linux_dsm_epyc7002/arch/x86/kernel/cpu/common.c

1581 lines
38 KiB
C
Raw Normal View History

#include <linux/bootmem.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/string.h>
x86/cpu: Trim model ID whitespace We did try trimming whitespace surrounding the 'model name' field in /proc/cpuinfo since reportedly some userspace uses it in string comparisons and there were discrepancies: [thetango@prarit ~]# grep "^model name" /proc/cpuinfo | uniq -c | sed 's/\ /_/g' ______1_model_name :_AMD_Opteron(TM)_Processor_6272 _____63_model_name :_AMD_Opteron(TM)_Processor_6272_________________ However, there were issues with overlapping buffers, string sizes and non-byte-sized copies in the previous proposed solutions; see Link tags below for the whole farce. So, instead of diddling with this more, let's simply extend what was there originally with trimming any present trailing whitespace. Final result is really simple and obvious. Testing with the most insane model IDs qemu can generate, looks good: .model_id = " My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = "My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = " My funny model ID CPU", ______4_model_name :_My_funny_model_ID_CPU .model_id = " ", ______4_model_name :__ .model_id = "", ______4_model_name :_15/02 Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1432050210-32036-1-git-send-email-prarit@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-01 17:06:57 +07:00
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/kgdb.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <linux/syscore_ops.h>
#include <asm/stackprotector.h>
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 17:02:48 +07:00
#include <asm/perf_event.h>
#include <asm/mmu_context.h>
#include <asm/archrandom.h>
#include <asm/hypervisor.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/debugreg.h>
#include <asm/sections.h>
#include <asm/vsyscall.h>
#include <linux/topology.h>
#include <linux/cpumask.h>
#include <asm/pgtable.h>
#include <linux/atomic.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/apic.h>
#include <asm/desc.h>
#include <asm/fpu/internal.h>
#include <asm/mtrr.h>
#include <linux/numa.h>
#include <asm/asm.h>
#include <asm/cpu.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/pat.h>
#include <asm/microcode.h>
#include <asm/microcode_intel.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/uv/uv.h>
#endif
#include "cpu.h"
/* all of these masks are initialized in setup_cpu_local_masks() */
cpumask_var_t cpu_initialized_mask;
cpumask_var_t cpu_callout_mask;
cpumask_var_t cpu_callin_mask;
/* representing cpus for which sibling maps can be computed */
cpumask_var_t cpu_sibling_setup_mask;
/* correctly size the local cpu masks */
void __init setup_cpu_local_masks(void)
{
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
alloc_bootmem_cpumask_var(&cpu_callin_mask);
alloc_bootmem_cpumask_var(&cpu_callout_mask);
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void default_init(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
cpu_detect_cache_sizes(c);
#else
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1) {
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct cpu_dev default_cpu = {
.c_init = default_init,
.c_vendor = "Unknown",
.c_x86_vendor = X86_VENDOR_UNKNOWN,
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct cpu_dev *this_cpu = &default_cpu;
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64
/*
* We need valid kernel segments for data and code in long mode too
* IRET will check the segment types kkeil 2000/10/28
* Also sysret mandates a special GDT layout
*
* TLS descriptors are currently at a different place compared to i386.
* Hopefully nobody expects them at a fixed place (Wine?)
*/
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
#else
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
/*
* Segments used for calling PnP BIOS have byte granularity.
* They code segments and data segments have fixed 64k limits,
* the transfer segment sizes are set at run time.
*/
/* 32-bit code */
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
/* 16-bit code */
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
/*
* The APM segments have byte granularity and their bases
* are set at run time. All have 64k limits.
*/
/* 32-bit code */
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
/* 16-bit code */
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
/* data */
x86: Introduce GDT_ENTRY_INIT(), fix APM This crash: [ 0.891983] calling cache_sysfs_init+0x0/0x1ee @ 1 [ 0.897251] initcall cache_sysfs_init+0x0/0x1ee returned 0 after 405 usecs [ 0.904019] calling mce_init_device+0x0/0x242 @ 1 [ 0.909124] initcall mce_init_device+0x0/0x242 returned 0 after 347 usecs [ 0.915815] calling apm_init+0x0/0x38d @ 1 [ 0.919967] apm: BIOS version 1.2 Flags 0x07 (Driver version 1.16ac) [ 0.926813] general protection fault: 0000 [#1] [ 0.927269] last sysfs file: [ 0.927269] Modules linked in: [ 0.927269] [ 0.927269] Pid: 271, comm: kapmd Not tainted (2.6.31-rc3-00100-gd520da1-dirty #311) System Product Name [ 0.927269] EIP: 00c0:[<000082b2>] EFLAGS: 00010002 CPU: 0 [ 0.927269] EIP is at 0x82b2 [ 0.927269] EAX: 0000530e EBX: 00000000 ECX: 00000102 EDX: 00000000 [ 0.927269] ESI: 00000000 EDI: f6a4bf44 EBP: 67890000 ESP: f6a4beec [ 0.927269] DS: 00c8 ES: 0000 FS: 0000 GS: 0000 SS: 0068 [ 0.927269] Process kapmd (pid: 271, ti=f6a4a000 task=f7142280 task.ti=f6a4a000) [ 0.927269] Stack: [ 0.927269] 0000828d 02160000 00b88092 f6a4bf3c c102a63d 00000060 f6a4bf3c f6a4bf44 [ 0.927269] <0> 0000007b 0000007b 00000000 00000000 00000000 00000000 560aae9e 00000000 [ 0.927269] <0> 00000200 f705fd74 00000000 c102af70 f6a4bf60 c102a6ec 0000530e 00000000 [ 0.927269] Call Trace: [ 0.927269] [<c102a63d>] ? __apm_bios_call_simple+0x7d/0x110 [ 0.927269] [<c102af70>] ? apm+0x0/0x6a0 [ 0.927269] [<c102a6ec>] ? apm_bios_call_simple+0x1c/0x50 [ 0.927269] [<c102b3f5>] ? apm+0x485/0x6a0 [ 0.927269] [<c1038e7a>] ? finish_task_switch+0x2a/0xb0 [ 0.927269] [<c164a69e>] ? schedule+0x31e/0x480 [ 0.927269] [<c102af70>] ? apm+0x0/0x6a0 [ 0.927269] [<c102af70>] ? apm+0x0/0x6a0 [ 0.927269] [<c1052654>] ? kthread+0x74/0x80 [ 0.927269] [<c10525e0>] ? kthread+0x0/0x80 [ 0.927269] [<c101d627>] ? kernel_thread_helper+0x7/0x10 [ 0.927269] Code: Bad EIP value. [ 0.927269] EIP: [<000082b2>] 0x82b2 SS:ESP 0068:f6a4beec [ 0.927269] ---[ end trace a7919e7f17c0a725 ]--- [ 0.927269] Kernel panic - not syncing: Fatal exception [ 0.927269] Pid: 271, comm: kapmd Tainted: G D 2.6.31-rc3-00100-gd520da1-dirty #311 Is caused by an incorrect GDT_ENTRY_INIT() conversion in the apm code, as noticed by hpa. Reported-by: Ingo Molnar <mingo@elte.hu> Noticed-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> LKML-Reference: <20090808094905.GA2954@localhost.localdomain> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-03 13:47:07 +07:00
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
GDT_STACK_CANARY_INIT
#endif
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
static int __init x86_mpx_setup(char *s)
{
/* require an exact match without trailing characters */
if (strlen(s))
return 0;
/* do not emit a message if the feature is not present */
if (!boot_cpu_has(X86_FEATURE_MPX))
return 1;
setup_clear_cpu_cap(X86_FEATURE_MPX);
pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
return 1;
}
__setup("nompx", x86_mpx_setup);
static int __init x86_noinvpcid_setup(char *s)
{
/* noinvpcid doesn't accept parameters */
if (s)
return -EINVAL;
/* do not emit a message if the feature is not present */
if (!boot_cpu_has(X86_FEATURE_INVPCID))
return 0;
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
pr_info("noinvpcid: INVPCID feature disabled\n");
return 0;
}
early_param("noinvpcid", x86_noinvpcid_setup);
#ifdef CONFIG_X86_32
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static int cachesize_override = -1;
static int disable_x86_serial_nr = 1;
static int __init cachesize_setup(char *str)
{
get_option(&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
static int __init x86_sep_setup(char *s)
{
setup_clear_cpu_cap(X86_FEATURE_SEP);
return 1;
}
__setup("nosep", x86_sep_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
/*
* Cyrix and IDT cpus allow disabling of CPUID
* so the code below may return different results
* when it is executed before and after enabling
* the CPUID. Add "volatile" to not allow gcc to
* optimize the subsequent calls to this function.
*/
asm volatile ("pushfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"movl %0, %1 \n\t"
"xorl %2, %0 \n\t"
"pushl %0 \n\t"
"popfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"popfl \n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
int have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
unsigned long lo, hi;
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
return;
/* Disable processor serial number: */
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
pr_notice("CPU serial number disabled.\n");
clear_cpu_cap(c, X86_FEATURE_PN);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
#else
static inline int flag_is_changeable_p(u32 flag)
{
return 1;
}
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
}
#endif
static __init int setup_disable_smep(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_SMEP);
return 1;
}
__setup("nosmep", setup_disable_smep);
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_SMEP))
cr4_set_bits(X86_CR4_SMEP);
}
static __init int setup_disable_smap(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_SMAP);
return 1;
}
__setup("nosmap", setup_disable_smap);
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
{
unsigned long eflags = native_save_fl();
/* This should have been cleared long ago */
BUG_ON(eflags & X86_EFLAGS_AC);
if (cpu_has(c, X86_FEATURE_SMAP)) {
#ifdef CONFIG_X86_SMAP
cr4_set_bits(X86_CR4_SMAP);
#else
cr4_clear_bits(X86_CR4_SMAP);
#endif
}
}
/*
* Protection Keys are not available in 32-bit mode.
*/
static bool pku_disabled;
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
{
if (!cpu_has(c, X86_FEATURE_PKU))
return;
if (pku_disabled)
return;
cr4_set_bits(X86_CR4_PKE);
/*
* Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
* cpuid bit to be set. We need to ensure that we
* update that bit in this CPU's "cpu_info".
*/
get_cpu_cap(c);
}
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
static __init int setup_disable_pku(char *arg)
{
/*
* Do not clear the X86_FEATURE_PKU bit. All of the
* runtime checks are against OSPKE so clearing the
* bit does nothing.
*
* This way, we will see "pku" in cpuinfo, but not
* "ospke", which is exactly what we want. It shows
* that the CPU has PKU, but the OS has not enabled it.
* This happens to be exactly how a system would look
* if we disabled the config option.
*/
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
pku_disabled = true;
return 1;
}
__setup("nopku", setup_disable_pku);
#endif /* CONFIG_X86_64 */
/*
* Some CPU features depend on higher CPUID levels, which may not always
* be available due to CPUID level capping or broken virtualization
* software. Add those features to this table to auto-disable them.
*/
struct cpuid_dependent_feature {
u32 feature;
u32 level;
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct cpuid_dependent_feature
cpuid_dependent_features[] = {
{ X86_FEATURE_MWAIT, 0x00000005 },
{ X86_FEATURE_DCA, 0x00000009 },
{ X86_FEATURE_XSAVE, 0x0000000d },
{ 0, 0 }
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
{
const struct cpuid_dependent_feature *df;
for (df = cpuid_dependent_features; df->feature; df++) {
if (!cpu_has(c, df->feature))
continue;
/*
* Note: cpuid_level is set to -1 if unavailable, but
* extended_extended_level is set to 0 if unavailable
* and the legitimate extended levels are all negative
* when signed; hence the weird messing around with
* signs here...
*/
if (!((s32)df->level < 0 ?
(u32)df->level > (u32)c->extended_cpuid_level :
(s32)df->level > (s32)c->cpuid_level))
continue;
clear_cpu_cap(c, df->feature);
if (!warn)
continue;
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
x86_cap_flag(df->feature), df->level);
}
}
/*
* Naming convention should be: <Name> [(<Codename>)]
* This table only is used unless init_<vendor>() below doesn't set it;
* in particular, if CPUID levels 0x80000002..4 are supported, this
* isn't used
*/
/* Look up CPU names by table lookup. */
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const char *table_lookup_model(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
const struct legacy_cpu_model_info *info;
if (c->x86_model >= 16)
return NULL; /* Range check */
if (!this_cpu)
return NULL;
info = this_cpu->legacy_models;
while (info->family) {
if (info->family == c->x86)
return info->model_names[c->x86_model];
info++;
}
#endif
return NULL; /* Not found */
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
__u32 cpu_caps_cleared[NCAPINTS];
__u32 cpu_caps_set[NCAPINTS];
void load_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
loadsegment(fs, __KERNEL_PERCPU);
#else
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
#endif
load_stack_canary_segment();
}
/*
* Current gdt points %fs at the "master" per-cpu area: after this,
* it's on the real one.
*/
void switch_to_new_gdt(int cpu)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
/* Reload the per-cpu base */
load_percpu_segment(cpu);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
x86/cpu: Trim model ID whitespace We did try trimming whitespace surrounding the 'model name' field in /proc/cpuinfo since reportedly some userspace uses it in string comparisons and there were discrepancies: [thetango@prarit ~]# grep "^model name" /proc/cpuinfo | uniq -c | sed 's/\ /_/g' ______1_model_name :_AMD_Opteron(TM)_Processor_6272 _____63_model_name :_AMD_Opteron(TM)_Processor_6272_________________ However, there were issues with overlapping buffers, string sizes and non-byte-sized copies in the previous proposed solutions; see Link tags below for the whole farce. So, instead of diddling with this more, let's simply extend what was there originally with trimming any present trailing whitespace. Final result is really simple and obvious. Testing with the most insane model IDs qemu can generate, looks good: .model_id = " My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = "My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = " My funny model ID CPU", ______4_model_name :_My_funny_model_ID_CPU .model_id = " ", ______4_model_name :__ .model_id = "", ______4_model_name :_15/02 Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1432050210-32036-1-git-send-email-prarit@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-01 17:06:57 +07:00
char *p, *q, *s;
if (c->extended_cpuid_level < 0x80000004)
return;
v = (unsigned int *)c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
x86/cpu: Trim model ID whitespace We did try trimming whitespace surrounding the 'model name' field in /proc/cpuinfo since reportedly some userspace uses it in string comparisons and there were discrepancies: [thetango@prarit ~]# grep "^model name" /proc/cpuinfo | uniq -c | sed 's/\ /_/g' ______1_model_name :_AMD_Opteron(TM)_Processor_6272 _____63_model_name :_AMD_Opteron(TM)_Processor_6272_________________ However, there were issues with overlapping buffers, string sizes and non-byte-sized copies in the previous proposed solutions; see Link tags below for the whole farce. So, instead of diddling with this more, let's simply extend what was there originally with trimming any present trailing whitespace. Final result is really simple and obvious. Testing with the most insane model IDs qemu can generate, looks good: .model_id = " My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = "My funny model ID CPU ", ______4_model_name :_My_funny_model_ID_CPU .model_id = " My funny model ID CPU", ______4_model_name :_My_funny_model_ID_CPU .model_id = " ", ______4_model_name :__ .model_id = "", ______4_model_name :_15/02 Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1432050210-32036-1-git-send-email-prarit@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-01 17:06:57 +07:00
/* Trim whitespace */
p = q = s = &c->x86_model_id[0];
while (*p == ' ')
p++;
while (*p) {
/* Note the last non-whitespace index */
if (!isspace(*p))
s = q;
*q++ = *p++;
}
*(s + 1) = '\0';
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ebx, ecx, edx, l2size;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
c->x86_cache_size = (ecx>>24) + (edx>>24);
#ifdef CONFIG_X86_64
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
#endif
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
l2size = ecx >> 16;
#ifdef CONFIG_X86_64
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
#else
/* do processor-specific cache resizing */
if (this_cpu->legacy_cache_size)
l2size = this_cpu->legacy_cache_size(c, l2size);
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if (l2size == 0)
return; /* Again, no L2 cache is possible */
#endif
c->x86_cache_size = l2size;
}
u16 __read_mostly tlb_lli_4k[NR_INFO];
u16 __read_mostly tlb_lli_2m[NR_INFO];
u16 __read_mostly tlb_lli_4m[NR_INFO];
u16 __read_mostly tlb_lld_4k[NR_INFO];
u16 __read_mostly tlb_lld_2m[NR_INFO];
u16 __read_mostly tlb_lld_4m[NR_INFO];
u16 __read_mostly tlb_lld_1g[NR_INFO];
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
{
if (this_cpu->c_detect_tlb)
this_cpu->c_detect_tlb(c);
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
tlb_lli_4m[ENTRIES]);
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
static bool printed;
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
return;
cpuid(1, &eax, &ebx, &ecx, &edx);
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
pr_info_once("CPU0: Hyper-Threading is disabled\n");
goto out;
}
if (smp_num_siblings <= 1)
goto out;
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
((1 << core_bits) - 1);
out:
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
pr_info("CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
pr_info("CPU: Processor Core ID: %d\n",
c->cpu_core_id);
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
printed = 1;
}
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (!cpu_devs[i])
break;
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
this_cpu = cpu_devs[i];
c->x86_vendor = this_cpu->c_x86_vendor;
return;
}
}
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
"CPU: Your system may be unstable.\n", v);
c->x86_vendor = X86_VENDOR_UNKNOWN;
this_cpu = &default_cpu;
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void cpu_detect(struct cpuinfo_x86 *c)
{
/* Get vendor name */
x86: fix sparse warnings in cpu/common.c The casts will always be needed, may as well make them the right signedness. The ebx variables can easily be unsigned, may as well. arch/x86/kernel/cpu/common.c:261:21: warning: incorrect type in argument 2 (different signedness) arch/x86/kernel/cpu/common.c:261:21: expected unsigned int *eax arch/x86/kernel/cpu/common.c:261:21: got int *<noident> arch/x86/kernel/cpu/common.c:262:9: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:262:9: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:262:9: got int *<noident> arch/x86/kernel/cpu/common.c:263:9: warning: incorrect type in argument 4 (different signedness) arch/x86/kernel/cpu/common.c:263:9: expected unsigned int *ecx arch/x86/kernel/cpu/common.c:263:9: got int *<noident> arch/x86/kernel/cpu/common.c:264:9: warning: incorrect type in argument 5 (different signedness) arch/x86/kernel/cpu/common.c:264:9: expected unsigned int *edx arch/x86/kernel/cpu/common.c:264:9: got int *<noident> arch/x86/kernel/cpu/common.c:293:30: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:293:30: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:293:30: got int *<noident> arch/x86/kernel/cpu/common.c:350:22: warning: incorrect type in argument 2 (different signedness) arch/x86/kernel/cpu/common.c:350:22: expected unsigned int *eax arch/x86/kernel/cpu/common.c:350:22: got int *<noident> arch/x86/kernel/cpu/common.c:351:10: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:351:10: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:351:10: got int *<noident> arch/x86/kernel/cpu/common.c:352:10: warning: incorrect type in argument 4 (different signedness) arch/x86/kernel/cpu/common.c:352:10: expected unsigned int *ecx arch/x86/kernel/cpu/common.c:352:10: got int *<noident> arch/x86/kernel/cpu/common.c:353:10: warning: incorrect type in argument 5 (different signedness) arch/x86/kernel/cpu/common.c:353:10: expected unsigned int *edx arch/x86/kernel/cpu/common.c:353:10: got int *<noident> arch/x86/kernel/cpu/common.c:362:30: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:362:30: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:362:30: got int *<noident> Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 23:49:43 +07:00
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
c->x86 = 4;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 junk, tfms, cap0, misc;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
c->x86 = x86_family(tfms);
c->x86_model = x86_model(tfms);
c->x86_mask = x86_stepping(tfms);
if (cap0 & (1<<19)) {
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
c->x86_cache_alignment = c->x86_clflush_size;
}
}
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void get_cpu_cap(struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_1_ECX] = ecx;
c->x86_capability[CPUID_1_EDX] = edx;
}
/* Additional Intel-defined flags: level 0x00000007 */
if (c->cpuid_level >= 0x00000007) {
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_7_0_EBX] = ebx;
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
x86/cpufeature, x86/mm/pkeys: Add protection keys related CPUID definitions There are two CPUID bits for protection keys. One is for whether the CPU contains the feature, and the other will appear set once the OS enables protection keys. Specifically: Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable Protection keys (and the RDPKRU/WRPKRU instructions) This is because userspace can not see CR4 contents, but it can see CPUID contents. X86_FEATURE_PKU is referred to as "PKU" in the hardware documentation: CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] X86_FEATURE_OSPKE is "OSPKU": CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4] These are the first CPU features which need to look at the ECX word in CPUID leaf 0x7, so this patch also includes fetching that word in to the cpuinfo->x86_capability[] array. Add it to the disabled-features mask when its config option is off. Even though we are not using it here, we also extend the REQUIRED_MASK_BIT_SET() macro to keep it mirroring the DISABLED_MASK_BIT_SET() version. This means that in almost all code, you should use: cpu_has(c, X86_FEATURE_PKU) and *not* the CONFIG option. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210201.7714C250@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-13 04:02:01 +07:00
c->x86_capability[CPUID_7_ECX] = ecx;
}
/* Extended state features: level 0x0000000d */
if (c->cpuid_level >= 0x0000000d) {
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_D_1_EAX] = eax;
}
x86: Add support for Intel Cache QoS Monitoring (CQM) detection This patch adds support for the new Cache QoS Monitoring (CQM) feature found in future Intel Xeon processors. It includes the new values to track CQM resources to the cpuinfo_x86 structure, plus the CPUID detection routines for CQM. CQM allows a process, or set of processes, to be tracked by the CPU to determine the cache usage of that task group. Using this data from the CPU, software can be written to extract this data and report cache usage and occupancy for a particular process, or group of processes. More information about Cache QoS Monitoring can be found in the Intel (R) x86 Architecture Software Developer Manual, section 17.14. Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Webb <chris@arachsys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Honeyman <stevenhoneyman@gmail.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-5-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-24 01:45:43 +07:00
/* Additional Intel-defined flags: level 0x0000000F */
if (c->cpuid_level >= 0x0000000F) {
/* QoS sub-leaf, EAX=0Fh, ECX=0 */
cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_F_0_EDX] = edx;
x86: Add support for Intel Cache QoS Monitoring (CQM) detection This patch adds support for the new Cache QoS Monitoring (CQM) feature found in future Intel Xeon processors. It includes the new values to track CQM resources to the cpuinfo_x86 structure, plus the CPUID detection routines for CQM. CQM allows a process, or set of processes, to be tracked by the CPU to determine the cache usage of that task group. Using this data from the CPU, software can be written to extract this data and report cache usage and occupancy for a particular process, or group of processes. More information about Cache QoS Monitoring can be found in the Intel (R) x86 Architecture Software Developer Manual, section 17.14. Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Webb <chris@arachsys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Honeyman <stevenhoneyman@gmail.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-5-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-24 01:45:43 +07:00
if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
/* will be overridden if occupancy monitoring exists */
c->x86_cache_max_rmid = ebx;
/* QoS sub-leaf, EAX=0Fh, ECX=1 */
cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_F_1_EDX] = edx;
perf/x86/mbm: Add Intel Memory B/W Monitoring enumeration and init The MBM init patch enumerates the Intel MBM (Memory b/w monitoring) and initializes the perf events and datastructures for monitoring the memory b/w. Its based on original patch series by Tony Luck and Kanaka Juvva. Memory bandwidth monitoring (MBM) provides OS/VMM a way to monitor bandwidth from one level of cache to another. The current patches support L3 external bandwidth monitoring. It supports both 'local bandwidth' and 'total bandwidth' monitoring for the socket. Local bandwidth measures the amount of data sent through the memory controller on the socket and total b/w measures the total system bandwidth. Extending the cache quality of service monitoring (CQM) we add two more events to the perf infrastructure: intel_cqm_llc/local_bytes - bytes sent through local socket memory controller intel_cqm_llc/total_bytes - total L3 external bytes sent The tasks are associated with a Resouce Monitoring ID (RMID) just like in CQM and OS uses a MSR write to indicate the RMID of the task during scheduling. Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: fenghua.yu@intel.com Cc: h.peter.anvin@intel.com Cc: ravi.v.shankar@intel.com Cc: vikas.shivappa@intel.com Link: http://lkml.kernel.org/r/1457652732-4499-4-git-send-email-vikas.shivappa@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-11 06:32:09 +07:00
if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
(cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
x86: Add support for Intel Cache QoS Monitoring (CQM) detection This patch adds support for the new Cache QoS Monitoring (CQM) feature found in future Intel Xeon processors. It includes the new values to track CQM resources to the cpuinfo_x86 structure, plus the CPUID detection routines for CQM. CQM allows a process, or set of processes, to be tracked by the CPU to determine the cache usage of that task group. Using this data from the CPU, software can be written to extract this data and report cache usage and occupancy for a particular process, or group of processes. More information about Cache QoS Monitoring can be found in the Intel (R) x86 Architecture Software Developer Manual, section 17.14. Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Webb <chris@arachsys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Honeyman <stevenhoneyman@gmail.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-5-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-24 01:45:43 +07:00
c->x86_cache_max_rmid = ecx;
c->x86_cache_occ_scale = ebx;
}
} else {
c->x86_cache_max_rmid = -1;
c->x86_cache_occ_scale = -1;
}
}
/* AMD-defined flags: level 0x80000001 */
eax = cpuid_eax(0x80000000);
c->extended_cpuid_level = eax;
if ((eax & 0xffff0000) == 0x80000000) {
if (eax >= 0x80000001) {
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
c->x86_capability[CPUID_8000_0001_EDX] = edx;
}
}
if (c->extended_cpuid_level >= 0x80000008) {
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
}
#ifdef CONFIG_X86_32
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
c->x86_phys_bits = 36;
#endif
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
if (c->extended_cpuid_level >= 0x8000000a)
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
init_scattered_cpuid_features(c);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
int i;
/*
* First of all, decide if this is a 486 or higher
* It's a 486 if we can modify the AC flag
*/
if (flag_is_changeable_p(X86_EFLAGS_AC))
c->x86 = 4;
else
c->x86 = 3;
for (i = 0; i < X86_VENDOR_NUM; i++)
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
c->x86_vendor_id[0] = 0;
cpu_devs[i]->c_identify(c);
if (c->x86_vendor_id[0]) {
get_cpu_vendor(c);
break;
}
}
#endif
}
/*
* Do minimum CPU detection early.
* Fields really needed: vendor, cpuid_level, family, model, mask,
* cache alignment.
* The others are not touched to avoid unwanted side effects.
*
* WARNING: this function is only called on the BP. Don't add code here
* that is supposed to run on all CPUs.
*/
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
if (this_cpu->c_early_init)
this_cpu->c_early_init(c);
c->cpu_index = 0;
filter_cpuid_features(c, false);
if (this_cpu->c_bsp_init)
this_cpu->c_bsp_init(c);
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
fpu__init_system(c);
}
void __init early_cpu_init(void)
{
const struct cpu_dev *const *cdev;
int count = 0;
#ifdef CONFIG_PROCESSOR_SELECT
pr_info("KERNEL supported cpus:\n");
#endif
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
const struct cpu_dev *cpudev = *cdev;
if (count >= X86_VENDOR_NUM)
break;
cpu_devs[count] = cpudev;
count++;
#ifdef CONFIG_PROCESSOR_SELECT
{
unsigned int j;
for (j = 0; j < 2; j++) {
if (!cpudev->c_ident[j])
continue;
pr_info(" %s %s\n", cpudev->c_vendor,
cpudev->c_ident[j]);
}
}
#endif
}
early_identify_cpu(&boot_cpu_data);
}
/*
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
* unfortunately, that's not true in practice because of early VIA
* chips and (more importantly) broken virtualizers that are not easy
* to detect. In the latter case it doesn't even *fail* reliably, so
* probing for it doesn't even work. Disable it completely on 32-bit
* unless we can find a reliable way to detect all the broken cases.
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void detect_nopl(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
clear_cpu_cap(c, X86_FEATURE_NOPL);
#else
set_cpu_cap(c, X86_FEATURE_NOPL);
x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled x86_64 has very clean espfix handling on paravirt: espfix64 is set up in native_iret, so paravirt systems that override iret bypass espfix64 automatically. This is robust and straightforward. x86_32 is messier. espfix is set up before the IRET paravirt patch point, so it can't be directly conditionalized on whether we use native_iret. We also can't easily move it into native_iret without regressing performance due to a bizarre consideration. Specifically, on 64-bit kernels, the logic is: if (regs->ss & 0x4) setup_espfix; On 32-bit kernels, the logic is: if ((regs->ss & 0x4) && (regs->cs & 0x3) == 3 && (regs->flags & X86_EFLAGS_VM) == 0) setup_espfix; The performance of setup_espfix itself is essentially irrelevant, but the comparison happens on every IRET so its performance matters. On x86_64, there's no need for any registers except flags to implement the comparison, so we fold the whole thing into native_iret. On x86_32, we don't do that because we need a free register to implement the comparison efficiently. We therefore do espfix setup before restoring registers on x86_32. This patch gets rid of the explicit paravirt_enabled check by introducing X86_BUG_ESPFIX on 32-bit systems and using an ALTERNATIVE to skip espfix on paravirt systems where iret != native_iret. This is also messy, but it's at least in line with other things we do. This improves espfix performance by removing a branch, but no one cares. More importantly, it removes a paravirt_enabled user, which is good because paravirt_enabled is ill-defined and is going away. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: boris.ostrovsky@oracle.com Cc: david.vrabel@citrix.com Cc: konrad.wilk@oracle.com Cc: lguest@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-01 06:50:19 +07:00
#endif
/*
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
* systems that run Linux at CPL > 0 may or may not have the
* issue, but, even if they have the issue, there's absolutely
* nothing we can do about it because we can't use the real IRET
* instruction.
*
* NB: For the time being, only 32-bit kernels support
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
* whether to apply espfix using paravirt hooks. If any
* non-paravirt system ever shows up that does *not* have the
* ESPFIX issue, we can change this.
*/
#ifdef CONFIG_X86_32
#ifdef CONFIG_PARAVIRT
do {
extern void native_iret(void);
if (pv_cpu_ops.iret == native_iret)
set_cpu_bug(c, X86_BUG_ESPFIX);
} while (0);
#else
set_cpu_bug(c, X86_BUG_ESPFIX);
#endif
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void generic_identify(struct cpuinfo_x86 *c)
{
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
if (c->cpuid_level >= 0x00000001) {
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
#ifdef CONFIG_X86_32
# ifdef CONFIG_SMP
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
# else
c->apicid = c->initial_apicid;
# endif
#endif
c->phys_proc_id = c->initial_apicid;
}
get_model_name(c); /* Default name */
detect_nopl(c);
}
x86: Add support for Intel Cache QoS Monitoring (CQM) detection This patch adds support for the new Cache QoS Monitoring (CQM) feature found in future Intel Xeon processors. It includes the new values to track CQM resources to the cpuinfo_x86 structure, plus the CPUID detection routines for CQM. CQM allows a process, or set of processes, to be tracked by the CPU to determine the cache usage of that task group. Using this data from the CPU, software can be written to extract this data and report cache usage and occupancy for a particular process, or group of processes. More information about Cache QoS Monitoring can be found in the Intel (R) x86 Architecture Software Developer Manual, section 17.14. Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Webb <chris@arachsys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Honeyman <stevenhoneyman@gmail.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-5-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-24 01:45:43 +07:00
static void x86_init_cache_qos(struct cpuinfo_x86 *c)
{
/*
* The heavy lifting of max_rmid and cache_occ_scale are handled
* in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
* in case CQM bits really aren't there in this CPU.
*/
if (c != &boot_cpu_data) {
boot_cpu_data.x86_cache_max_rmid =
min(boot_cpu_data.x86_cache_max_rmid,
c->x86_cache_max_rmid);
}
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void identify_cpu(struct cpuinfo_x86 *c)
{
int i;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->cpuid_level = -1; /* CPUID not detected */
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
generic_identify(c);
if (this_cpu->c_identify)
this_cpu->c_identify(c);
/* Clear/Set all flags overridden by options, after probe */
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
#ifdef CONFIG_X86_64
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
#endif
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
/* Set up SMEP/SMAP */
setup_smep(c);
setup_smap(c);
/*
* The vendor-specific functions might have changed features.
* Now we do "generic changes."
*/
/* Filter out anything that depends on CPUID levels we don't have */
filter_cpuid_features(c, true);
/* If the model name is still unset, do table lookup. */
if (!c->x86_model_id[0]) {
const char *p;
p = table_lookup_model(c);
if (p)
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86, c->x86_model);
}
#ifdef CONFIG_X86_64
detect_ht(c);
#endif
x86: Hypervisor detection and get tsc_freq from hypervisor Impact: Changes timebase calibration on Vmware. v3->v2 : Abstract the hypervisor detection and feature (tsc_freq) request behind a hypervisor.c file v2->v1 : Add a x86_hyper_vendor field to the cpuinfo_x86 structure. This avoids multiple calls to the hypervisor detection function. This patch adds function to detect if we are running under VMware. The current way to check if we are on VMware is following, # check if "hypervisor present bit" is set, if so read the 0x40000000 cpuid leaf and check for "VMwareVMware" signature. # if the above fails, check the DMI vendors name for "VMware" string if we find one we query the VMware hypervisor port to check if we are under VMware. The DMI + "VMware hypervisor port check" is needed for older VMware products, which don't implement the hypervisor signature cpuid leaf. Also note that since we are checking for the DMI signature the hypervisor port should never be accessed on native hardware. This patch also adds a hypervisor_get_tsc_freq function, instead of calibrating the frequency which can be error prone in virtualized environment, we ask the hypervisor for it. We get the frequency from the hypervisor by accessing the hypervisor port if we are running on VMware. Other hypervisors too can add code to the generic routine to get frequency on their platform. Signed-off-by: Alok N Kataria <akataria@vmware.com> Signed-off-by: Dan Hecht <dhecht@vmware.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-28 00:41:46 +07:00
init_hypervisor(c);
x86_init_rdrand(c);
x86: Add support for Intel Cache QoS Monitoring (CQM) detection This patch adds support for the new Cache QoS Monitoring (CQM) feature found in future Intel Xeon processors. It includes the new values to track CQM resources to the cpuinfo_x86 structure, plus the CPUID detection routines for CQM. CQM allows a process, or set of processes, to be tracked by the CPU to determine the cache usage of that task group. Using this data from the CPU, software can be written to extract this data and report cache usage and occupancy for a particular process, or group of processes. More information about Cache QoS Monitoring can be found in the Intel (R) x86 Architecture Software Developer Manual, section 17.14. Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Webb <chris@arachsys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Honeyman <stevenhoneyman@gmail.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-5-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-24 01:45:43 +07:00
x86_init_cache_qos(c);
setup_pku(c);
/*
* Clear/Set all flags overridden by options, need do it
* before following smp all cpus cap AND.
*/
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
/* OR, i.e. replicate the bug flags */
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
}
/* Init Machine Check Exception if available. */
mcheck_cpu_init(c);
select_idle_routine(c);
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
x86/topology: Create logical package id For per package oriented services we must be able to rely on the number of CPU packages to be within bounds. Create a tracking facility, which - calculates the number of possible packages depending on nr_cpu_ids after boot - makes sure that the package id is within the number of possible packages. If the apic id is outside we map it to a logical package id if there is enough space available. Provide interfaces for drivers to query the mapping and do translations from physcial to logical ids. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Harish Chegondi <harish.chegondi@intel.com> Cc: Jacob Pan <jacob.jun.pan@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-23 05:19:15 +07:00
/* The boot/hotplug time assigment got cleared, restore it */
c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
}
/*
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
* on 32-bit kernels:
*/
#ifdef CONFIG_X86_32
void enable_sep_cpu(void)
{
struct tss_struct *tss;
int cpu;
cpu = get_cpu();
tss = &per_cpu(cpu_tss, cpu);
if (!boot_cpu_has(X86_FEATURE_SEP))
goto out;
/*
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
* see the big comment in struct x86_hw_tss's definition.
*/
tss->x86_tss.ss1 = __KERNEL_CS;
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
wrmsr(MSR_IA32_SYSENTER_ESP,
(unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
0);
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
out:
put_cpu();
}
#endif
void __init identify_boot_cpu(void)
{
identify_cpu(&boot_cpu_data);
init_amd_e400_c1e_mask();
#ifdef CONFIG_X86_32
sysenter_setup();
enable_sep_cpu();
#endif
cpu_detect_tlb(&boot_cpu_data);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void identify_secondary_cpu(struct cpuinfo_x86 *c)
{
BUG_ON(c == &boot_cpu_data);
identify_cpu(c);
#ifdef CONFIG_X86_32
enable_sep_cpu();
#endif
mtrr_ap_init();
}
struct msr_range {
unsigned min;
unsigned max;
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct msr_range msr_range_array[] = {
{ 0x00000000, 0x00000418},
{ 0xc0000000, 0xc000040b},
{ 0xc0010000, 0xc0010142},
{ 0xc0011000, 0xc001103b},
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void __print_cpu_msr(void)
{
unsigned index_min, index_max;
unsigned index;
u64 val;
int i;
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
index_min = msr_range_array[i].min;
index_max = msr_range_array[i].max;
for (index = index_min; index < index_max; index++) {
if (rdmsrl_safe(index, &val))
continue;
pr_info(" MSR%08x: %016llx\n", index, val);
}
}
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static int show_msr;
static __init int setup_show_msr(char *arg)
{
int num;
get_option(&arg, &num);
if (num > 0)
show_msr = num;
return 1;
}
__setup("show_msr=", setup_show_msr);
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
return 1;
}
__setup("noclflush", setup_noclflush);
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void print_cpu_info(struct cpuinfo_x86 *c)
{
const char *vendor = NULL;
if (c->x86_vendor < X86_VENDOR_NUM) {
vendor = this_cpu->c_vendor;
} else {
if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
}
if (vendor && !strstr(c->x86_model_id, vendor))
pr_cont("%s ", vendor);
if (c->x86_model_id[0])
pr_cont("%s", c->x86_model_id);
else
pr_cont("%d86", c->x86);
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
if (c->x86_mask || c->cpuid_level >= 0)
pr_cont(", stepping: 0x%x)\n", c->x86_mask);
else
pr_cont(")\n");
print_cpu_msr(c);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void print_cpu_msr(struct cpuinfo_x86 *c)
{
if (c->cpu_index < show_msr)
__print_cpu_msr();
}
static __init int setup_disablecpuid(char *arg)
{
int bit;
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
setup_clear_cpu_cap(bit);
else
return 0;
return 1;
}
__setup("clearcpuid=", setup_disablecpuid);
#ifdef CONFIG_X86_64
struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
(unsigned long) debug_idt_table };
DEFINE_PER_CPU_FIRST(union irq_stack_union,
irq_stack_union) __aligned(PAGE_SIZE) __visible;
/*
* The following percpu variables are hot. Align current_task to
* cacheline size such that they fall in the same cacheline.
*/
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
&init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(char *, irq_stack_ptr) =
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
EXPORT_PER_CPU_SYMBOL(__preempt_count);
/*
* Special IST stacks which the CPU switches to when it calls
* an IST-marked descriptor entry. Up to 7 stacks (hardware
* limit), all of them are 4K, except the debug stack which
* is 8K.
*/
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
[DEBUG_STACK - 1] = DEBUG_STKSZ
};
static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
/*
* LSTAR and STAR live in a bit strange symbiosis.
* They both write to the same internal register. STAR allows to
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
*/
x86/cpu: Fix MSR value truncation issue So sparse rightfully complains that the u64 MSR value we're writing into the STAR MSR, i.e. 0xc0000081, is being truncated: ./arch/x86/include/asm/msr.h:193:36: warning: cast truncates bits from constant value (23001000000000 becomes 0) because the actual value doesn't fit into the unsigned 32-bit quantity which are the @low and @high wrmsrl() parameters. This is not a problem, practically, because gcc is actually being smart enough here and does the right thing: .loc 3 87 0 xorl %esi, %esi # we needz a 32-bit zero movl $2293776, %edx # 0x00230010 == (__USER32_CS << 16) | __KERNEL_CS go into the high bits movl $-1073741695, %ecx # MSR_STAR, i.e., 0xc0000081 movl %esi, %eax # low order 32 bits in the MSR which are 0 #APP # 87 "./arch/x86/include/asm/msr.h" 1 wrmsr More specifically, MSR_STAR[31:0] is being set to 0. That field is reserved on Intel and on AMD it is 32-bit SYSCALL Target EIP. I'd strongly guess because Intel doesn't have SYSCALL in compat/legacy mode and we're using SYSENTER and INT80 there. And for compat syscalls in long mode we use CSTAR. So let's fix the sparse warning by writing SYSRET and SYSCALL CS and SS into the high 32-bit half of STAR and 0 in the low half explicitly. [ Actually, if we had to be precise, we would have to read what's in STAR[31:0] and write it back unchanged on Intel and write 0 on AMD. I guess the current writing to 0 is still ok since Intel can apparently stomach it. ] The resulting code is identical to what we have above: .loc 3 87 0 xorl %esi, %esi # tmp104 movl $2293776, %eax #, tmp103 movl $-1073741695, %ecx #, tmp102 movl %esi, %edx # tmp104, tmp104 ... wrmsr Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1448273546-2567-6-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 17:12:25 +07:00
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
#ifdef CONFIG_IA32_EMULATION
wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
/*
* This only works on Intel CPUs.
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
* This does not cause SYSENTER to jump to the wrong location, because
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
*/
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
#else
wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
#endif
/* Flags to clear on syscall */
wrmsrl(MSR_SYSCALL_MASK,
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
x86_64, entry: Filter RFLAGS.NT on entry from userspace The NT flag doesn't do anything in long mode other than causing IRET to #GP. Oddly, CPL3 code can still set NT using popf. Entry via hardware or software interrupt clears NT automatically, so the only relevant entries are fast syscalls. If user code causes kernel code to run with NT set, then there's at least some (small) chance that it could cause trouble. For example, user code could cause a call to EFI code with NT set, and who knows what would happen? Apparently some games on Wine sometimes do this (!), and, if an IRET return happens, they will segfault. That segfault cannot be handled, because signal delivery fails, too. This patch programs the CPU to clear NT on entry via SYSCALL (both 32-bit and 64-bit, by my reading of the AMD APM), and it clears NT in software on entry via SYSENTER. To save a few cycles, this borrows a trick from Jan Beulich in Xen: it checks whether NT is set before trying to clear it. As a result, it seems to have very little effect on SYSENTER performance on my machine. There's another minor bug fix in here: it looks like the CFI annotations were wrong if CONFIG_AUDITSYSCALL=n. Testers beware: on Xen, SYSENTER with NT set turns into a GPF. I haven't touched anything on 32-bit kernels. The syscall mask change comes from a variant of this patch by Anish Bhatt. Note to stable maintainers: there is no known security issue here. A misguided program can set NT and cause the kernel to try and fail to deliver SIGSEGV, crashing the program. This patch fixes Far Cry on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275 Cc: <stable@vger.kernel.org> Reported-by: Anish Bhatt <anish@chelsio.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-10-02 01:49:04 +07:00
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
}
/*
* Copies of the original ist values from the tss are only accessed during
* debugging, no special alignment required.
*/
DEFINE_PER_CPU(struct orig_ist, orig_ist);
static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
x86: Add counter when debug stack is used with interrupts enabled Mathieu Desnoyers pointed out a case that can cause issues with NMIs running on the debug stack: int3 -> interrupt -> NMI -> int3 Because the interrupt changes the stack, the NMI will not see that it preempted the debug stack. Looking deeper at this case, interrupts only happen when the int3 is from userspace or in an a location in the exception table (fixup). userspace -> int3 -> interurpt -> NMI -> int3 All other int3s that happen in the kernel should be processed without ever enabling interrupts, as the do_trap() call will panic the kernel if it is called to process any other location within the kernel. Adding a counter around the sections that enable interrupts while using the debug stack allows the NMI to also check that case. If the NMI sees that it either interrupted a task using the debug stack or the debug counter is non-zero, then it will have to change the IDT table to make the int3 not change stacks (which will corrupt the stack if it does). Note, I had to move the debug_usage functions out of processor.h and into debugreg.h because of the static inlined functions to inc and dec the debug_usage counter. __get_cpu_var() requires smp.h which includes processor.h, and would fail to build. Link: http://lkml.kernel.org/r/1323976535.23971.112.camel@gandalf.stny.rr.com Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul Turner <pjt@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-16 23:43:02 +07:00
DEFINE_PER_CPU(int, debug_stack_usage);
int is_debug_stack(unsigned long addr)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 00:30:40 +07:00
return __this_cpu_read(debug_stack_usage) ||
(addr <= __this_cpu_read(debug_stack_addr) &&
addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
}
NOKPROBE_SYMBOL(is_debug_stack);
DEFINE_PER_CPU(u32, debug_idt_ctr);
void debug_stack_set_zero(void)
{
this_cpu_inc(debug_idt_ctr);
load_current_idt();
}
NOKPROBE_SYMBOL(debug_stack_set_zero);
void debug_stack_reset(void)
{
if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
return;
if (this_cpu_dec_return(debug_idt_ctr) == 0)
load_current_idt();
}
NOKPROBE_SYMBOL(debug_stack_reset);
#else /* CONFIG_X86_64 */
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
EXPORT_PER_CPU_SYMBOL(__preempt_count);
/*
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
* the top of the kernel stack. Use an extra percpu variable to track the
* top of the kernel stack directly.
*/
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
(unsigned long)&init_thread_union + THREAD_SIZE;
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
#ifdef CONFIG_CC_STACKPROTECTOR
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
#endif
#endif /* CONFIG_X86_64 */
/*
* Clear all 6 debug registers:
*/
static void clear_all_debug_regs(void)
{
int i;
for (i = 0; i < 8; i++) {
/* Ignore db4, db5 */
if ((i == 4) || (i == 5))
continue;
set_debugreg(0, i);
}
}
#ifdef CONFIG_KGDB
/*
* Restore debug regs if using kgdbwait and you have a kernel debugger
* connection established.
*/
static void dbg_restore_debug_regs(void)
{
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
arch_kgdb_ops.correct_hw_break();
}
#else /* ! CONFIG_KGDB */
#define dbg_restore_debug_regs()
#endif /* ! CONFIG_KGDB */
static void wait_for_master_cpu(int cpu)
{
#ifdef CONFIG_SMP
/*
* wait for ACK from master CPU before continuing
* with AP initialization
*/
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
while (!cpumask_test_cpu(cpu, cpu_callout_mask))
cpu_relax();
#endif
}
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
* A lot of state is already set up in PDA init for 64 bit
*/
#ifdef CONFIG_X86_64
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void cpu_init(void)
{
struct orig_ist *oist;
struct task_struct *me;
struct tss_struct *t;
unsigned long v;
int cpu = stack_smp_processor_id();
int i;
wait_for_master_cpu(cpu);
/*
* Initialize the CR4 shadow before doing anything that could
* try to read it.
*/
cr4_init_shadow();
/*
* Load microcode on this cpu if a valid microcode is available.
* This is early microcode loading procedure.
*/
load_ucode_ap();
t = &per_cpu(cpu_tss, cpu);
oist = &per_cpu(orig_ist, cpu);
#ifdef CONFIG_NUMA
if (this_cpu_read(numa_node) == 0 &&
early_cpu_to_node(cpu) != NUMA_NO_NODE)
set_numa_node(early_cpu_to_node(cpu));
#endif
me = current;
x86: Limit the number of processor bootup messages When there are a large number of processors in a system, there is an excessive amount of messages sent to the system console. It's estimated that with 4096 processors in a system, and the console baudrate set to 56K, the startup messages will take about 84 minutes to clear the serial port. This set of patches limits the number of repetitious messages which contain no additional information. Much of this information is obtainable from the /proc and /sysfs. Some of the messages are also sent to the kernel log buffer as KERN_DEBUG messages so dmesg can be used to examine more closely any details specific to a problem. The new cpu bootup sequence for system_state == SYSTEM_BOOTING: Booting Node 0, Processors #1 #2 #3 #4 #5 #6 #7 Ok. Booting Node 1, Processors #8 #9 #10 #11 #12 #13 #14 #15 Ok. ... Booting Node 3, Processors #56 #57 #58 #59 #60 #61 #62 #63 Ok. Brought up 64 CPUs After the system is running, a single line boot message is displayed when CPU's are hotplugged on: Booting Node %d Processor %d APIC 0x%x Status of the following lines: CPU: Physical Processor ID: printed once (for boot cpu) CPU: Processor Core ID: printed once (for boot cpu) CPU: Hyper-Threading is disabled printed once (for boot cpu) CPU: Thermal monitoring enabled printed once (for boot cpu) CPU %d/0x%x -> Node %d: removed CPU %d is now offline: only if system_state == RUNNING Initializing CPU#%d: KERN_DEBUG Signed-off-by: Mike Travis <travis@sgi.com> LKML-Reference: <4B219E28.8080601@sgi.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-11 08:19:36 +07:00
pr_debug("Initializing CPU#%d\n", cpu);
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:
*/
switch_to_new_gdt(cpu);
loadsegment(fs, 0);
x86, trace: Add irq vector tracepoints [Purpose of this patch] As Vaibhav explained in the thread below, tracepoints for irq vectors are useful. http://www.spinics.net/lists/mm-commits/msg85707.html <snip> The current interrupt traces from irq_handler_entry and irq_handler_exit provide when an interrupt is handled. They provide good data about when the system has switched to kernel space and how it affects the currently running processes. There are some IRQ vectors which trigger the system into kernel space, which are not handled in generic IRQ handlers. Tracing such events gives us the information about IRQ interaction with other system events. The trace also tells where the system is spending its time. We want to know which cores are handling interrupts and how they are affecting other processes in the system. Also, the trace provides information about when the cores are idle and which interrupts are changing that state. <snip> On the other hand, my usecase is tracing just local timer event and getting a value of instruction pointer. I suggested to add an argument local timer event to get instruction pointer before. But there is another way to get it with external module like systemtap. So, I don't need to add any argument to irq vector tracepoints now. [Patch Description] Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events. But there is an above use case to trace specific irq_vector rather than tracing all events. In this case, we are concerned about overhead due to unwanted events. So, add following tracepoints instead of introducing irq_vector_entry/exit. so that we can enable them independently. - local_timer_vector - reschedule_vector - call_function_vector - call_function_single_vector - irq_work_entry_vector - error_apic_vector - thermal_apic_vector - threshold_apic_vector - spurious_apic_vector - x86_platform_ipi_vector Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty makes a zero when tracepoints are disabled. Detailed explanations are as follows. - Create trace irq handlers with entering_irq()/exiting_irq(). - Create a new IDT, trace_idt_table, at boot time by adding a logic to _set_gate(). It is just a copy of original idt table. - Register the new handlers for tracpoints to the new IDT by introducing macros to alloc_intr_gate() called at registering time of irq_vector handlers. - Add checking, whether irq vector tracing is on/off, into load_current_idt(). This has to be done below debug checking for these reasons. - Switching to debug IDT may be kicked while tracing is enabled. - On the other hands, switching to trace IDT is kicked only when debugging is disabled. In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being used for other purposes. Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org>
2013-06-20 22:46:53 +07:00
load_current_idt();
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
x86_configure_nx();
x2apic_setup();
/*
* set up and load the per-CPU TSS
*/
if (!oist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu);
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v];
oist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks;
if (v == DEBUG_STACK-1)
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
}
}
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
/*
* <= is required because the CPU will access up to
* 8 bits beyond the end of the IO permission bitmap.
*/
for (i = 0; i <= IO_BITMAP_LONGS; i++)
t->io_bitmap[i] = ~0UL;
atomic_inc(&init_mm.mm_count);
me->active_mm = &init_mm;
BUG_ON(me->mm);
enter_lazy_tlb(&init_mm, me);
load_sp0(t, &current->thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_mm_ldt(&init_mm);
clear_all_debug_regs();
dbg_restore_debug_regs();
fpu__init_cpu();
if (is_uv_system())
uv_cpu_init();
}
#else
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void cpu_init(void)
{
int cpu = smp_processor_id();
struct task_struct *curr = current;
struct tss_struct *t = &per_cpu(cpu_tss, cpu);
struct thread_struct *thread = &curr->thread;
wait_for_master_cpu(cpu);
/*
* Initialize the CR4 shadow before doing anything that could
* try to read it.
*/
cr4_init_shadow();
show_ucode_info_early();
pr_info("Initializing CPU#%d\n", cpu);
if (cpu_feature_enabled(X86_FEATURE_VME) ||
cpu_has_tsc ||
boot_cpu_has(X86_FEATURE_DE))
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
x86, trace: Add irq vector tracepoints [Purpose of this patch] As Vaibhav explained in the thread below, tracepoints for irq vectors are useful. http://www.spinics.net/lists/mm-commits/msg85707.html <snip> The current interrupt traces from irq_handler_entry and irq_handler_exit provide when an interrupt is handled. They provide good data about when the system has switched to kernel space and how it affects the currently running processes. There are some IRQ vectors which trigger the system into kernel space, which are not handled in generic IRQ handlers. Tracing such events gives us the information about IRQ interaction with other system events. The trace also tells where the system is spending its time. We want to know which cores are handling interrupts and how they are affecting other processes in the system. Also, the trace provides information about when the cores are idle and which interrupts are changing that state. <snip> On the other hand, my usecase is tracing just local timer event and getting a value of instruction pointer. I suggested to add an argument local timer event to get instruction pointer before. But there is another way to get it with external module like systemtap. So, I don't need to add any argument to irq vector tracepoints now. [Patch Description] Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events. But there is an above use case to trace specific irq_vector rather than tracing all events. In this case, we are concerned about overhead due to unwanted events. So, add following tracepoints instead of introducing irq_vector_entry/exit. so that we can enable them independently. - local_timer_vector - reschedule_vector - call_function_vector - call_function_single_vector - irq_work_entry_vector - error_apic_vector - thermal_apic_vector - threshold_apic_vector - spurious_apic_vector - x86_platform_ipi_vector Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty makes a zero when tracepoints are disabled. Detailed explanations are as follows. - Create trace irq handlers with entering_irq()/exiting_irq(). - Create a new IDT, trace_idt_table, at boot time by adding a logic to _set_gate(). It is just a copy of original idt table. - Register the new handlers for tracpoints to the new IDT by introducing macros to alloc_intr_gate() called at registering time of irq_vector handlers. - Add checking, whether irq vector tracing is on/off, into load_current_idt(). This has to be done below debug checking for these reasons. - Switching to debug IDT may be kicked while tracing is enabled. - On the other hands, switching to trace IDT is kicked only when debugging is disabled. In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being used for other purposes. Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org>
2013-06-20 22:46:53 +07:00
load_current_idt();
switch_to_new_gdt(cpu);
/*
* Set up and load the per-CPU TSS and LDT
*/
atomic_inc(&init_mm.mm_count);
curr->active_mm = &init_mm;
BUG_ON(curr->mm);
enter_lazy_tlb(&init_mm, curr);
load_sp0(t, thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_mm_ldt(&init_mm);
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
#ifdef CONFIG_DOUBLEFAULT
/* Set up doublefault TSS pointer in the GDT */
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
#endif
clear_all_debug_regs();
dbg_restore_debug_regs();
fpu__init_cpu();
}
#endif
static void bsp_resume(void)
{
if (this_cpu->c_bsp_resume)
this_cpu->c_bsp_resume(&boot_cpu_data);
}
static struct syscore_ops cpu_syscore_ops = {
.resume = bsp_resume,
};
static int __init init_cpu_syscore(void)
{
register_syscore_ops(&cpu_syscore_ops);
return 0;
}
core_initcall(init_cpu_syscore);