linux_dsm_epyc7002/drivers/acpi/acpica/psxface.c

342 lines
9.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/******************************************************************************
*
* Module Name: psxface - Parser external interfaces
*
* Copyright (C) 2000 - 2019, Intel Corp.
*
*****************************************************************************/
#include <acpi/acpi.h>
#include "accommon.h"
#include "acparser.h"
#include "acdispat.h"
#include "acinterp.h"
#include "actables.h"
#include "acnamesp.h"
#define _COMPONENT ACPI_PARSER
ACPI_MODULE_NAME("psxface")
/* Local Prototypes */
static void
ACPI: ACPICA 20060526 Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec http://bugzilla.kernel.org/show_bug.cgi?id=5329 Allow interpreter to handle nested method declarations http://bugzilla.kernel.org/show_bug.cgi?id=5361 Fixed problem reports (Fiodor Suietov) integrated: - acpi_terminate() doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, acpi_subsystem_status() returns AE_OK (BZ 356) - acpi_os_unmap_memory() for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use acpi_os_free() instead of ACPI_FREE in acpi_rs_set_srs_method_data (BZ 360) - Incomplete cleanup branch in acpi_ps_parse_aml (BZ 361) - Incomplete cleanup branch in acpi_ds_delete_walk_state (BZ 362) - acpi_get_table_header returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-05-27 03:36:00 +07:00
acpi_ps_update_parameter_list(struct acpi_evaluate_info *info, u16 action);
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
/*******************************************************************************
*
* FUNCTION: acpi_debug_trace
*
* PARAMETERS: method_name - Valid ACPI name string
* debug_level - Optional level mask. 0 to use default
* debug_layer - Optional layer mask. 0 to use default
* flags - bit 1: one shot(1) or persistent(0)
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
*
* RETURN: Status
*
* DESCRIPTION: External interface to enable debug tracing during control
* method execution
*
******************************************************************************/
acpi_status
acpi_debug_trace(const char *name, u32 debug_level, u32 debug_layer, u32 flags)
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
{
acpi_status status;
status = acpi_ut_acquire_mutex(ACPI_MTX_NAMESPACE);
if (ACPI_FAILURE(status)) {
return (status);
}
acpi_gbl_trace_method_name = name;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
acpi_gbl_trace_flags = flags;
acpi_gbl_trace_dbg_level = debug_level;
acpi_gbl_trace_dbg_layer = debug_layer;
status = AE_OK;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
(void)acpi_ut_release_mutex(ACPI_MTX_NAMESPACE);
return (status);
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-10-01 06:03:00 +07:00
}
/*******************************************************************************
*
* FUNCTION: acpi_ps_execute_method
*
* PARAMETERS: info - Method info block, contains:
* node - Method Node to execute
* obj_desc - Method object
* parameters - List of parameters to pass to the method,
* terminated by NULL. Params itself may be
* NULL if no parameters are being passed.
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 09:49:35 +07:00
* return_object - Where to put method's return value (if
* any). If NULL, no value is returned.
* parameter_type - Type of Parameter list
* return_object - Where to put method's return value (if
* any). If NULL, no value is returned.
* pass_number - Parse or execute pass
*
* RETURN: Status
*
* DESCRIPTION: Execute a control method
*
******************************************************************************/
acpi_status acpi_ps_execute_method(struct acpi_evaluate_info *info)
{
acpi_status status;
union acpi_parse_object *op;
struct acpi_walk_state *walk_state;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 04:15:00 +07:00
ACPI_FUNCTION_TRACE(ps_execute_method);
/* Quick validation of DSDT header */
acpi_tb_check_dsdt_header();
/* Validate the Info and method Node */
if (!info || !info->node) {
return_ACPI_STATUS(AE_NULL_ENTRY);
}
/* Init for new method, wait on concurrency semaphore */
status =
acpi_ds_begin_method_execution(info->node, info->obj_desc, NULL);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
/*
* The caller "owns" the parameters, so give each one an extra reference
*/
acpi_ps_update_parameter_list(info, REF_INCREMENT);
/*
* Execute the method. Performs parse simultaneously
*/
ACPI_DEBUG_PRINT((ACPI_DB_PARSE,
"**** Begin Method Parse/Execute [%4.4s] **** Node=%p Obj=%p\n",
info->node->name.ascii, info->node, info->obj_desc));
/* Create and init a Root Node */
ACPICA: Dispatcher: Cleanup union acpi_operand_object's AML address assignments ACPICA commit afb52611dbe7403551f93504d3798534f5c343f4 This patch cleans up the code of assigning the AML address to the union acpi_operand_object. The idea behind this cleanup is: The AML address of the union acpi_operand_object should always be determined at the point where the object is encountered. It should be started from the first byte of the object. For example, the opcode of the object, the name string of the user_term object, or the first byte of the packaged object (where a pkg_length is prefixed). So it's not cleaner to have it assigned here and there in the entire ACPICA source tree. There are some special cases for the internal opcodes, before cleaning up the internal opcodes, we should also determine the rules for the AML addresses of the internal opcodes: 1. INT_NAMEPATH_OP: the address of the first byte for the name_string. 2. INT_METHODCALL_OP: the address of the first byte for the name_string. 3. INT_BYTELIST_OP: the address of the first byte for the byte_data list. 4. INT_EVAL_SUBTREE_OP: the address of the first byte for the Region/Package/Buffer/bank_field/Field arguments. 5. INT_NAMEDFIELD_OP: the address to the name_seg. 6. INT_RESERVEDFIELD_OP: the address to the 0x00 prefix. 7. INT_ACCESSFIELD_OP: the address to the 0x01 prefix. 8. INT_CONNECTION_OP: the address to the 0x02 prefix. 9: INT_EXTACCESSFIELD_OP: the address to the 0x03 prefix. 10.INT_RETURN_VALUE_OP: the address of the replaced operand. 11.computational_data: the address to the Byte/Word/Dword/Qword/string_prefix. Before cleaning up the internal root scope of the aml_walk, turning it into the term_list, we need to remember the aml_start address as the "Aml" attribute for the union acpi_operand_object created by acpi_ps_create_scope_op(). Finally, we can delete some redundant AML address assignment in psloop.c. Link: https://github.com/acpica/acpica/commit/afb52611 Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-23 11:52:24 +07:00
op = acpi_ps_create_scope_op(info->obj_desc->method.aml_start);
if (!op) {
status = AE_NO_MEMORY;
goto cleanup;
}
/* Create and initialize a new walk state */
info->pass_number = ACPI_IMODE_EXECUTE;
walk_state =
acpi_ds_create_walk_state(info->obj_desc->method.owner_id, NULL,
NULL, NULL);
if (!walk_state) {
status = AE_NO_MEMORY;
goto cleanup;
}
status = acpi_ds_init_aml_walk(walk_state, op, info->node,
info->obj_desc->method.aml_start,
info->obj_desc->method.aml_length, info,
info->pass_number);
if (ACPI_FAILURE(status)) {
acpi_ds_delete_walk_state(walk_state);
goto cleanup;
}
walk_state->method_pathname = info->full_pathname;
walk_state->method_is_nested = FALSE;
if (info->obj_desc->method.info_flags & ACPI_METHOD_MODULE_LEVEL) {
walk_state->parse_flags |= ACPI_PARSE_MODULE_LEVEL;
}
/* Invoke an internal method if necessary */
if (info->obj_desc->method.info_flags & ACPI_METHOD_INTERNAL_ONLY) {
status =
info->obj_desc->method.dispatch.implementation(walk_state);
info->return_object = walk_state->return_desc;
/* Cleanup states */
acpi_ds_scope_stack_clear(walk_state);
acpi_ps_cleanup_scope(&walk_state->parser_state);
acpi_ds_terminate_control_method(walk_state->method_desc,
walk_state);
acpi_ds_delete_walk_state(walk_state);
goto cleanup;
}
/*
* Start method evaluation with an implicit return of zero.
* This is done for Windows compatibility.
*/
if (acpi_gbl_enable_interpreter_slack) {
walk_state->implicit_return_obj =
acpi_ut_create_integer_object((u64) 0);
if (!walk_state->implicit_return_obj) {
status = AE_NO_MEMORY;
acpi_ds_delete_walk_state(walk_state);
goto cleanup;
}
}
/* Parse the AML */
status = acpi_ps_parse_aml(walk_state);
/* walk_state was deleted by parse_aml */
cleanup:
acpi_ps_delete_parse_tree(op);
/* Take away the extra reference that we gave the parameters above */
acpi_ps_update_parameter_list(info, REF_DECREMENT);
/* Exit now if error above */
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
/*
* If the method has returned an object, signal this to the caller with
* a control exception code
*/
if (info->return_object) {
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 04:15:00 +07:00
ACPI_DEBUG_PRINT((ACPI_DB_PARSE, "Method returned ObjDesc=%p\n",
info->return_object));
ACPI_DUMP_STACK_ENTRY(info->return_object);
status = AE_CTRL_RETURN_VALUE;
}
return_ACPI_STATUS(status);
}
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 09:49:35 +07:00
ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:06:54 +07:00
/*******************************************************************************
*
* FUNCTION: acpi_ps_execute_table
*
* PARAMETERS: info - Method info block, contains:
* node - Node to where the is entered into the
* namespace
* obj_desc - Pseudo method object describing the AML
* code of the entire table
* pass_number - Parse or execute pass
*
* RETURN: Status
*
* DESCRIPTION: Execute a table
*
******************************************************************************/
acpi_status acpi_ps_execute_table(struct acpi_evaluate_info *info)
{
acpi_status status;
union acpi_parse_object *op = NULL;
struct acpi_walk_state *walk_state = NULL;
ACPI_FUNCTION_TRACE(ps_execute_table);
/* Create and init a Root Node */
op = acpi_ps_create_scope_op(info->obj_desc->method.aml_start);
if (!op) {
status = AE_NO_MEMORY;
goto cleanup;
}
/* Create and initialize a new walk state */
walk_state =
acpi_ds_create_walk_state(info->obj_desc->method.owner_id, NULL,
NULL, NULL);
if (!walk_state) {
status = AE_NO_MEMORY;
goto cleanup;
}
status = acpi_ds_init_aml_walk(walk_state, op, info->node,
info->obj_desc->method.aml_start,
info->obj_desc->method.aml_length, info,
info->pass_number);
if (ACPI_FAILURE(status)) {
goto cleanup;
}
walk_state->method_pathname = info->full_pathname;
walk_state->method_is_nested = FALSE;
ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:06:54 +07:00
if (info->obj_desc->method.info_flags & ACPI_METHOD_MODULE_LEVEL) {
walk_state->parse_flags |= ACPI_PARSE_MODULE_LEVEL;
}
/* Info->Node is the default location to load the table */
if (info->node && info->node != acpi_gbl_root_node) {
status =
acpi_ds_scope_stack_push(info->node, ACPI_TYPE_METHOD,
walk_state);
if (ACPI_FAILURE(status)) {
goto cleanup;
}
}
ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:06:54 +07:00
/*
* Parse the AML, walk_state will be deleted by parse_aml
*/
ACPICA: Namespace: Fix dynamic table loading issues ACPICA commit 767ee53354e0c4b7e8e7c57c6dd7bf569f0d52bb There are issues related to the namespace/interpreter locks, which causes several ACPI functionalities not specification compliant. The lock issues were detectec when we were trying to fix the functionalities (please see Link # [1] for the details). What's the lock issues? Let's first look into the namespace/interpreter lock usages inside of the object evaluation and the table loading which are the key AML interpretion code paths: Table loading: acpi_ns_load_table L(Namespace) acpi_ns_parse_table acpi_ns_one_complete_parse(LOAD_PASS1/LOAD_PASS2) acpi_ds_load1_begion_op acpi_ds_load1_end_op acpi_ds_load2_begion_op acpi_ds_load2_end_op U(Namespace) Object evaluation: acpi_ns_evaluate L(Interpreter) acpi_ps_execute_method acpi_ds_exec_begin_op acpi_ds_exec_end_op U(Interpreter) acpi_ns_load_table L(Namespace) U(Namespace) acpi_ev_initialize_region L(Namespace) U(Namespace) address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep L(Interpreter) U(Interpreter) L(Interpreter) acpi_ex_resolve_node_to_value U(Interpreter) acpi_ns_check_return_value Where: 1. L(Interpreter) means acquire(MTX_INTERPRETER); 2. U(Interpreter) means release(MTX_INTERPRETER); 3. L(Namespace) means acquire(MTX_NAMESPACE); 4. U(Namespace) means release(MTX_NAMESPACE); We can see that acpi_ns_exec_module_code() (which invokes acpi_ns_evaluate) is implemented in a deferred way just in order to avoid to reacquire the namespace lock. This is in fact the root cause of many other ACPICA issues: 1. We now know for sure that the module code should be executed right in place by the Windows AML interpreter. So in the current design, if the region initializations/accesses or the table loadings (where the namespace surely should be locked again) happening during the table loading period, dead lock could happen because ACPICA never unlocks the namespace during the AML interpretion. 2. ACPICA interpreter just ensures that all static namespace nodes (named objects created during the acpi_load_tables()) are created (acpi_ns_lookup()) with the correct lock held, but doesn't ensure that the named objects created by the control method are created with the same correct lock held. It requires the control methods to be executed in a serial way after "loading a table", that's why ACPICA requires method auto serialization. This patch fixes these software design issues by extending interpreter enter/exit APIs to hold both interpreter/namespace locks to ensure the lock order correctness, so that we can get these code paths: Table loading: acpi_ns_load_table E(Interpreter) acpi_ns_parse_table acpi_ns_one_complete_parse acpi_ns_execute_table X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Object evaluation: acpi_ns_evaluate E(Interpreter) acpi_ps_execute_method X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Where: 1. E(Interpreter) means acquire(MTX_INTERPRETER, MTX_NAMESPACE); 2. X(Interpreter) means release(MTX_NAMESPACE, MTX_INTERPRETER); After this change, we can see: 1. All namespace nodes creations are locked by the namespace lock. 2. All namespace nodes referencing are locked with the same lock. 3. But we also can notice a defact that, all namespace nodes deletions could be affected by this change. As a consequence, acpi_ns_delete_namespace_subtree() may delete a static namespace node that is still referenced by the interpreter (for example, the parser scopes). Currently, we needn't worry about the last defact because in ACPICA, table unloading is not fully functioning, its design strictly relies on the fact that when the namespace deletion happens, either the AML table or the OSPMs should have been notified and thus either the AML table or the OSPMs shouldn't reference deletion-related namespace nodes during the namespace deletion. And this change still works with the above restrictions applied. While making this a-step-forward helps us to correct the wrong grammar to pull many things back to the correct rail. And pulling things back to the correct rail in return makes it possible for us to support fully functioning table unloading after doing many cleanups. While this patch is generated, all namespace locks are examined to ensure that they can meet either of the following pattens: 1. L(Namespace) U(Namespace) 2. E(Interpreter) X(Interpreter) 3. E(Interpreter) X(Interpreter) L(Namespace) U(Namespace) E(Interpreter) X(Interpreter) We ensure this by adding X(Interpreter)/E(Interpreter) or removing U(Namespace)/L(Namespace) for those currently are executed in the following order: E(Interpreter) L(Namespace) U(Namespace) X(Interpreter) And adding E(Interpreter)/X(Interpreter) for those currently are executed in the following order: X(Interpreter) E(Interpreter) Originally, the interpreter lock is held for the execution AML opcodes, the namespace lock is held for the named object creation AML opcodes. Since they are actually same in MS interpreter (can all be executed during the table loading), we can combine the 2 locks and tune the locking code better in this way. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=121701 # [1] Link: https://bugs.acpica.org/show_bug.cgi?id=1323 Link: https://github.com/acpica/acpica/commit/767ee533 Reported-and-tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reported-and-tested-by: Greg White <gwhite@kupulau.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:07:10 +07:00
acpi_ex_enter_interpreter();
ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:06:54 +07:00
status = acpi_ps_parse_aml(walk_state);
ACPICA: Namespace: Fix dynamic table loading issues ACPICA commit 767ee53354e0c4b7e8e7c57c6dd7bf569f0d52bb There are issues related to the namespace/interpreter locks, which causes several ACPI functionalities not specification compliant. The lock issues were detectec when we were trying to fix the functionalities (please see Link # [1] for the details). What's the lock issues? Let's first look into the namespace/interpreter lock usages inside of the object evaluation and the table loading which are the key AML interpretion code paths: Table loading: acpi_ns_load_table L(Namespace) acpi_ns_parse_table acpi_ns_one_complete_parse(LOAD_PASS1/LOAD_PASS2) acpi_ds_load1_begion_op acpi_ds_load1_end_op acpi_ds_load2_begion_op acpi_ds_load2_end_op U(Namespace) Object evaluation: acpi_ns_evaluate L(Interpreter) acpi_ps_execute_method acpi_ds_exec_begin_op acpi_ds_exec_end_op U(Interpreter) acpi_ns_load_table L(Namespace) U(Namespace) acpi_ev_initialize_region L(Namespace) U(Namespace) address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep L(Interpreter) U(Interpreter) L(Interpreter) acpi_ex_resolve_node_to_value U(Interpreter) acpi_ns_check_return_value Where: 1. L(Interpreter) means acquire(MTX_INTERPRETER); 2. U(Interpreter) means release(MTX_INTERPRETER); 3. L(Namespace) means acquire(MTX_NAMESPACE); 4. U(Namespace) means release(MTX_NAMESPACE); We can see that acpi_ns_exec_module_code() (which invokes acpi_ns_evaluate) is implemented in a deferred way just in order to avoid to reacquire the namespace lock. This is in fact the root cause of many other ACPICA issues: 1. We now know for sure that the module code should be executed right in place by the Windows AML interpreter. So in the current design, if the region initializations/accesses or the table loadings (where the namespace surely should be locked again) happening during the table loading period, dead lock could happen because ACPICA never unlocks the namespace during the AML interpretion. 2. ACPICA interpreter just ensures that all static namespace nodes (named objects created during the acpi_load_tables()) are created (acpi_ns_lookup()) with the correct lock held, but doesn't ensure that the named objects created by the control method are created with the same correct lock held. It requires the control methods to be executed in a serial way after "loading a table", that's why ACPICA requires method auto serialization. This patch fixes these software design issues by extending interpreter enter/exit APIs to hold both interpreter/namespace locks to ensure the lock order correctness, so that we can get these code paths: Table loading: acpi_ns_load_table E(Interpreter) acpi_ns_parse_table acpi_ns_one_complete_parse acpi_ns_execute_table X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Object evaluation: acpi_ns_evaluate E(Interpreter) acpi_ps_execute_method X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Where: 1. E(Interpreter) means acquire(MTX_INTERPRETER, MTX_NAMESPACE); 2. X(Interpreter) means release(MTX_NAMESPACE, MTX_INTERPRETER); After this change, we can see: 1. All namespace nodes creations are locked by the namespace lock. 2. All namespace nodes referencing are locked with the same lock. 3. But we also can notice a defact that, all namespace nodes deletions could be affected by this change. As a consequence, acpi_ns_delete_namespace_subtree() may delete a static namespace node that is still referenced by the interpreter (for example, the parser scopes). Currently, we needn't worry about the last defact because in ACPICA, table unloading is not fully functioning, its design strictly relies on the fact that when the namespace deletion happens, either the AML table or the OSPMs should have been notified and thus either the AML table or the OSPMs shouldn't reference deletion-related namespace nodes during the namespace deletion. And this change still works with the above restrictions applied. While making this a-step-forward helps us to correct the wrong grammar to pull many things back to the correct rail. And pulling things back to the correct rail in return makes it possible for us to support fully functioning table unloading after doing many cleanups. While this patch is generated, all namespace locks are examined to ensure that they can meet either of the following pattens: 1. L(Namespace) U(Namespace) 2. E(Interpreter) X(Interpreter) 3. E(Interpreter) X(Interpreter) L(Namespace) U(Namespace) E(Interpreter) X(Interpreter) We ensure this by adding X(Interpreter)/E(Interpreter) or removing U(Namespace)/L(Namespace) for those currently are executed in the following order: E(Interpreter) L(Namespace) U(Namespace) X(Interpreter) And adding E(Interpreter)/X(Interpreter) for those currently are executed in the following order: X(Interpreter) E(Interpreter) Originally, the interpreter lock is held for the execution AML opcodes, the namespace lock is held for the named object creation AML opcodes. Since they are actually same in MS interpreter (can all be executed during the table loading), we can combine the 2 locks and tune the locking code better in this way. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=121701 # [1] Link: https://bugs.acpica.org/show_bug.cgi?id=1323 Link: https://github.com/acpica/acpica/commit/767ee533 Reported-and-tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reported-and-tested-by: Greg White <gwhite@kupulau.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:07:10 +07:00
acpi_ex_exit_interpreter();
ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-07 13:06:54 +07:00
walk_state = NULL;
cleanup:
if (walk_state) {
acpi_ds_delete_walk_state(walk_state);
}
if (op) {
acpi_ps_delete_parse_tree(op);
}
return_ACPI_STATUS(status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ps_update_parameter_list
*
* PARAMETERS: info - See struct acpi_evaluate_info
* (Used: parameter_type and Parameters)
* action - Add or Remove reference
*
* RETURN: Status
*
* DESCRIPTION: Update reference count on all method parameter objects
*
******************************************************************************/
static void
ACPI: ACPICA 20060526 Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec http://bugzilla.kernel.org/show_bug.cgi?id=5329 Allow interpreter to handle nested method declarations http://bugzilla.kernel.org/show_bug.cgi?id=5361 Fixed problem reports (Fiodor Suietov) integrated: - acpi_terminate() doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, acpi_subsystem_status() returns AE_OK (BZ 356) - acpi_os_unmap_memory() for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use acpi_os_free() instead of ACPI_FREE in acpi_rs_set_srs_method_data (BZ 360) - Incomplete cleanup branch in acpi_ps_parse_aml (BZ 361) - Incomplete cleanup branch in acpi_ds_delete_walk_state (BZ 362) - acpi_get_table_header returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-05-27 03:36:00 +07:00
acpi_ps_update_parameter_list(struct acpi_evaluate_info *info, u16 action)
{
u32 i;
if (info->parameters) {
/* Update reference count for each parameter */
for (i = 0; info->parameters[i]; i++) {
/* Ignore errors, just do them all */
(void)acpi_ut_update_object_reference(info->
parameters[i],
action);
}
}
}