linux_dsm_epyc7002/block/blk.h

492 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H
#include <linux/idr.h>
#include <linux/blk-mq.h>
#include <linux/part_stat.h>
#include <xen/xen.h>
#include "blk-mq.h"
block: free sched's request pool in blk_cleanup_queue In theory, IO scheduler belongs to request queue, and the request pool of sched tags belongs to the request queue too. However, the current tags allocation interfaces are re-used for both driver tags and sched tags, and driver tags is definitely host wide, and doesn't belong to any request queue, same with its request pool. So we need tagset instance for freeing request of sched tags. Meantime, blk_mq_free_tag_set() often follows blk_cleanup_queue() in case of non-BLK_MQ_F_TAG_SHARED, this way requires that request pool of sched tags to be freed before calling blk_mq_free_tag_set(). Commit 47cdee29ef9d94e ("block: move blk_exit_queue into __blk_release_queue") moves blk_exit_queue into __blk_release_queue for simplying the fast path in generic_make_request(), then causes oops during freeing requests of sched tags in __blk_release_queue(). Fix the above issue by move freeing request pool of sched tags into blk_cleanup_queue(), this way is safe becasue queue has been frozen and no any in-queue requests at that time. Freeing sched tags has to be kept in queue's release handler becasue there might be un-completed dispatch activity which might refer to sched tags. Cc: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Fixes: 47cdee29ef9d94e485eb08f962c74943023a5271 ("block: move blk_exit_queue into __blk_release_queue") Tested-by: Yi Zhang <yi.zhang@redhat.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-04 20:08:02 +07:00
#include "blk-mq-sched.h"
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT (5 * HZ)
#ifdef CONFIG_DEBUG_FS
extern struct dentry *blk_debugfs_root;
#endif
struct blk_flush_queue {
unsigned int flush_queue_delayed:1;
unsigned int flush_pending_idx:1;
unsigned int flush_running_idx:1;
block: fix null pointer dereference in blk_mq_rq_timed_out() We got a null pointer deference BUG_ON in blk_mq_rq_timed_out() as following: [ 108.825472] BUG: kernel NULL pointer dereference, address: 0000000000000040 [ 108.827059] PGD 0 P4D 0 [ 108.827313] Oops: 0000 [#1] SMP PTI [ 108.827657] CPU: 6 PID: 198 Comm: kworker/6:1H Not tainted 5.3.0-rc8+ #431 [ 108.829503] Workqueue: kblockd blk_mq_timeout_work [ 108.829913] RIP: 0010:blk_mq_check_expired+0x258/0x330 [ 108.838191] Call Trace: [ 108.838406] bt_iter+0x74/0x80 [ 108.838665] blk_mq_queue_tag_busy_iter+0x204/0x450 [ 108.839074] ? __switch_to_asm+0x34/0x70 [ 108.839405] ? blk_mq_stop_hw_queue+0x40/0x40 [ 108.839823] ? blk_mq_stop_hw_queue+0x40/0x40 [ 108.840273] ? syscall_return_via_sysret+0xf/0x7f [ 108.840732] blk_mq_timeout_work+0x74/0x200 [ 108.841151] process_one_work+0x297/0x680 [ 108.841550] worker_thread+0x29c/0x6f0 [ 108.841926] ? rescuer_thread+0x580/0x580 [ 108.842344] kthread+0x16a/0x1a0 [ 108.842666] ? kthread_flush_work+0x170/0x170 [ 108.843100] ret_from_fork+0x35/0x40 The bug is caused by the race between timeout handle and completion for flush request. When timeout handle function blk_mq_rq_timed_out() try to read 'req->q->mq_ops', the 'req' have completed and reinitiated by next flush request, which would call blk_rq_init() to clear 'req' as 0. After commit 12f5b93145 ("blk-mq: Remove generation seqeunce"), normal requests lifetime are protected by refcount. Until 'rq->ref' drop to zero, the request can really be free. Thus, these requests cannot been reused before timeout handle finish. However, flush request has defined .end_io and rq->end_io() is still called even if 'rq->ref' doesn't drop to zero. After that, the 'flush_rq' can be reused by the next flush request handle, resulting in null pointer deference BUG ON. We fix this problem by covering flush request with 'rq->ref'. If the refcount is not zero, flush_end_io() return and wait the last holder recall it. To record the request status, we add a new entry 'rq_status', which will be used in flush_end_io(). Cc: Christoph Hellwig <hch@infradead.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Bart Van Assche <bvanassche@acm.org> Cc: stable@vger.kernel.org # v4.18+ Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Yufen Yu <yuyufen@huawei.com> ------- v2: - move rq_status from struct request to struct blk_flush_queue v3: - remove unnecessary '{}' pair. v4: - let spinlock to protect 'fq->rq_status' v5: - move rq_status after flush_running_idx member of struct blk_flush_queue Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-09-27 15:19:55 +07:00
blk_status_t rq_status;
unsigned long flush_pending_since;
struct list_head flush_queue[2];
struct list_head flush_data_in_flight;
struct request *flush_rq;
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 14:41:51 +07:00
/*
* flush_rq shares tag with this rq, both can't be active
* at the same time
*/
struct request *orig_rq;
block: Fix a lockdep complaint triggered by request queue flushing Avoid that running test nvme/012 from the blktests suite triggers the following false positive lockdep complaint: ============================================ WARNING: possible recursive locking detected 5.0.0-rc3-xfstests-00015-g1236f7d60242 #841 Not tainted -------------------------------------------- ksoftirqd/1/16 is trying to acquire lock: 000000000282032e (&(&fq->mq_flush_lock)->rlock){..-.}, at: flush_end_io+0x4e/0x1d0 but task is already holding lock: 00000000cbadcbc2 (&(&fq->mq_flush_lock)->rlock){..-.}, at: flush_end_io+0x4e/0x1d0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&fq->mq_flush_lock)->rlock); lock(&(&fq->mq_flush_lock)->rlock); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by ksoftirqd/1/16: #0: 00000000cbadcbc2 (&(&fq->mq_flush_lock)->rlock){..-.}, at: flush_end_io+0x4e/0x1d0 stack backtrace: CPU: 1 PID: 16 Comm: ksoftirqd/1 Not tainted 5.0.0-rc3-xfstests-00015-g1236f7d60242 #841 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: dump_stack+0x67/0x90 __lock_acquire.cold.45+0x2b4/0x313 lock_acquire+0x98/0x160 _raw_spin_lock_irqsave+0x3b/0x80 flush_end_io+0x4e/0x1d0 blk_mq_complete_request+0x76/0x110 nvmet_req_complete+0x15/0x110 [nvmet] nvmet_bio_done+0x27/0x50 [nvmet] blk_update_request+0xd7/0x2d0 blk_mq_end_request+0x1a/0x100 blk_flush_complete_seq+0xe5/0x350 flush_end_io+0x12f/0x1d0 blk_done_softirq+0x9f/0xd0 __do_softirq+0xca/0x440 run_ksoftirqd+0x24/0x50 smpboot_thread_fn+0x113/0x1e0 kthread+0x121/0x140 ret_from_fork+0x3a/0x50 Cc: Christoph Hellwig <hch@infradead.org> Cc: Ming Lei <ming.lei@redhat.com> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-12-18 07:24:35 +07:00
struct lock_class_key key;
spinlock_t mq_flush_lock;
};
extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
extern struct ida blk_queue_ida;
static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
{
return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
}
static inline void __blk_get_queue(struct request_queue *q)
{
kobject_get(&q->kobj);
}
block: fix null pointer dereference in blk_mq_rq_timed_out() We got a null pointer deference BUG_ON in blk_mq_rq_timed_out() as following: [ 108.825472] BUG: kernel NULL pointer dereference, address: 0000000000000040 [ 108.827059] PGD 0 P4D 0 [ 108.827313] Oops: 0000 [#1] SMP PTI [ 108.827657] CPU: 6 PID: 198 Comm: kworker/6:1H Not tainted 5.3.0-rc8+ #431 [ 108.829503] Workqueue: kblockd blk_mq_timeout_work [ 108.829913] RIP: 0010:blk_mq_check_expired+0x258/0x330 [ 108.838191] Call Trace: [ 108.838406] bt_iter+0x74/0x80 [ 108.838665] blk_mq_queue_tag_busy_iter+0x204/0x450 [ 108.839074] ? __switch_to_asm+0x34/0x70 [ 108.839405] ? blk_mq_stop_hw_queue+0x40/0x40 [ 108.839823] ? blk_mq_stop_hw_queue+0x40/0x40 [ 108.840273] ? syscall_return_via_sysret+0xf/0x7f [ 108.840732] blk_mq_timeout_work+0x74/0x200 [ 108.841151] process_one_work+0x297/0x680 [ 108.841550] worker_thread+0x29c/0x6f0 [ 108.841926] ? rescuer_thread+0x580/0x580 [ 108.842344] kthread+0x16a/0x1a0 [ 108.842666] ? kthread_flush_work+0x170/0x170 [ 108.843100] ret_from_fork+0x35/0x40 The bug is caused by the race between timeout handle and completion for flush request. When timeout handle function blk_mq_rq_timed_out() try to read 'req->q->mq_ops', the 'req' have completed and reinitiated by next flush request, which would call blk_rq_init() to clear 'req' as 0. After commit 12f5b93145 ("blk-mq: Remove generation seqeunce"), normal requests lifetime are protected by refcount. Until 'rq->ref' drop to zero, the request can really be free. Thus, these requests cannot been reused before timeout handle finish. However, flush request has defined .end_io and rq->end_io() is still called even if 'rq->ref' doesn't drop to zero. After that, the 'flush_rq' can be reused by the next flush request handle, resulting in null pointer deference BUG ON. We fix this problem by covering flush request with 'rq->ref'. If the refcount is not zero, flush_end_io() return and wait the last holder recall it. To record the request status, we add a new entry 'rq_status', which will be used in flush_end_io(). Cc: Christoph Hellwig <hch@infradead.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Bart Van Assche <bvanassche@acm.org> Cc: stable@vger.kernel.org # v4.18+ Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Yufen Yu <yuyufen@huawei.com> ------- v2: - move rq_status from struct request to struct blk_flush_queue v3: - remove unnecessary '{}' pair. v4: - let spinlock to protect 'fq->rq_status' v5: - move rq_status after flush_running_idx member of struct blk_flush_queue Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-09-27 15:19:55 +07:00
static inline bool
is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx)
{
return hctx->fq->flush_rq == req;
}
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
gfp_t flags);
void blk_free_flush_queue(struct blk_flush_queue *q);
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-22 00:20:12 +07:00
void blk_freeze_queue(struct request_queue *q);
static inline void blk_queue_enter_live(struct request_queue *q)
{
/*
* Given that running in generic_make_request() context
* guarantees that a live reference against q_usage_counter has
* been established, further references under that same context
* need not check that the queue has been frozen (marked dead).
*/
percpu_ref_get(&q->q_usage_counter);
}
static inline bool biovec_phys_mergeable(struct request_queue *q,
struct bio_vec *vec1, struct bio_vec *vec2)
{
unsigned long mask = queue_segment_boundary(q);
phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
if (addr1 + vec1->bv_len != addr2)
return false;
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
return false;
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
return false;
return true;
}
static inline bool __bvec_gap_to_prev(struct request_queue *q,
struct bio_vec *bprv, unsigned int offset)
{
return (offset & queue_virt_boundary(q)) ||
((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
}
/*
* Check if adding a bio_vec after bprv with offset would create a gap in
* the SG list. Most drivers don't care about this, but some do.
*/
static inline bool bvec_gap_to_prev(struct request_queue *q,
struct bio_vec *bprv, unsigned int offset)
{
if (!queue_virt_boundary(q))
return false;
return __bvec_gap_to_prev(q, bprv, offset);
}
static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
unsigned int nr_segs)
{
rq->nr_phys_segments = nr_segs;
rq->__data_len = bio->bi_iter.bi_size;
rq->bio = rq->biotail = bio;
rq->ioprio = bio_prio(bio);
if (bio->bi_disk)
rq->rq_disk = bio->bi_disk;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
bool __bio_integrity_endio(struct bio *);
void bio_integrity_free(struct bio *bio);
static inline bool bio_integrity_endio(struct bio *bio)
{
if (bio_integrity(bio))
return __bio_integrity_endio(bio);
return true;
}
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
struct bio_integrity_payload *bip = bio_integrity(req->bio);
struct bio_integrity_payload *bip_next = bio_integrity(next);
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
struct bio_integrity_payload *bip = bio_integrity(bio);
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
void blk_integrity_add(struct gendisk *);
void blk_integrity_del(struct gendisk *);
#else /* CONFIG_BLK_DEV_INTEGRITY */
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
return false;
}
static inline void blk_flush_integrity(void)
{
}
static inline bool bio_integrity_endio(struct bio *bio)
{
return true;
}
static inline void bio_integrity_free(struct bio *bio)
{
}
static inline void blk_integrity_add(struct gendisk *disk)
{
}
static inline void blk_integrity_del(struct gendisk *disk)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
unsigned long blk_rq_timeout(unsigned long timeout);
void blk_add_timer(struct request *req);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 15:20:05 +07:00
bool bio_attempt_front_merge(struct request *req, struct bio *bio,
unsigned int nr_segs);
bool bio_attempt_back_merge(struct request *req, struct bio *bio,
unsigned int nr_segs);
bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
struct bio *bio);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 15:20:05 +07:00
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs, struct request **same_queue_rq);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 15:20:05 +07:00
void blk_account_io_start(struct request *req, bool new_io);
void blk_account_io_completion(struct request *req, unsigned int bytes);
void blk_account_io_done(struct request *req, u64 now);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 15:20:05 +07:00
/*
* Internal elevator interface
*/
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 18:43:54 +07:00
void blk_insert_flush(struct request *rq);
void elevator_init_mq(struct request_queue *q);
int elevator_switch_mq(struct request_queue *q,
struct elevator_type *new_e);
block: free sched's request pool in blk_cleanup_queue In theory, IO scheduler belongs to request queue, and the request pool of sched tags belongs to the request queue too. However, the current tags allocation interfaces are re-used for both driver tags and sched tags, and driver tags is definitely host wide, and doesn't belong to any request queue, same with its request pool. So we need tagset instance for freeing request of sched tags. Meantime, blk_mq_free_tag_set() often follows blk_cleanup_queue() in case of non-BLK_MQ_F_TAG_SHARED, this way requires that request pool of sched tags to be freed before calling blk_mq_free_tag_set(). Commit 47cdee29ef9d94e ("block: move blk_exit_queue into __blk_release_queue") moves blk_exit_queue into __blk_release_queue for simplying the fast path in generic_make_request(), then causes oops during freeing requests of sched tags in __blk_release_queue(). Fix the above issue by move freeing request pool of sched tags into blk_cleanup_queue(), this way is safe becasue queue has been frozen and no any in-queue requests at that time. Freeing sched tags has to be kept in queue's release handler becasue there might be un-completed dispatch activity which might refer to sched tags. Cc: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Fixes: 47cdee29ef9d94e485eb08f962c74943023a5271 ("block: move blk_exit_queue into __blk_release_queue") Tested-by: Yi Zhang <yi.zhang@redhat.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-04 20:08:02 +07:00
void __elevator_exit(struct request_queue *, struct elevator_queue *);
block: split .sysfs_lock into two locks The kernfs built-in lock of 'kn->count' is held in sysfs .show/.store path. Meantime, inside block's .show/.store callback, q->sysfs_lock is required. However, when mq & iosched kobjects are removed via blk_mq_unregister_dev() & elv_unregister_queue(), q->sysfs_lock is held too. This way causes AB-BA lock because the kernfs built-in lock of 'kn-count' is required inside kobject_del() too, see the lockdep warning[1]. On the other hand, it isn't necessary to acquire q->sysfs_lock for both blk_mq_unregister_dev() & elv_unregister_queue() because clearing REGISTERED flag prevents storing to 'queue/scheduler' from being happened. Also sysfs write(store) is exclusive, so no necessary to hold the lock for elv_unregister_queue() when it is called in switching elevator path. So split .sysfs_lock into two: one is still named as .sysfs_lock for covering sync .store, the other one is named as .sysfs_dir_lock for covering kobjects and related status change. sysfs itself can handle the race between add/remove kobjects and showing/storing attributes under kobjects. For switching scheduler via storing to 'queue/scheduler', we use the queue flag of QUEUE_FLAG_REGISTERED with .sysfs_lock for avoiding the race, then we can avoid to hold .sysfs_lock during removing/adding kobjects. [1] lockdep warning ====================================================== WARNING: possible circular locking dependency detected 5.3.0-rc3-00044-g73277fc75ea0 #1380 Not tainted ------------------------------------------------------ rmmod/777 is trying to acquire lock: 00000000ac50e981 (kn->count#202){++++}, at: kernfs_remove_by_name_ns+0x59/0x72 but task is already holding lock: 00000000fb16ae21 (&q->sysfs_lock){+.+.}, at: blk_unregister_queue+0x78/0x10b which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&q->sysfs_lock){+.+.}: __lock_acquire+0x95f/0xa2f lock_acquire+0x1b4/0x1e8 __mutex_lock+0x14a/0xa9b blk_mq_hw_sysfs_show+0x63/0xb6 sysfs_kf_seq_show+0x11f/0x196 seq_read+0x2cd/0x5f2 vfs_read+0xc7/0x18c ksys_read+0xc4/0x13e do_syscall_64+0xa7/0x295 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (kn->count#202){++++}: check_prev_add+0x5d2/0xc45 validate_chain+0xed3/0xf94 __lock_acquire+0x95f/0xa2f lock_acquire+0x1b4/0x1e8 __kernfs_remove+0x237/0x40b kernfs_remove_by_name_ns+0x59/0x72 remove_files+0x61/0x96 sysfs_remove_group+0x81/0xa4 sysfs_remove_groups+0x3b/0x44 kobject_del+0x44/0x94 blk_mq_unregister_dev+0x83/0xdd blk_unregister_queue+0xa0/0x10b del_gendisk+0x259/0x3fa null_del_dev+0x8b/0x1c3 [null_blk] null_exit+0x5c/0x95 [null_blk] __se_sys_delete_module+0x204/0x337 do_syscall_64+0xa7/0x295 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&q->sysfs_lock); lock(kn->count#202); lock(&q->sysfs_lock); lock(kn->count#202); *** DEADLOCK *** 2 locks held by rmmod/777: #0: 00000000e69bd9de (&lock){+.+.}, at: null_exit+0x2e/0x95 [null_blk] #1: 00000000fb16ae21 (&q->sysfs_lock){+.+.}, at: blk_unregister_queue+0x78/0x10b stack backtrace: CPU: 0 PID: 777 Comm: rmmod Not tainted 5.3.0-rc3-00044-g73277fc75ea0 #1380 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS ?-20180724_192412-buildhw-07.phx4 Call Trace: dump_stack+0x9a/0xe6 check_noncircular+0x207/0x251 ? print_circular_bug+0x32a/0x32a ? find_usage_backwards+0x84/0xb0 check_prev_add+0x5d2/0xc45 validate_chain+0xed3/0xf94 ? check_prev_add+0xc45/0xc45 ? mark_lock+0x11b/0x804 ? check_usage_forwards+0x1ca/0x1ca __lock_acquire+0x95f/0xa2f lock_acquire+0x1b4/0x1e8 ? kernfs_remove_by_name_ns+0x59/0x72 __kernfs_remove+0x237/0x40b ? kernfs_remove_by_name_ns+0x59/0x72 ? kernfs_next_descendant_post+0x7d/0x7d ? strlen+0x10/0x23 ? strcmp+0x22/0x44 kernfs_remove_by_name_ns+0x59/0x72 remove_files+0x61/0x96 sysfs_remove_group+0x81/0xa4 sysfs_remove_groups+0x3b/0x44 kobject_del+0x44/0x94 blk_mq_unregister_dev+0x83/0xdd blk_unregister_queue+0xa0/0x10b del_gendisk+0x259/0x3fa ? disk_events_poll_msecs_store+0x12b/0x12b ? check_flags+0x1ea/0x204 ? mark_held_locks+0x1f/0x7a null_del_dev+0x8b/0x1c3 [null_blk] null_exit+0x5c/0x95 [null_blk] __se_sys_delete_module+0x204/0x337 ? free_module+0x39f/0x39f ? blkcg_maybe_throttle_current+0x8a/0x718 ? rwlock_bug+0x62/0x62 ? __blkcg_punt_bio_submit+0xd0/0xd0 ? trace_hardirqs_on_thunk+0x1a/0x20 ? mark_held_locks+0x1f/0x7a ? do_syscall_64+0x4c/0x295 do_syscall_64+0xa7/0x295 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fb696cdbe6b Code: 73 01 c3 48 8b 0d 1d 20 0c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 008 RSP: 002b:00007ffec9588788 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559e589137c0 RCX: 00007fb696cdbe6b RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559e58913828 RBP: 0000000000000000 R08: 00007ffec9587701 R09: 0000000000000000 R10: 00007fb696d4eae0 R11: 0000000000000206 R12: 00007ffec95889b0 R13: 00007ffec95896b3 R14: 0000559e58913260 R15: 0000559e589137c0 Cc: Christoph Hellwig <hch@infradead.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-27 18:01:48 +07:00
int elv_register_queue(struct request_queue *q, bool uevent);
void elv_unregister_queue(struct request_queue *q);
block: free sched's request pool in blk_cleanup_queue In theory, IO scheduler belongs to request queue, and the request pool of sched tags belongs to the request queue too. However, the current tags allocation interfaces are re-used for both driver tags and sched tags, and driver tags is definitely host wide, and doesn't belong to any request queue, same with its request pool. So we need tagset instance for freeing request of sched tags. Meantime, blk_mq_free_tag_set() often follows blk_cleanup_queue() in case of non-BLK_MQ_F_TAG_SHARED, this way requires that request pool of sched tags to be freed before calling blk_mq_free_tag_set(). Commit 47cdee29ef9d94e ("block: move blk_exit_queue into __blk_release_queue") moves blk_exit_queue into __blk_release_queue for simplying the fast path in generic_make_request(), then causes oops during freeing requests of sched tags in __blk_release_queue(). Fix the above issue by move freeing request pool of sched tags into blk_cleanup_queue(), this way is safe becasue queue has been frozen and no any in-queue requests at that time. Freeing sched tags has to be kept in queue's release handler becasue there might be un-completed dispatch activity which might refer to sched tags. Cc: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Fixes: 47cdee29ef9d94e485eb08f962c74943023a5271 ("block: move blk_exit_queue into __blk_release_queue") Tested-by: Yi Zhang <yi.zhang@redhat.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-04 20:08:02 +07:00
static inline void elevator_exit(struct request_queue *q,
struct elevator_queue *e)
{
lockdep_assert_held(&q->sysfs_lock);
block: free sched's request pool in blk_cleanup_queue In theory, IO scheduler belongs to request queue, and the request pool of sched tags belongs to the request queue too. However, the current tags allocation interfaces are re-used for both driver tags and sched tags, and driver tags is definitely host wide, and doesn't belong to any request queue, same with its request pool. So we need tagset instance for freeing request of sched tags. Meantime, blk_mq_free_tag_set() often follows blk_cleanup_queue() in case of non-BLK_MQ_F_TAG_SHARED, this way requires that request pool of sched tags to be freed before calling blk_mq_free_tag_set(). Commit 47cdee29ef9d94e ("block: move blk_exit_queue into __blk_release_queue") moves blk_exit_queue into __blk_release_queue for simplying the fast path in generic_make_request(), then causes oops during freeing requests of sched tags in __blk_release_queue(). Fix the above issue by move freeing request pool of sched tags into blk_cleanup_queue(), this way is safe becasue queue has been frozen and no any in-queue requests at that time. Freeing sched tags has to be kept in queue's release handler becasue there might be un-completed dispatch activity which might refer to sched tags. Cc: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Fixes: 47cdee29ef9d94e485eb08f962c74943023a5271 ("block: move blk_exit_queue into __blk_release_queue") Tested-by: Yi Zhang <yi.zhang@redhat.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-04 20:08:02 +07:00
blk_mq_sched_free_requests(q);
__elevator_exit(q, e);
}
struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
#ifdef CONFIG_FAIL_IO_TIMEOUT
int blk_should_fake_timeout(struct request_queue *);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
const char *, size_t);
#else
static inline int blk_should_fake_timeout(struct request_queue *q)
{
return 0;
}
#endif
void __blk_queue_split(struct request_queue *q, struct bio **bio,
unsigned int *nr_segs);
int ll_back_merge_fn(struct request *req, struct bio *bio,
unsigned int nr_segs);
int ll_front_merge_fn(struct request *req, struct bio *bio,
unsigned int nr_segs);
struct request *attempt_back_merge(struct request_queue *q, struct request *rq);
struct request *attempt_front_merge(struct request_queue *q, struct request *rq);
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
struct request *next);
unsigned int blk_recalc_rq_segments(struct request *rq);
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 15:48:17 +07:00
void blk_rq_set_mixed_merge(struct request *rq);
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
int blk_dev_init(void);
/*
* Contribute to IO statistics IFF:
*
* a) it's attached to a gendisk, and
* b) the queue had IO stats enabled when this request was started
*/
static inline bool blk_do_io_stat(struct request *rq)
{
return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
}
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
}
/*
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
* is defined as 'unsigned int', meantime it has to aligned to with logical
* block size which is the minimum accepted unit by hardware.
*/
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
{
return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
}
/*
* Internal io_context interface
*/
void get_io_context(struct io_context *ioc);
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
gfp_t gfp_mask);
void ioc_clear_queue(struct request_queue *q);
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
/**
* create_io_context - try to create task->io_context
* @gfp_mask: allocation mask
* @node: allocation node
*
* If %current->io_context is %NULL, allocate a new io_context and install
* it. Returns the current %current->io_context which may be %NULL if
* allocation failed.
*
* Note that this function can't be called with IRQ disabled because
* task_lock which protects %current->io_context is IRQ-unsafe.
*/
static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
{
WARN_ON_ONCE(irqs_disabled());
if (unlikely(!current->io_context))
create_task_io_context(current, gfp_mask, node);
return current->io_context;
}
/*
* Internal throttling interface
*/
#ifdef CONFIG_BLK_DEV_THROTTLING
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 19:42:16 +07:00
extern void blk_throtl_drain(struct request_queue *q);
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
extern void blk_throtl_register_queue(struct request_queue *q);
#else /* CONFIG_BLK_DEV_THROTTLING */
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 19:42:16 +07:00
static inline void blk_throtl_drain(struct request_queue *q) { }
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
static inline void blk_throtl_register_queue(struct request_queue *q) { }
#endif /* CONFIG_BLK_DEV_THROTTLING */
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
const char *page, size_t count);
blk-throttle: add a simple idle detection A cgroup gets assigned a low limit, but the cgroup could never dispatch enough IO to cross the low limit. In such case, the queue state machine will remain in LIMIT_LOW state and all other cgroups will be throttled according to low limit. This is unfair for other cgroups. We should treat the cgroup idle and upgrade the state machine to lower state. We also have a downgrade logic. If the state machine upgrades because of cgroup idle (real idle), the state machine will downgrade soon as the cgroup is below its low limit. This isn't what we want. A more complicated case is cgroup isn't idle when queue is in LIMIT_LOW. But when queue gets upgraded to lower state, other cgroups could dispatch more IO and this cgroup can't dispatch enough IO, so the cgroup is below its low limit and looks like idle (fake idle). In this case, the queue should downgrade soon. The key to determine if we should do downgrade is to detect if cgroup is truely idle. Unfortunately it's very hard to determine if a cgroup is real idle. This patch uses the 'think time check' idea from CFQ for the purpose. Please note, the idea doesn't work for all workloads. For example, a workload with io depth 8 has disk utilization 100%, hence think time is 0, eg, not idle. But the workload can run higher bandwidth with io depth 16. Compared to io depth 16, the io depth 8 workload is idle. We use the idea to roughly determine if a cgroup is idle. We treat a cgroup idle if its think time is above a threshold (by default 1ms for SSD and 100ms for HD). The idea is think time above the threshold will start to harm performance. HD is much slower so a longer think time is ok. The patch (and the latter patches) uses 'unsigned long' to track time. We convert 'ns' to 'us' with 'ns >> 10'. This is fast but loses precision, should not a big deal. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 00:51:41 +07:00
extern void blk_throtl_bio_endio(struct bio *bio);
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 05:19:42 +07:00
extern void blk_throtl_stat_add(struct request *rq, u64 time);
blk-throttle: add a simple idle detection A cgroup gets assigned a low limit, but the cgroup could never dispatch enough IO to cross the low limit. In such case, the queue state machine will remain in LIMIT_LOW state and all other cgroups will be throttled according to low limit. This is unfair for other cgroups. We should treat the cgroup idle and upgrade the state machine to lower state. We also have a downgrade logic. If the state machine upgrades because of cgroup idle (real idle), the state machine will downgrade soon as the cgroup is below its low limit. This isn't what we want. A more complicated case is cgroup isn't idle when queue is in LIMIT_LOW. But when queue gets upgraded to lower state, other cgroups could dispatch more IO and this cgroup can't dispatch enough IO, so the cgroup is below its low limit and looks like idle (fake idle). In this case, the queue should downgrade soon. The key to determine if we should do downgrade is to detect if cgroup is truely idle. Unfortunately it's very hard to determine if a cgroup is real idle. This patch uses the 'think time check' idea from CFQ for the purpose. Please note, the idea doesn't work for all workloads. For example, a workload with io depth 8 has disk utilization 100%, hence think time is 0, eg, not idle. But the workload can run higher bandwidth with io depth 16. Compared to io depth 16, the io depth 8 workload is idle. We use the idea to roughly determine if a cgroup is idle. We treat a cgroup idle if its think time is above a threshold (by default 1ms for SSD and 100ms for HD). The idea is think time above the threshold will start to harm performance. HD is much slower so a longer think time is ok. The patch (and the latter patches) uses 'unsigned long' to track time. We convert 'ns' to 'us' with 'ns >> 10'. This is fast but loses precision, should not a big deal. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 00:51:41 +07:00
#else
static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 05:19:42 +07:00
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
#endif
#ifdef CONFIG_BOUNCE
extern int init_emergency_isa_pool(void);
extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
#else
static inline int init_emergency_isa_pool(void)
{
return 0;
}
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
{
}
#endif /* CONFIG_BOUNCE */
block: introduce blk-iolatency io controller Current IO controllers for the block layer are less than ideal for our use case. The io.max controller is great at hard limiting, but it is not work conserving. This patch introduces io.latency. You provide a latency target for your group and we monitor the io in short windows to make sure we are not exceeding those latency targets. This makes use of the rq-qos infrastructure and works much like the wbt stuff. There are a few differences from wbt - It's bio based, so the latency covers the whole block layer in addition to the actual io. - We will throttle all IO types that comes in here if we need to. - We use the mean latency over the 100ms window. This is because writes can be particularly fast, which could give us a false sense of the impact of other workloads on our protected workload. - By default there's no throttling, we set the queue_depth to INT_MAX so that we can have as many outstanding bio's as we're allowed to. Only at throttle time do we pay attention to the actual queue depth. - We backcharge cgroups for root cg issued IO and induce artificial delays in order to deal with cases like metadata only or swap heavy workloads. In testing this has worked out relatively well. Protected workloads will throttle noisy workloads down to 1 io at time if they are doing normal IO on their own, or induce up to a 1 second delay per syscall if they are doing a lot of root issued IO (metadata/swap IO). Our testing has revolved mostly around our production web servers where we have hhvm (the web server application) in a protected group and everything else in another group. We see slightly higher requests per second (RPS) on the test tier vs the control tier, and much more stable RPS across all machines in the test tier vs the control tier. Another test we run is a slow memory allocator in the unprotected group. Before this would eventually push us into swap and cause the whole box to die and not recover at all. With these patches we see slight RPS drops (usually 10-15%) before the memory consumer is properly killed and things recover within seconds. Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-03 22:15:01 +07:00
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
extern int blk_iolatency_init(struct request_queue *q);
#else
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
#endif
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 17:08:50 +07:00
#ifdef CONFIG_BLK_DEV_ZONED
void blk_queue_free_zone_bitmaps(struct request_queue *q);
#else
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
#endif
void part_dec_in_flight(struct request_queue *q, struct hd_struct *part,
int rw);
void part_inc_in_flight(struct request_queue *q, struct hd_struct *part,
int rw);
void update_io_ticks(struct hd_struct *part, unsigned long now, bool end);
struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector);
int blk_alloc_devt(struct hd_struct *part, dev_t *devt);
void blk_free_devt(dev_t devt);
void blk_invalidate_devt(dev_t devt);
char *disk_name(struct gendisk *hd, int partno, char *buf);
#define ADDPART_FLAG_NONE 0
#define ADDPART_FLAG_RAID 1
#define ADDPART_FLAG_WHOLEDISK 2
struct hd_struct *__must_check add_partition(struct gendisk *disk, int partno,
sector_t start, sector_t len, int flags,
struct partition_meta_info *info);
void __delete_partition(struct percpu_ref *ref);
void delete_partition(struct gendisk *disk, int partno);
int disk_expand_part_tbl(struct gendisk *disk, int target);
static inline int hd_ref_init(struct hd_struct *part)
{
if (percpu_ref_init(&part->ref, __delete_partition, 0,
GFP_KERNEL))
return -ENOMEM;
return 0;
}
static inline void hd_struct_get(struct hd_struct *part)
{
percpu_ref_get(&part->ref);
}
static inline int hd_struct_try_get(struct hd_struct *part)
{
return percpu_ref_tryget_live(&part->ref);
}
static inline void hd_struct_put(struct hd_struct *part)
{
percpu_ref_put(&part->ref);
}
static inline void hd_struct_kill(struct hd_struct *part)
{
percpu_ref_kill(&part->ref);
}
static inline void hd_free_part(struct hd_struct *part)
{
free_part_stats(part);
kfree(part->info);
percpu_ref_exit(&part->ref);
}
/*
* Any access of part->nr_sects which is not protected by partition
* bd_mutex or gendisk bdev bd_mutex, should be done using this
* accessor function.
*
* Code written along the lines of i_size_read() and i_size_write().
* CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption
* on.
*/
static inline sector_t part_nr_sects_read(struct hd_struct *part)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
sector_t nr_sects;
unsigned seq;
do {
seq = read_seqcount_begin(&part->nr_sects_seq);
nr_sects = part->nr_sects;
} while (read_seqcount_retry(&part->nr_sects_seq, seq));
return nr_sects;
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
sector_t nr_sects;
preempt_disable();
nr_sects = part->nr_sects;
preempt_enable();
return nr_sects;
#else
return part->nr_sects;
#endif
}
/*
* Should be called with mutex lock held (typically bd_mutex) of partition
* to provide mutual exlusion among writers otherwise seqcount might be
* left in wrong state leaving the readers spinning infinitely.
*/
static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
write_seqcount_begin(&part->nr_sects_seq);
part->nr_sects = size;
write_seqcount_end(&part->nr_sects_seq);
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
preempt_disable();
part->nr_sects = size;
preempt_enable();
#else
part->nr_sects = size;
#endif
}
struct request_queue *__blk_alloc_queue(int node_id);
int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
bool *same_page);
#endif /* BLK_INTERNAL_H */