linux_dsm_epyc7002/kernel/sched/stats.h

268 lines
8.0 KiB
C
Raw Normal View History

#ifdef CONFIG_SCHEDSTATS
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{
if (rq) {
rq->rq_sched_info.run_delay += delta;
rq->rq_sched_info.pcount++;
}
}
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_cpu_time += delta;
}
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
static inline void
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_sched_info.run_delay += delta;
}
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 16:08:36 +07:00
# define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
# define schedstat_inc(rq, field) do { if (schedstat_enabled()) { (rq)->field++; } } while (0)
# define schedstat_add(rq, field, amt) do { if (schedstat_enabled()) { (rq)->field += (amt); } } while (0)
# define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
# define schedstat_val(rq, field) ((schedstat_enabled()) ? (rq)->field : 0)
#else /* !CONFIG_SCHEDSTATS */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{}
static inline void
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{}
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 16:08:36 +07:00
# define schedstat_enabled() 0
# define schedstat_inc(rq, field) do { } while (0)
# define schedstat_add(rq, field, amt) do { } while (0)
# define schedstat_set(var, val) do { } while (0)
# define schedstat_val(rq, field) 0
#endif
#ifdef CONFIG_SCHED_INFO
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
static inline void sched_info_reset_dequeued(struct task_struct *t)
{
t->sched_info.last_queued = 0;
}
/*
* We are interested in knowing how long it was from the *first* time a
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
* task was queued to the time that it finally hit a cpu, we call this routine
* from dequeue_task() to account for possible rq->clock skew across cpus. The
* delta taken on each cpu would annul the skew.
*/
static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
{
unsigned long long now = rq_clock(rq), delta = 0;
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
if (unlikely(sched_info_on()))
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
rq_sched_info_dequeued(rq, delta);
}
/*
* Called when a task finally hits the cpu. We can now calculate how
* long it was waiting to run. We also note when it began so that we
* can keep stats on how long its timeslice is.
*/
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
{
unsigned long long now = rq_clock(rq), delta = 0;
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
t->sched_info.last_arrival = now;
t->sched_info.pcount++;
rq_sched_info_arrive(rq, delta);
}
/*
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeued() will clear that stamp when appropriate.
*/
static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
{
if (unlikely(sched_info_on()))
if (!t->sched_info.last_queued)
t->sched_info.last_queued = rq_clock(rq);
}
/*
* Called when a process ceases being the active-running process involuntarily
* due, typically, to expiring its time slice (this may also be called when
* switching to the idle task). Now we can calculate how long we ran.
* Also, if the process is still in the TASK_RUNNING state, call
* sched_info_queued() to mark that it has now again started waiting on
* the runqueue.
*/
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
{
unsigned long long delta = rq_clock(rq) -
t->sched_info.last_arrival;
rq_sched_info_depart(rq, delta);
if (t->state == TASK_RUNNING)
sched_info_queued(rq, t);
}
/*
* Called when tasks are switched involuntarily due, typically, to expiring
* their time slice. (This may also be called when switching to or from
* the idle task.) We are only called when prev != next.
*/
static inline void
__sched_info_switch(struct rq *rq,
struct task_struct *prev, struct task_struct *next)
{
/*
* prev now departs the cpu. It's not interesting to record
* stats about how efficient we were at scheduling the idle
* process, however.
*/
if (prev != rq->idle)
sched_info_depart(rq, prev);
if (next != rq->idle)
sched_info_arrive(rq, next);
}
static inline void
sched_info_switch(struct rq *rq,
struct task_struct *prev, struct task_struct *next)
{
if (unlikely(sched_info_on()))
__sched_info_switch(rq, prev, next);
}
#else
#define sched_info_queued(rq, t) do { } while (0)
sched: fix accounting in task delay accounting & migration On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote: > On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote: > > > Thanks Peter for the explanation... > > > > I agree with the above and that is the reason why I did not see weird > > values with cpu_time. But, run_delay still would suffer skews as the end > > points for delta could be taken on different cpus due to migration (more > > so on RT kernel due to the push-pull operations). With the below patch, > > I could not reproduce the issue I had seen earlier. After every dequeue, > > we take the delta and start wait measurements from zero when moved to a > > different rq. > > OK, so task delay delay accounting is broken because it doesn't take > migration into account. > > What you've done is make it symmetric wrt enqueue, and account it like > > cpu0 cpu1 > > enqueue > <wait-d1> > dequeue > enqueue > <wait-d2> > run > > Where you add both d1 and d2 to the run_delay,.. right? > Thanks for reviewing the patch. The above is exactly what I have done. > This seems like a good fix, however it looks like the patch will break > compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it > failing to provide a stub for sched_info_dequeue() in that case. Fixed. Pl. find the new patch below. Signed-off-by: Ankita Garg <ankita@in.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Gregory Haskins <ghaskins@novell.com> Cc: rostedt@goodmis.org Cc: suresh.b.siddha@intel.com Cc: aneesh.kumar@linux.vnet.ibm.com Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@linux.vnet.ibm.com Cc: David Bahi <DBahi@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
#define sched_info_reset_dequeued(t) do { } while (0)
#define sched_info_dequeued(rq, t) do { } while (0)
#define sched_info_depart(rq, t) do { } while (0)
#define sched_info_arrive(rq, next) do { } while (0)
#define sched_info_switch(rq, t, next) do { } while (0)
#endif /* CONFIG_SCHED_INFO */
/*
* The following are functions that support scheduler-internal time accounting.
* These functions are generally called at the timer tick. None of this depends
* on CONFIG_SCHEDSTATS.
*/
/**
* cputimer_running - return true if cputimer is running
*
* @tsk: Pointer to target task.
*/
static inline bool cputimer_running(struct task_struct *tsk)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
sched, timer: Replace spinlocks with atomics in thread_group_cputimer(), to improve scalability While running a database workload, we found a scalability issue with itimers. Much of the problem was caused by the thread_group_cputimer spinlock. Each time we account for group system/user time, we need to obtain a thread_group_cputimer's spinlock to update the timers. On larger systems (such as a 16 socket machine), this caused more than 30% of total time spent trying to obtain this kernel lock to update these group timer stats. This patch converts the timers to 64-bit atomic variables and use atomic add to update them without a lock. With this patch, the percent of total time spent updating thread group cputimer timers was reduced from 30% down to less than 1%. Note: On 32-bit systems using the generic 64-bit atomics, this causes sample_group_cputimer() to take locks 3 times instead of just 1 time. However, we tested this patch on a 32-bit system ARM system using the generic atomics and did not find the overhead to be much of an issue. An explanation for why this isn't an issue is that 32-bit systems usually have small numbers of CPUs, and cacheline contention from extra spinlocks called periodically is not really apparent on smaller systems. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Scott J Norton <scott.norton@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1430251224-5764-4-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-29 03:00:22 +07:00
/* Check if cputimer isn't running. This is accessed without locking. */
if (!READ_ONCE(cputimer->running))
return false;
/*
* After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
* in __exit_signal(), we won't account to the signal struct further
* cputime consumed by that task, even though the task can still be
* ticking after __exit_signal().
*
* In order to keep a consistent behaviour between thread group cputime
* and thread group cputimer accounting, lets also ignore the cputime
* elapsing after __exit_signal() in any thread group timer running.
*
* This makes sure that POSIX CPU clocks and timers are synchronized, so
* that a POSIX CPU timer won't expire while the corresponding POSIX CPU
* clock delta is behind the expiring timer value.
*/
if (unlikely(!tsk->sighand))
return false;
return true;
}
/**
* account_group_user_time - Maintain utime for a thread group.
*
* @tsk: Pointer to task structure.
* @cputime: Time value by which to increment the utime field of the
* thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the utime field there.
*/
static inline void account_group_user_time(struct task_struct *tsk,
cputime_t cputime)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
sched, timer: Use the atomic task_cputime in thread_group_cputimer Recent optimizations were made to thread_group_cputimer to improve its scalability by keeping track of cputime stats without a lock. However, the values were open coded to the structure, causing them to be at a different abstraction level from the regular task_cputime structure. Furthermore, any subsequent similar optimizations would not be able to share the new code, since they are specific to thread_group_cputimer. This patch adds the new task_cputime_atomic data structure (introduced in the previous patch in the series) to thread_group_cputimer for keeping track of the cputime atomically, which also helps generalize the code. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Scott J Norton <scott.norton@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1430251224-5764-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-29 03:00:24 +07:00
atomic64_add(cputime, &cputimer->cputime_atomic.utime);
}
/**
* account_group_system_time - Maintain stime for a thread group.
*
* @tsk: Pointer to task structure.
* @cputime: Time value by which to increment the stime field of the
* thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the stime field there.
*/
static inline void account_group_system_time(struct task_struct *tsk,
cputime_t cputime)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
sched, timer: Use the atomic task_cputime in thread_group_cputimer Recent optimizations were made to thread_group_cputimer to improve its scalability by keeping track of cputime stats without a lock. However, the values were open coded to the structure, causing them to be at a different abstraction level from the regular task_cputime structure. Furthermore, any subsequent similar optimizations would not be able to share the new code, since they are specific to thread_group_cputimer. This patch adds the new task_cputime_atomic data structure (introduced in the previous patch in the series) to thread_group_cputimer for keeping track of the cputime atomically, which also helps generalize the code. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Scott J Norton <scott.norton@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1430251224-5764-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-29 03:00:24 +07:00
atomic64_add(cputime, &cputimer->cputime_atomic.stime);
}
/**
* account_group_exec_runtime - Maintain exec runtime for a thread group.
*
* @tsk: Pointer to task structure.
* @ns: Time value by which to increment the sum_exec_runtime field
* of the thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the sum_exec_runtime field there.
*/
static inline void account_group_exec_runtime(struct task_struct *tsk,
unsigned long long ns)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
sched, timer: Use the atomic task_cputime in thread_group_cputimer Recent optimizations were made to thread_group_cputimer to improve its scalability by keeping track of cputime stats without a lock. However, the values were open coded to the structure, causing them to be at a different abstraction level from the regular task_cputime structure. Furthermore, any subsequent similar optimizations would not be able to share the new code, since they are specific to thread_group_cputimer. This patch adds the new task_cputime_atomic data structure (introduced in the previous patch in the series) to thread_group_cputimer for keeping track of the cputime atomically, which also helps generalize the code. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Scott J Norton <scott.norton@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1430251224-5764-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-29 03:00:24 +07:00
atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
}