linux_dsm_epyc7002/net/sunrpc/xprtrdma/frwr_ops.c

596 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Oracle. All rights reserved.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*/
/* Lightweight memory registration using Fast Registration Work
* Requests (FRWR). Also referred to sometimes as FRMR mode.
*
* FRWR features ordered asynchronous registration and deregistration
* of arbitrarily sized memory regions. This is the fastest and safest
* but most complex memory registration mode.
*/
/* Normal operation
*
* A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
* Work Request (frmr_op_map). When the RDMA operation is finished, this
* Memory Region is invalidated using a LOCAL_INV Work Request
* (frmr_op_unmap).
*
* Typically these Work Requests are not signaled, and neither are RDMA
* SEND Work Requests (with the exception of signaling occasionally to
* prevent provider work queue overflows). This greatly reduces HCA
* interrupt workload.
*
* As an optimization, frwr_op_unmap marks MRs INVALID before the
* LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
* rb_mws immediately so that no work (like managing a linked list
* under a spinlock) is needed in the completion upcall.
*
* But this means that frwr_op_map() can occasionally encounter an MR
* that is INVALID but the LOCAL_INV WR has not completed. Work Queue
* ordering prevents a subsequent FAST_REG WR from executing against
* that MR while it is still being invalidated.
*/
/* Transport recovery
*
* ->op_map and the transport connect worker cannot run at the same
* time, but ->op_unmap can fire while the transport connect worker
* is running. Thus MR recovery is handled in ->op_map, to guarantee
* that recovered MRs are owned by a sending RPC, and not one where
* ->op_unmap could fire at the same time transport reconnect is
* being done.
*
* When the underlying transport disconnects, MRs are left in one of
* three states:
*
* INVALID: The MR was not in use before the QP entered ERROR state.
* (Or, the LOCAL_INV WR has not completed or flushed yet).
*
* STALE: The MR was being registered or unregistered when the QP
* entered ERROR state, and the pending WR was flushed.
*
* VALID: The MR was registered before the QP entered ERROR state.
*
* When frwr_op_map encounters STALE and VALID MRs, they are recovered
* with ib_dereg_mr and then are re-initialized. Beause MR recovery
* allocates fresh resources, it is deferred to a workqueue, and the
* recovered MRs are placed back on the rb_mws list when recovery is
* complete. frwr_op_map allocates another MR for the current RPC while
* the broken MR is reset.
*
* To ensure that frwr_op_map doesn't encounter an MR that is marked
* INVALID but that is about to be flushed due to a previous transport
* disconnect, the transport connect worker attempts to drain all
* pending send queue WRs before the transport is reconnected.
*/
#include <linux/sunrpc/rpc_rdma.h>
#include "xprt_rdma.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
bool
frwr_is_supported(struct rpcrdma_ia *ia)
{
struct ib_device_attr *attrs = &ia->ri_device->attrs;
if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
goto out_not_supported;
if (attrs->max_fast_reg_page_list_len == 0)
goto out_not_supported;
return true;
out_not_supported:
pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
ia->ri_device->name);
return false;
}
static int
frwr_op_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r)
{
unsigned int depth = ia->ri_max_frmr_depth;
struct rpcrdma_frmr *f = &r->frmr;
int rc;
f->fr_mr = ib_alloc_mr(ia->ri_pd, IB_MR_TYPE_MEM_REG, depth);
if (IS_ERR(f->fr_mr))
goto out_mr_err;
r->mw_sg = kcalloc(depth, sizeof(*r->mw_sg), GFP_KERNEL);
if (!r->mw_sg)
goto out_list_err;
sg_init_table(r->mw_sg, depth);
init_completion(&f->fr_linv_done);
return 0;
out_mr_err:
rc = PTR_ERR(f->fr_mr);
dprintk("RPC: %s: ib_alloc_mr status %i\n",
__func__, rc);
return rc;
out_list_err:
rc = -ENOMEM;
dprintk("RPC: %s: sg allocation failure\n",
__func__);
ib_dereg_mr(f->fr_mr);
return rc;
}
static void
frwr_op_release_mr(struct rpcrdma_mw *r)
{
int rc;
/* Ensure MW is not on any rl_registered list */
if (!list_empty(&r->mw_list))
list_del(&r->mw_list);
rc = ib_dereg_mr(r->frmr.fr_mr);
if (rc)
pr_err("rpcrdma: final ib_dereg_mr for %p returned %i\n",
r, rc);
kfree(r->mw_sg);
kfree(r);
}
static int
__frwr_reset_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r)
{
struct rpcrdma_frmr *f = &r->frmr;
int rc;
rc = ib_dereg_mr(f->fr_mr);
if (rc) {
pr_warn("rpcrdma: ib_dereg_mr status %d, frwr %p orphaned\n",
rc, r);
return rc;
}
f->fr_mr = ib_alloc_mr(ia->ri_pd, IB_MR_TYPE_MEM_REG,
ia->ri_max_frmr_depth);
if (IS_ERR(f->fr_mr)) {
pr_warn("rpcrdma: ib_alloc_mr status %ld, frwr %p orphaned\n",
PTR_ERR(f->fr_mr), r);
return PTR_ERR(f->fr_mr);
}
dprintk("RPC: %s: recovered FRMR %p\n", __func__, f);
f->fr_state = FRMR_IS_INVALID;
return 0;
}
/* Reset of a single FRMR. Generate a fresh rkey by replacing the MR.
*
* There's no recovery if this fails. The FRMR is abandoned, but
* remains in rb_all. It will be cleaned up when the transport is
* destroyed.
*/
static void
frwr_op_recover_mr(struct rpcrdma_mw *mw)
{
struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int rc;
rc = __frwr_reset_mr(ia, mw);
ib_dma_unmap_sg(ia->ri_device, mw->mw_sg, mw->mw_nents, mw->mw_dir);
if (rc)
goto out_release;
rpcrdma_put_mw(r_xprt, mw);
r_xprt->rx_stats.mrs_recovered++;
return;
out_release:
pr_err("rpcrdma: FRMR reset failed %d, %p release\n", rc, mw);
r_xprt->rx_stats.mrs_orphaned++;
spin_lock(&r_xprt->rx_buf.rb_mwlock);
list_del(&mw->mw_all);
spin_unlock(&r_xprt->rx_buf.rb_mwlock);
frwr_op_release_mr(mw);
}
static int
frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
struct rpcrdma_create_data_internal *cdata)
{
int depth, delta;
ia->ri_max_frmr_depth =
min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
ia->ri_device->attrs.max_fast_reg_page_list_len);
dprintk("RPC: %s: device's max FR page list len = %u\n",
__func__, ia->ri_max_frmr_depth);
/* Add room for frmr register and invalidate WRs.
* 1. FRMR reg WR for head
* 2. FRMR invalidate WR for head
* 3. N FRMR reg WRs for pagelist
* 4. N FRMR invalidate WRs for pagelist
* 5. FRMR reg WR for tail
* 6. FRMR invalidate WR for tail
* 7. The RDMA_SEND WR
*/
depth = 7;
/* Calculate N if the device max FRMR depth is smaller than
* RPCRDMA_MAX_DATA_SEGS.
*/
if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth;
do {
depth += 2; /* FRMR reg + invalidate */
delta -= ia->ri_max_frmr_depth;
} while (delta > 0);
}
ep->rep_attr.cap.max_send_wr *= depth;
if (ep->rep_attr.cap.max_send_wr > ia->ri_device->attrs.max_qp_wr) {
cdata->max_requests = ia->ri_device->attrs.max_qp_wr / depth;
if (!cdata->max_requests)
return -EINVAL;
ep->rep_attr.cap.max_send_wr = cdata->max_requests *
depth;
}
ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
ia->ri_max_frmr_depth);
return 0;
}
/* FRWR mode conveys a list of pages per chunk segment. The
* maximum length of that list is the FRWR page list depth.
*/
static size_t
frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
xprtrdma: Limit number of RDMA segments in RPC-over-RDMA headers Send buffer space is shared between the RPC-over-RDMA header and an RPC message. A large RPC-over-RDMA header means less space is available for the associated RPC message, which then has to be moved via an RDMA Read or Write. As more segments are added to the chunk lists, the header increases in size. Typical modern hardware needs only a few segments to convey the maximum payload size, but some devices and registration modes may need a lot of segments to convey data payload. Sometimes so many are needed that the remaining space in the Send buffer is not enough for the RPC message. Sending such a message usually fails. To ensure a transport can always make forward progress, cap the number of RDMA segments that are allowed in chunk lists. This prevents less-capable devices and memory registrations from consuming a large portion of the Send buffer by reducing the maximum data payload that can be conveyed with such devices. For now I choose an arbitrary maximum of 8 RDMA segments. This allows a maximum size RPC-over-RDMA header to fit nicely in the current 1024 byte inline threshold with over 700 bytes remaining for an inline RPC message. The current maximum data payload of NFS READ or WRITE requests is one megabyte. To convey that payload on a client with 4KB pages, each chunk segment would need to handle 32 or more data pages. This is well within the capabilities of FMR. For physical registration, the maximum payload size on platforms with 4KB pages is reduced to 32KB. For FRWR, a device's maximum page list depth would need to be at least 34 to support the maximum 1MB payload. A device with a smaller maximum page list depth means the maximum data payload is reduced when using that device. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Tested-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-05-03 01:40:56 +07:00
RPCRDMA_MAX_HDR_SEGS * ia->ri_max_frmr_depth);
}
static void
__frwr_sendcompletion_flush(struct ib_wc *wc, struct rpcrdma_frmr *frmr,
const char *wr)
{
frmr->fr_state = FRMR_IS_STALE;
if (wc->status != IB_WC_WR_FLUSH_ERR)
pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
wr, ib_wc_status_msg(wc->status),
wc->status, wc->vendor_err);
}
/**
* frwr_wc_fastreg - Invoked by RDMA provider for each polled FastReg WC
* @cq: completion queue (ignored)
* @wc: completed WR
*
*/
static void
frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
{
struct rpcrdma_frmr *frmr;
struct ib_cqe *cqe;
/* WARNING: Only wr_cqe and status are reliable at this point */
if (wc->status != IB_WC_SUCCESS) {
cqe = wc->wr_cqe;
frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
__frwr_sendcompletion_flush(wc, frmr, "fastreg");
}
}
/**
* frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
* @cq: completion queue (ignored)
* @wc: completed WR
*
*/
static void
frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
{
struct rpcrdma_frmr *frmr;
struct ib_cqe *cqe;
/* WARNING: Only wr_cqe and status are reliable at this point */
if (wc->status != IB_WC_SUCCESS) {
cqe = wc->wr_cqe;
frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
__frwr_sendcompletion_flush(wc, frmr, "localinv");
}
}
/**
* frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
* @cq: completion queue (ignored)
* @wc: completed WR
*
* Awaken anyone waiting for an MR to finish being fenced.
*/
static void
frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
{
struct rpcrdma_frmr *frmr;
struct ib_cqe *cqe;
/* WARNING: Only wr_cqe and status are reliable at this point */
cqe = wc->wr_cqe;
frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
if (wc->status != IB_WC_SUCCESS)
__frwr_sendcompletion_flush(wc, frmr, "localinv");
complete(&frmr->fr_linv_done);
}
/* Post a REG_MR Work Request to register a memory region
* for remote access via RDMA READ or RDMA WRITE.
*/
static int
frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
int nsegs, bool writing, struct rpcrdma_mw **out)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct rpcrdma_mw *mw;
struct rpcrdma_frmr *frmr;
struct ib_mr *mr;
struct ib_reg_wr *reg_wr;
struct ib_send_wr *bad_wr;
int rc, i, n, dma_nents;
u8 key;
mw = NULL;
do {
if (mw)
rpcrdma_defer_mr_recovery(mw);
mw = rpcrdma_get_mw(r_xprt);
if (!mw)
return -ENOBUFS;
} while (mw->frmr.fr_state != FRMR_IS_INVALID);
frmr = &mw->frmr;
frmr->fr_state = FRMR_IS_VALID;
mr = frmr->fr_mr;
reg_wr = &frmr->fr_regwr;
if (nsegs > ia->ri_max_frmr_depth)
nsegs = ia->ri_max_frmr_depth;
for (i = 0; i < nsegs;) {
if (seg->mr_page)
sg_set_page(&mw->mw_sg[i],
seg->mr_page,
seg->mr_len,
offset_in_page(seg->mr_offset));
else
sg_set_buf(&mw->mw_sg[i], seg->mr_offset,
seg->mr_len);
++seg;
++i;
/* Check for holes */
if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break;
}
mw->mw_nents = i;
mw->mw_dir = rpcrdma_data_dir(writing);
if (i == 0)
goto out_dmamap_err;
dma_nents = ib_dma_map_sg(ia->ri_device,
mw->mw_sg, mw->mw_nents, mw->mw_dir);
if (!dma_nents)
goto out_dmamap_err;
n = ib_map_mr_sg(mr, mw->mw_sg, mw->mw_nents, NULL, PAGE_SIZE);
if (unlikely(n != mw->mw_nents))
goto out_mapmr_err;
dprintk("RPC: %s: Using frmr %p to map %u segments (%u bytes)\n",
__func__, frmr, mw->mw_nents, mr->length);
key = (u8)(mr->rkey & 0x000000FF);
ib_update_fast_reg_key(mr, ++key);
reg_wr->wr.next = NULL;
reg_wr->wr.opcode = IB_WR_REG_MR;
frmr->fr_cqe.done = frwr_wc_fastreg;
reg_wr->wr.wr_cqe = &frmr->fr_cqe;
reg_wr->wr.num_sge = 0;
reg_wr->wr.send_flags = 0;
reg_wr->mr = mr;
reg_wr->key = mr->rkey;
reg_wr->access = writing ?
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
IB_ACCESS_REMOTE_READ;
DECR_CQCOUNT(&r_xprt->rx_ep);
rc = ib_post_send(ia->ri_id->qp, &reg_wr->wr, &bad_wr);
if (rc)
goto out_senderr;
mw->mw_handle = mr->rkey;
mw->mw_length = mr->length;
mw->mw_offset = mr->iova;
*out = mw;
return mw->mw_nents;
out_dmamap_err:
pr_err("rpcrdma: failed to dma map sg %p sg_nents %u\n",
mw->mw_sg, mw->mw_nents);
rpcrdma_defer_mr_recovery(mw);
return -EIO;
out_mapmr_err:
pr_err("rpcrdma: failed to map mr %p (%u/%u)\n",
frmr->fr_mr, n, mw->mw_nents);
rpcrdma_defer_mr_recovery(mw);
return -EIO;
out_senderr:
pr_err("rpcrdma: FRMR registration ib_post_send returned %i\n", rc);
rpcrdma_defer_mr_recovery(mw);
return -ENOTCONN;
}
static struct ib_send_wr *
__frwr_prepare_linv_wr(struct rpcrdma_mw *mw)
{
struct rpcrdma_frmr *f = &mw->frmr;
struct ib_send_wr *invalidate_wr;
dprintk("RPC: %s: invalidating frmr %p\n", __func__, f);
f->fr_state = FRMR_IS_INVALID;
invalidate_wr = &f->fr_invwr;
memset(invalidate_wr, 0, sizeof(*invalidate_wr));
f->fr_cqe.done = frwr_wc_localinv;
invalidate_wr->wr_cqe = &f->fr_cqe;
invalidate_wr->opcode = IB_WR_LOCAL_INV;
invalidate_wr->ex.invalidate_rkey = f->fr_mr->rkey;
return invalidate_wr;
}
/* Invalidate all memory regions that were registered for "req".
*
* Sleeps until it is safe for the host CPU to access the
* previously mapped memory regions.
*
* Caller ensures that req->rl_registered is not empty.
*/
static void
frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
{
struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr;
struct rpcrdma_rep *rep = req->rl_reply;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct rpcrdma_mw *mw, *tmp;
struct rpcrdma_frmr *f;
int rc;
dprintk("RPC: %s: req %p\n", __func__, req);
/* ORDER: Invalidate all of the req's MRs first
*
* Chain the LOCAL_INV Work Requests and post them with
* a single ib_post_send() call.
*/
f = NULL;
invalidate_wrs = pos = prev = NULL;
list_for_each_entry(mw, &req->rl_registered, mw_list) {
if ((rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) &&
(mw->mw_handle == rep->rr_inv_rkey)) {
mw->frmr.fr_state = FRMR_IS_INVALID;
continue;
}
pos = __frwr_prepare_linv_wr(mw);
if (!invalidate_wrs)
invalidate_wrs = pos;
else
prev->next = pos;
prev = pos;
f = &mw->frmr;
}
if (!f)
goto unmap;
/* Strong send queue ordering guarantees that when the
* last WR in the chain completes, all WRs in the chain
* are complete.
*/
f->fr_invwr.send_flags = IB_SEND_SIGNALED;
f->fr_cqe.done = frwr_wc_localinv_wake;
reinit_completion(&f->fr_linv_done);
INIT_CQCOUNT(&r_xprt->rx_ep);
/* Transport disconnect drains the receive CQ before it
* replaces the QP. The RPC reply handler won't call us
* unless ri_id->qp is a valid pointer.
*/
r_xprt->rx_stats.local_inv_needed++;
rc = ib_post_send(ia->ri_id->qp, invalidate_wrs, &bad_wr);
if (rc)
goto reset_mrs;
wait_for_completion(&f->fr_linv_done);
/* ORDER: Now DMA unmap all of the req's MRs, and return
* them to the free MW list.
*/
unmap:
list_for_each_entry_safe(mw, tmp, &req->rl_registered, mw_list) {
dprintk("RPC: %s: unmapping frmr %p\n",
__func__, &mw->frmr);
list_del_init(&mw->mw_list);
ib_dma_unmap_sg(ia->ri_device,
mw->mw_sg, mw->mw_nents, mw->mw_dir);
rpcrdma_put_mw(r_xprt, mw);
}
return;
reset_mrs:
pr_err("rpcrdma: FRMR invalidate ib_post_send returned %i\n", rc);
rdma_disconnect(ia->ri_id);
/* Find and reset the MRs in the LOCAL_INV WRs that did not
* get posted. This is synchronous, and slow.
*/
list_for_each_entry(mw, &req->rl_registered, mw_list) {
f = &mw->frmr;
if (mw->frmr.fr_mr->rkey == bad_wr->ex.invalidate_rkey) {
__frwr_reset_mr(ia, mw);
bad_wr = bad_wr->next;
}
}
goto unmap;
}
/* Use a slow, safe mechanism to invalidate all memory regions
* that were registered for "req".
*/
static void
frwr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
bool sync)
{
struct rpcrdma_mw *mw;
while (!list_empty(&req->rl_registered)) {
mw = list_first_entry(&req->rl_registered,
struct rpcrdma_mw, mw_list);
list_del_init(&mw->mw_list);
if (sync)
frwr_op_recover_mr(mw);
else
rpcrdma_defer_mr_recovery(mw);
}
}
const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
.ro_map = frwr_op_map,
.ro_unmap_sync = frwr_op_unmap_sync,
.ro_unmap_safe = frwr_op_unmap_safe,
.ro_recover_mr = frwr_op_recover_mr,
.ro_open = frwr_op_open,
.ro_maxpages = frwr_op_maxpages,
.ro_init_mr = frwr_op_init_mr,
.ro_release_mr = frwr_op_release_mr,
.ro_displayname = "frwr",
.ro_send_w_inv_ok = RPCRDMA_CMP_F_SND_W_INV_OK,
};