually expired. If it didn't, we'll get another cycle when it goes off - and if the key that actually triggered it has been removed, it's not a problem. (6) Only garbage collect link if the timer expired or if we're doing dead key clean up phase 2. (7) As only key_garbage_collector() is permitted to use rb_erase() on the key serial tree, it doesn't need to revalidate its cursor after dropping the spinlock as the node the cursor points to must still exist in the tree. (8) Drop the spinlock in the GC if there is contention on it or if we need to reschedule. After dealing with that, get the spinlock again and resume scanning. This has been tested in the following ways: (1) Run the keyutils testsuite against it. (2) Using the AF_RXRPC and RxKAD modules to test keytype removal: Load the rxrpc_s key type: # insmod /tmp/af-rxrpc.ko # insmod /tmp/rxkad.ko Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c): # /tmp/listen & [1] 8173 Find the key: # grep rxrpc_s /proc/keys 091086e1 I--Q-- 1 perm 39390000 0 0 rxrpc_s 52:2 Link it to a session keyring, preferably one with a higher serial number: # keyctl link 0x20e36251 @s Kill the process (the key should remain as it's linked to another place): # fg /tmp/listen ^C Remove the key type: rmmod rxkad rmmod af-rxrpc This can be made a more effective test by altering the following part of the patch: if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) { /* Make sure everyone revalidates their keys if we marked a * bunch as being dead and make sure all keyring ex-payloads * are destroyed. */ kdebug("dead sync"); synchronize_rcu(); To call synchronize_rcu() in GC phase 1 instead. That causes that the keyring's old payload content to hang around longer until it's RCU destroyed - which usually happens after GC phase 3 is complete. This allows the destroy_dead_key branch to be tested. Reported-by: Benjamin Coddington <bcodding@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2011-08-22 20:09:36 +07:00
up_read(&key_types_sem);
}
EXPORT_SYMBOL(unregister_key_type);
/*
* Initialise the key management state.
*/
void __init key_init(void)
{
/* allocate a slab in which we can store keys */
key_jar = kmem_cache_create("key_jar", sizeof(struct key),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
/* add the special key types */
list_add_tail(&key_type_keyring.link, &key_types_list);
list_add_tail(&key_type_dead.link, &key_types_list);
list_add_tail(&key_type_user.link, &key_types_list);
list_add_tail(&key_type_logon.link, &key_types_list);
/* record the root user tracking */
rb_link_node(&root_key_user.node,
NULL,
&key_user_tree.rb_node);
rb_insert_color(&root_key_user.node,
&key_user_tree);
}