2011-05-24 01:11:39 +07:00
|
|
|
#ifndef _LINUX_EXPORT_H
|
|
|
|
#define _LINUX_EXPORT_H
|
kbuild: allow archs to select link dead code/data elimination
Introduce LD_DEAD_CODE_DATA_ELIMINATION option for architectures to
select to build with -ffunction-sections, -fdata-sections, and link
with --gc-sections. It requires some work (documented) to ensure all
unreferenced entrypoints are live, and requires toolchain and build
verification, so it is made a per-arch option for now.
On a random powerpc64le build, this yelds a significant size saving,
it boots and runs fine, but there is a lot I haven't tested as yet, so
these savings may be reduced if there are bugs in the link.
text data bss dec filename
11169741 1180744 1923176 14273661 vmlinux
10445269 1004127 1919707 13369103 vmlinux.dce
~700K text, ~170K data, 6% removed from kernel image size.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 19:29:20 +07:00
|
|
|
|
2011-05-24 01:11:39 +07:00
|
|
|
/*
|
|
|
|
* Export symbols from the kernel to modules. Forked from module.h
|
|
|
|
* to reduce the amount of pointless cruft we feed to gcc when only
|
|
|
|
* exporting a simple symbol or two.
|
|
|
|
*
|
2013-03-15 11:34:17 +07:00
|
|
|
* Try not to add #includes here. It slows compilation and makes kernel
|
|
|
|
* hackers place grumpy comments in header files.
|
2011-05-24 01:11:39 +07:00
|
|
|
*/
|
|
|
|
|
2013-03-15 11:34:17 +07:00
|
|
|
#ifndef __ASSEMBLY__
|
2011-05-24 01:11:39 +07:00
|
|
|
#ifdef MODULE
|
|
|
|
extern struct module __this_module;
|
|
|
|
#define THIS_MODULE (&__this_module)
|
|
|
|
#else
|
|
|
|
#define THIS_MODULE ((struct module *)0)
|
|
|
|
#endif
|
|
|
|
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define NS_SEPARATOR "."
|
|
|
|
|
2011-05-24 01:11:39 +07:00
|
|
|
#ifdef CONFIG_MODVERSIONS
|
|
|
|
/* Mark the CRC weak since genksyms apparently decides not to
|
|
|
|
* generate a checksums for some symbols */
|
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 16:54:06 +07:00
|
|
|
#if defined(CONFIG_MODULE_REL_CRCS)
|
|
|
|
#define __CRC_SYMBOL(sym, sec) \
|
|
|
|
asm(" .section \"___kcrctab" sec "+" #sym "\", \"a\" \n" \
|
2018-05-09 14:23:49 +07:00
|
|
|
" .weak __crc_" #sym " \n" \
|
|
|
|
" .long __crc_" #sym " - . \n" \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
" .previous \n")
|
2011-05-24 01:11:39 +07:00
|
|
|
#else
|
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 16:54:06 +07:00
|
|
|
#define __CRC_SYMBOL(sym, sec) \
|
|
|
|
asm(" .section \"___kcrctab" sec "+" #sym "\", \"a\" \n" \
|
2018-05-09 14:23:49 +07:00
|
|
|
" .weak __crc_" #sym " \n" \
|
|
|
|
" .long __crc_" #sym " \n" \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
" .previous \n")
|
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 16:54:06 +07:00
|
|
|
#endif
|
|
|
|
#else
|
2011-05-24 01:11:39 +07:00
|
|
|
#define __CRC_SYMBOL(sym, sec)
|
|
|
|
#endif
|
|
|
|
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
|
|
* Emit the ksymtab entry as a pair of relative references: this reduces
|
|
|
|
* the size by half on 64-bit architectures, and eliminates the need for
|
|
|
|
* absolute relocations that require runtime processing on relocatable
|
|
|
|
* kernels.
|
|
|
|
*/
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define __KSYMTAB_ENTRY_NS(sym, sec, ns) \
|
|
|
|
__ADDRESSABLE(sym) \
|
|
|
|
asm(" .section \"___ksymtab" sec "+" #sym "\", \"a\" \n" \
|
|
|
|
" .balign 4 \n" \
|
|
|
|
"__ksymtab_" #sym NS_SEPARATOR #ns ": \n" \
|
|
|
|
" .long " #sym "- . \n" \
|
|
|
|
" .long __kstrtab_" #sym "- . \n" \
|
|
|
|
" .long __kstrtab_ns_" #sym "- . \n" \
|
|
|
|
" .previous \n")
|
|
|
|
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
#define __KSYMTAB_ENTRY(sym, sec) \
|
|
|
|
__ADDRESSABLE(sym) \
|
|
|
|
asm(" .section \"___ksymtab" sec "+" #sym "\", \"a\" \n" \
|
export: explicitly align struct kernel_symbol
This change allows growing struct kernel_symbol without wasting bytes to
alignment. It also concretized the alignment of ksymtab entries if
relative references are used for ksymtab entries.
struct kernel_symbol was already implicitly being aligned to the word
size, except on x86_64 and m68k, where it is aligned to 16 and 2 bytes,
respectively.
As far as I can tell there is no requirement for aligning struct
kernel_symbol to 16 bytes on x86_64, but gcc aligns structs to their
size, and the linker aligns the custom __ksymtab sections to the largest
data type contained within, so setting KSYM_ALIGN to 16 was necessary to
stay consistent with the code generated for non-ASM EXPORT_SYMBOL(). Now
that non-ASM EXPORT_SYMBOL() explicitly aligns to word size (8),
KSYM_ALIGN is no longer necessary.
In case of relative references, the alignment has been changed
accordingly to not waste space when adding new struct members.
As for m68k, struct kernel_symbol is aligned to 2 bytes even though the
structure itself is 8 bytes; using a 4-byte alignment shouldn't hurt.
I manually verified the output of the __ksymtab sections didn't change
on x86, x86_64, arm, arm64 and m68k. As expected, the section contents
didn't change, and the ELF section alignment only changed on x86_64 and
m68k. Feedback from other archs more than welcome.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:26 +07:00
|
|
|
" .balign 4 \n" \
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
"__ksymtab_" #sym ": \n" \
|
|
|
|
" .long " #sym "- . \n" \
|
|
|
|
" .long __kstrtab_" #sym "- . \n" \
|
2019-09-11 19:26:46 +07:00
|
|
|
" .long 0 \n" \
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
" .previous \n")
|
|
|
|
|
|
|
|
struct kernel_symbol {
|
|
|
|
int value_offset;
|
|
|
|
int name_offset;
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
int namespace_offset;
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
};
|
|
|
|
#else
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define __KSYMTAB_ENTRY_NS(sym, sec, ns) \
|
|
|
|
static const struct kernel_symbol __ksymtab_##sym##__##ns \
|
|
|
|
asm("__ksymtab_" #sym NS_SEPARATOR #ns) \
|
|
|
|
__attribute__((section("___ksymtab" sec "+" #sym), used)) \
|
|
|
|
__aligned(sizeof(void *)) \
|
|
|
|
= { (unsigned long)&sym, __kstrtab_##sym, __kstrtab_ns_##sym }
|
|
|
|
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
#define __KSYMTAB_ENTRY(sym, sec) \
|
|
|
|
static const struct kernel_symbol __ksymtab_##sym \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
asm("__ksymtab_" #sym) \
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
__attribute__((section("___ksymtab" sec "+" #sym), used)) \
|
export: explicitly align struct kernel_symbol
This change allows growing struct kernel_symbol without wasting bytes to
alignment. It also concretized the alignment of ksymtab entries if
relative references are used for ksymtab entries.
struct kernel_symbol was already implicitly being aligned to the word
size, except on x86_64 and m68k, where it is aligned to 16 and 2 bytes,
respectively.
As far as I can tell there is no requirement for aligning struct
kernel_symbol to 16 bytes on x86_64, but gcc aligns structs to their
size, and the linker aligns the custom __ksymtab sections to the largest
data type contained within, so setting KSYM_ALIGN to 16 was necessary to
stay consistent with the code generated for non-ASM EXPORT_SYMBOL(). Now
that non-ASM EXPORT_SYMBOL() explicitly aligns to word size (8),
KSYM_ALIGN is no longer necessary.
In case of relative references, the alignment has been changed
accordingly to not waste space when adding new struct members.
As for m68k, struct kernel_symbol is aligned to 2 bytes even though the
structure itself is 8 bytes; using a 4-byte alignment shouldn't hurt.
I manually verified the output of the __ksymtab sections didn't change
on x86, x86_64, arm, arm64 and m68k. As expected, the section contents
didn't change, and the ELF section alignment only changed on x86_64 and
m68k. Feedback from other archs more than welcome.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:26 +07:00
|
|
|
__aligned(sizeof(void *)) \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
= { (unsigned long)&sym, __kstrtab_##sym, NULL }
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
|
|
|
|
struct kernel_symbol {
|
|
|
|
unsigned long value;
|
|
|
|
const char *name;
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
const char *namespace;
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
#ifdef __GENKSYMS__
|
|
|
|
|
Modules updates for v5.4
Summary of modules changes for the 5.4 merge window:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing kernel
developers to better manage the export surface, allow subsystem
maintainers to explicitly state that usage of some exported symbols
should only be limited to certain users (think: inter-module or
inter-driver symbols, debugging symbols, etc), as well as more easily
limiting the availability of namespaced symbols to other parts of the
kernel. With the module import requirement, it is also easier to spot
the misuse of exported symbols during patch review. Two new macros are
introduced: EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL(). The API is
thoroughly documented in Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCgAGBQJdh3n8AAoJEMBFfjjOO8Fy94kP+QHZF39QDvLbxAzEYAETAS+o
CFu6wix/DrAwFkTU/kX1eAsAwDBEz0xkMciR4BsLX3sIafUVERxtDXVAui/dA1+6
zfw2c3ObyVwPEk6aUPFprgkj+08gxujsJFlYTsQQUhtRbmxg6R7hD6t6ANxiHaY2
AQe5TzOWXoIa2hHO+7rPMqf8l6qiFCaL0s3v5jrmBXa5mHmc4PVy95h1J6xQVw2u
b+SlvKeylHv+OtCtvthkAJS3hfS35J/1TNb/RNYIvh60IfEguEuFsGuQ9JiSSAZS
pv1cJ+I5d4v8Y/md1rZpdjTJL9gCrq/UUC67+UkejCOn0C+7XM2eR4Bu/jWvdMSn
ZQDHcPhFSIfmP7FaKomPogaBbw1sI1FvM5930pPJzHnyO9+cefBXe7rWaaB+y0At
GAxOtmk1dKh01BT7YO/C0oVuX87csWd74NHypVsbs0TgQo5jBFdZRheyDrq5YB+s
tVK+5H0nqQrCcfo/TvhcsZlgITTGtgTPenaW99/i7qNa9mRUtxC/VkE+aob6HNRF
1iBxxopOTxGN8akyKOVumtkuTQH3EJfouZee//pWbXLzyDmScg/k67vuao8kxbyq
NA1piFAGJAHFsHATxrbvNOq6jZ5bfUT8pwSTs83JppuR++8Hxk7zaShS3/LvsvHt
6ist/epOwTZ7oiNQ04nj
=72Uy
-----END PGP SIGNATURE-----
Merge tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull modules updates from Jessica Yu:
"The main bulk of this pull request introduces a new exported symbol
namespaces feature. The number of exported symbols is increasingly
growing with each release (we're at about 31k exports as of 5.3-rc7)
and we currently have no way of visualizing how these symbols are
"clustered" or making sense of this huge export surface.
Namespacing exported symbols allows kernel developers to more
explicitly partition and categorize exported symbols, as well as more
easily limiting the availability of namespaced symbols to other parts
of the kernel. For starters, we have introduced the USB_STORAGE
namespace to demonstrate the API's usage. I have briefly summarized
the feature and its main motivations in the tag below.
Summary:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing
kernel developers to better manage the export surface, allow
subsystem maintainers to explicitly state that usage of some
exported symbols should only be limited to certain users (think:
inter-module or inter-driver symbols, debugging symbols, etc), as
well as more easily limiting the availability of namespaced symbols
to other parts of the kernel.
With the module import requirement, it is also easier to spot the
misuse of exported symbols during patch review.
Two new macros are introduced: EXPORT_SYMBOL_NS() and
EXPORT_SYMBOL_NS_GPL(). The API is thoroughly documented in
Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there"
* tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: Remove leftover '#undef' from export header
module: remove unneeded casts in cmp_name()
module: move CONFIG_UNUSED_SYMBOLS to the sub-menu of MODULES
module: remove redundant 'depends on MODULES'
module: Fix link failure due to invalid relocation on namespace offset
usb-storage: export symbols in USB_STORAGE namespace
usb-storage: remove single-use define for debugging
docs: Add documentation for Symbol Namespaces
scripts: Coccinelle script for namespace dependencies.
modpost: add support for generating namespace dependencies
export: allow definition default namespaces in Makefiles or sources
module: add config option MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
modpost: add support for symbol namespaces
module: add support for symbol namespaces.
export: explicitly align struct kernel_symbol
module: support reading multiple values per modinfo tag
2019-09-23 00:34:46 +07:00
|
|
|
#define ___EXPORT_SYMBOL(sym,sec) __GENKSYMS_EXPORT_SYMBOL(sym)
|
|
|
|
#define ___EXPORT_SYMBOL_NS(sym,sec,ns) __GENKSYMS_EXPORT_SYMBOL(sym)
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
|
|
|
|
#else
|
|
|
|
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define ___export_symbol_common(sym, sec) \
|
kbuild: allow archs to select link dead code/data elimination
Introduce LD_DEAD_CODE_DATA_ELIMINATION option for architectures to
select to build with -ffunction-sections, -fdata-sections, and link
with --gc-sections. It requires some work (documented) to ensure all
unreferenced entrypoints are live, and requires toolchain and build
verification, so it is made a per-arch option for now.
On a random powerpc64le build, this yelds a significant size saving,
it boots and runs fine, but there is a lot I haven't tested as yet, so
these savings may be reduced if there are bugs in the link.
text data bss dec filename
11169741 1180744 1923176 14273661 vmlinux
10445269 1004127 1919707 13369103 vmlinux.dce
~700K text, ~170K data, 6% removed from kernel image size.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 19:29:20 +07:00
|
|
|
extern typeof(sym) sym; \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
__CRC_SYMBOL(sym, sec); \
|
kbuild: allow archs to select link dead code/data elimination
Introduce LD_DEAD_CODE_DATA_ELIMINATION option for architectures to
select to build with -ffunction-sections, -fdata-sections, and link
with --gc-sections. It requires some work (documented) to ensure all
unreferenced entrypoints are live, and requires toolchain and build
verification, so it is made a per-arch option for now.
On a random powerpc64le build, this yelds a significant size saving,
it boots and runs fine, but there is a lot I haven't tested as yet, so
these savings may be reduced if there are bugs in the link.
text data bss dec filename
11169741 1180744 1923176 14273661 vmlinux
10445269 1004127 1919707 13369103 vmlinux.dce
~700K text, ~170K data, 6% removed from kernel image size.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 19:29:20 +07:00
|
|
|
static const char __kstrtab_##sym[] \
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
__attribute__((section("__ksymtab_strings"), used, aligned(1))) \
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
= #sym \
|
|
|
|
|
|
|
|
/* For every exported symbol, place a struct in the __ksymtab section */
|
|
|
|
#define ___EXPORT_SYMBOL_NS(sym, sec, ns) \
|
|
|
|
___export_symbol_common(sym, sec); \
|
|
|
|
static const char __kstrtab_ns_##sym[] \
|
|
|
|
__attribute__((section("__ksymtab_strings"), used, aligned(1))) \
|
|
|
|
= #ns; \
|
|
|
|
__KSYMTAB_ENTRY_NS(sym, sec, ns)
|
|
|
|
|
|
|
|
#define ___EXPORT_SYMBOL(sym, sec) \
|
|
|
|
___export_symbol_common(sym, sec); \
|
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 11:56:09 +07:00
|
|
|
__KSYMTAB_ENTRY(sym, sec)
|
2011-05-24 01:11:39 +07:00
|
|
|
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(CONFIG_MODULES) || defined(__DISABLE_EXPORTS)
|
2018-08-22 11:56:04 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow symbol exports to be disabled completely so that C code may
|
|
|
|
* be reused in other execution contexts such as the UEFI stub or the
|
|
|
|
* decompressor.
|
|
|
|
*/
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define __EXPORT_SYMBOL_NS(sym, sec, ns)
|
2018-08-22 11:56:04 +07:00
|
|
|
#define __EXPORT_SYMBOL(sym, sec)
|
|
|
|
|
2018-11-30 08:05:26 +07:00
|
|
|
#elif defined(CONFIG_TRIM_UNUSED_KSYMS)
|
|
|
|
|
|
|
|
#include <generated/autoksyms.h>
|
kbuild: add fine grained build dependencies for exported symbols
Like with kconfig options, we now have the ability to compile in and
out individual EXPORT_SYMBOL() declarations based on the content of
include/generated/autoksyms.h. However we don't want the entire
world to be rebuilt whenever that file is touched.
Let's apply the same build dependency trick used for CONFIG_* symbols
where the time stamp of empty files whose paths matching those symbols
is used to trigger fine grained rebuilds. In our case the key is the
symbol name passed to EXPORT_SYMBOL().
However, unlike config options, we cannot just use fixdep to parse
the source code for EXPORT_SYMBOL(ksym) because several variants exist
and parsing them all in a separate tool, and keeping it in synch, is
not trivially maintainable. Furthermore, there are variants such as
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
that are instanciated via a macro for which we can't easily determine
the actual exported symbol name(s) short of actually running the
preprocessor on them.
Storing the symbol name string in a special ELF section doesn't work
for targets that output assembly or preprocessed source.
So the best way is really to leverage the preprocessor by having it
output actual symbol names anchored by a special sequence that can be
easily filtered out. Then the list of symbols is simply fed to fixdep
to be merged with the other dependencies.
That implies the preprocessor is executed twice for each source file.
A previous attempt relied on a warning pragma for each EXPORT_SYMBOL()
instance that was filtered apart from stderr by the build system with
a sed script during the actual compilation pass. Unfortunately the
preprocessor/compiler diagnostic output isn't stable between versions
and this solution, although more efficient, was deemed too fragile.
Because of the lowercasing performed by fixdep, there might be name
collisions triggering spurious rebuilds for similar symbols. But this
shouldn't be a big issue in practice. (This is the case for CONFIG_*
symbols and I didn't want to be different here, whatever the original
reason for doing so.)
To avoid needless build overhead, the exported symbol name gathering is
performed only when CONFIG_TRIM_UNUSED_KSYMS is selected.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
2016-01-23 01:41:57 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For fine grained build dependencies, we want to tell the build system
|
|
|
|
* about each possible exported symbol even if they're not actually exported.
|
2018-11-30 08:05:26 +07:00
|
|
|
* We use a symbol pattern __ksym_marker_<symbol> that the build system filters
|
|
|
|
* from the $(NM) output (see scripts/gen_ksymdeps.sh). These symbols are
|
|
|
|
* discarded in the final link stage.
|
kbuild: add fine grained build dependencies for exported symbols
Like with kconfig options, we now have the ability to compile in and
out individual EXPORT_SYMBOL() declarations based on the content of
include/generated/autoksyms.h. However we don't want the entire
world to be rebuilt whenever that file is touched.
Let's apply the same build dependency trick used for CONFIG_* symbols
where the time stamp of empty files whose paths matching those symbols
is used to trigger fine grained rebuilds. In our case the key is the
symbol name passed to EXPORT_SYMBOL().
However, unlike config options, we cannot just use fixdep to parse
the source code for EXPORT_SYMBOL(ksym) because several variants exist
and parsing them all in a separate tool, and keeping it in synch, is
not trivially maintainable. Furthermore, there are variants such as
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
that are instanciated via a macro for which we can't easily determine
the actual exported symbol name(s) short of actually running the
preprocessor on them.
Storing the symbol name string in a special ELF section doesn't work
for targets that output assembly or preprocessed source.
So the best way is really to leverage the preprocessor by having it
output actual symbol names anchored by a special sequence that can be
easily filtered out. Then the list of symbols is simply fed to fixdep
to be merged with the other dependencies.
That implies the preprocessor is executed twice for each source file.
A previous attempt relied on a warning pragma for each EXPORT_SYMBOL()
instance that was filtered apart from stderr by the build system with
a sed script during the actual compilation pass. Unfortunately the
preprocessor/compiler diagnostic output isn't stable between versions
and this solution, although more efficient, was deemed too fragile.
Because of the lowercasing performed by fixdep, there might be name
collisions triggering spurious rebuilds for similar symbols. But this
shouldn't be a big issue in practice. (This is the case for CONFIG_*
symbols and I didn't want to be different here, whatever the original
reason for doing so.)
To avoid needless build overhead, the exported symbol name gathering is
performed only when CONFIG_TRIM_UNUSED_KSYMS is selected.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
2016-01-23 01:41:57 +07:00
|
|
|
*/
|
2018-11-30 08:05:26 +07:00
|
|
|
#define __ksym_marker(sym) \
|
|
|
|
static int __ksym_marker_##sym[0] __section(".discard.ksym") __used
|
2016-01-22 13:32:26 +07:00
|
|
|
|
|
|
|
#define __EXPORT_SYMBOL(sym, sec) \
|
2018-11-30 08:05:26 +07:00
|
|
|
__ksym_marker(sym); \
|
2016-06-14 12:58:55 +07:00
|
|
|
__cond_export_sym(sym, sec, __is_defined(__KSYM_##sym))
|
2016-01-22 13:32:26 +07:00
|
|
|
#define __cond_export_sym(sym, sec, conf) \
|
|
|
|
___cond_export_sym(sym, sec, conf)
|
|
|
|
#define ___cond_export_sym(sym, sec, enabled) \
|
|
|
|
__cond_export_sym_##enabled(sym, sec)
|
|
|
|
#define __cond_export_sym_1(sym, sec) ___EXPORT_SYMBOL(sym, sec)
|
|
|
|
#define __cond_export_sym_0(sym, sec) /* nothing */
|
|
|
|
|
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 17:32:27 +07:00
|
|
|
#define __EXPORT_SYMBOL_NS(sym, sec, ns) \
|
|
|
|
__ksym_marker(sym); \
|
|
|
|
__cond_export_ns_sym(sym, sec, ns, __is_defined(__KSYM_##sym))
|
|
|
|
#define __cond_export_ns_sym(sym, sec, ns, conf) \
|
|
|
|
___cond_export_ns_sym(sym, sec, ns, conf)
|
|
|
|
#define ___cond_export_ns_sym(sym, sec, ns, enabled) \
|
|
|
|
__cond_export_ns_sym_##enabled(sym, sec, ns)
|
|
|
|
#define __cond_export_ns_sym_1(sym, sec, ns) ___EXPORT_SYMBOL_NS(sym, sec, ns)
|
|
|
|
#define __cond_export_ns_sym_0(sym, sec, ns) /* nothing */
|
|
|
|
|
2016-01-22 13:32:26 +07:00
|
|
|
#else
|
|
|
|
|
Modules updates for v5.4
Summary of modules changes for the 5.4 merge window:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing kernel
developers to better manage the export surface, allow subsystem
maintainers to explicitly state that usage of some exported symbols
should only be limited to certain users (think: inter-module or
inter-driver symbols, debugging symbols, etc), as well as more easily
limiting the availability of namespaced symbols to other parts of the
kernel. With the module import requirement, it is also easier to spot
the misuse of exported symbols during patch review. Two new macros are
introduced: EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL(). The API is
thoroughly documented in Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCgAGBQJdh3n8AAoJEMBFfjjOO8Fy94kP+QHZF39QDvLbxAzEYAETAS+o
CFu6wix/DrAwFkTU/kX1eAsAwDBEz0xkMciR4BsLX3sIafUVERxtDXVAui/dA1+6
zfw2c3ObyVwPEk6aUPFprgkj+08gxujsJFlYTsQQUhtRbmxg6R7hD6t6ANxiHaY2
AQe5TzOWXoIa2hHO+7rPMqf8l6qiFCaL0s3v5jrmBXa5mHmc4PVy95h1J6xQVw2u
b+SlvKeylHv+OtCtvthkAJS3hfS35J/1TNb/RNYIvh60IfEguEuFsGuQ9JiSSAZS
pv1cJ+I5d4v8Y/md1rZpdjTJL9gCrq/UUC67+UkejCOn0C+7XM2eR4Bu/jWvdMSn
ZQDHcPhFSIfmP7FaKomPogaBbw1sI1FvM5930pPJzHnyO9+cefBXe7rWaaB+y0At
GAxOtmk1dKh01BT7YO/C0oVuX87csWd74NHypVsbs0TgQo5jBFdZRheyDrq5YB+s
tVK+5H0nqQrCcfo/TvhcsZlgITTGtgTPenaW99/i7qNa9mRUtxC/VkE+aob6HNRF
1iBxxopOTxGN8akyKOVumtkuTQH3EJfouZee//pWbXLzyDmScg/k67vuao8kxbyq
NA1piFAGJAHFsHATxrbvNOq6jZ5bfUT8pwSTs83JppuR++8Hxk7zaShS3/LvsvHt
6ist/epOwTZ7oiNQ04nj
=72Uy
-----END PGP SIGNATURE-----
Merge tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull modules updates from Jessica Yu:
"The main bulk of this pull request introduces a new exported symbol
namespaces feature. The number of exported symbols is increasingly
growing with each release (we're at about 31k exports as of 5.3-rc7)
and we currently have no way of visualizing how these symbols are
"clustered" or making sense of this huge export surface.
Namespacing exported symbols allows kernel developers to more
explicitly partition and categorize exported symbols, as well as more
easily limiting the availability of namespaced symbols to other parts
of the kernel. For starters, we have introduced the USB_STORAGE
namespace to demonstrate the API's usage. I have briefly summarized
the feature and its main motivations in the tag below.
Summary:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing
kernel developers to better manage the export surface, allow
subsystem maintainers to explicitly state that usage of some
exported symbols should only be limited to certain users (think:
inter-module or inter-driver symbols, debugging symbols, etc), as
well as more easily limiting the availability of namespaced symbols
to other parts of the kernel.
With the module import requirement, it is also easier to spot the
misuse of exported symbols during patch review.
Two new macros are introduced: EXPORT_SYMBOL_NS() and
EXPORT_SYMBOL_NS_GPL(). The API is thoroughly documented in
Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there"
* tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: Remove leftover '#undef' from export header
module: remove unneeded casts in cmp_name()
module: move CONFIG_UNUSED_SYMBOLS to the sub-menu of MODULES
module: remove redundant 'depends on MODULES'
module: Fix link failure due to invalid relocation on namespace offset
usb-storage: export symbols in USB_STORAGE namespace
usb-storage: remove single-use define for debugging
docs: Add documentation for Symbol Namespaces
scripts: Coccinelle script for namespace dependencies.
modpost: add support for generating namespace dependencies
export: allow definition default namespaces in Makefiles or sources
module: add config option MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
modpost: add support for symbol namespaces
module: add support for symbol namespaces.
export: explicitly align struct kernel_symbol
module: support reading multiple values per modinfo tag
2019-09-23 00:34:46 +07:00
|
|
|
#define __EXPORT_SYMBOL_NS(sym,sec,ns) ___EXPORT_SYMBOL_NS(sym,sec,ns)
|
|
|
|
#define __EXPORT_SYMBOL(sym,sec) ___EXPORT_SYMBOL(sym,sec)
|
2011-05-24 01:11:39 +07:00
|
|
|
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
#endif /* CONFIG_MODULES */
|
2011-05-24 01:11:39 +07:00
|
|
|
|
2019-09-06 17:32:30 +07:00
|
|
|
#ifdef DEFAULT_SYMBOL_NAMESPACE
|
|
|
|
#undef __EXPORT_SYMBOL
|
|
|
|
#define __EXPORT_SYMBOL(sym, sec) \
|
|
|
|
__EXPORT_SYMBOL_NS(sym, sec, DEFAULT_SYMBOL_NAMESPACE)
|
|
|
|
#endif
|
|
|
|
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
#define EXPORT_SYMBOL(sym) __EXPORT_SYMBOL(sym, "")
|
|
|
|
#define EXPORT_SYMBOL_GPL(sym) __EXPORT_SYMBOL(sym, "_gpl")
|
|
|
|
#define EXPORT_SYMBOL_GPL_FUTURE(sym) __EXPORT_SYMBOL(sym, "_gpl_future")
|
Modules updates for v5.4
Summary of modules changes for the 5.4 merge window:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing kernel
developers to better manage the export surface, allow subsystem
maintainers to explicitly state that usage of some exported symbols
should only be limited to certain users (think: inter-module or
inter-driver symbols, debugging symbols, etc), as well as more easily
limiting the availability of namespaced symbols to other parts of the
kernel. With the module import requirement, it is also easier to spot
the misuse of exported symbols during patch review. Two new macros are
introduced: EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL(). The API is
thoroughly documented in Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCgAGBQJdh3n8AAoJEMBFfjjOO8Fy94kP+QHZF39QDvLbxAzEYAETAS+o
CFu6wix/DrAwFkTU/kX1eAsAwDBEz0xkMciR4BsLX3sIafUVERxtDXVAui/dA1+6
zfw2c3ObyVwPEk6aUPFprgkj+08gxujsJFlYTsQQUhtRbmxg6R7hD6t6ANxiHaY2
AQe5TzOWXoIa2hHO+7rPMqf8l6qiFCaL0s3v5jrmBXa5mHmc4PVy95h1J6xQVw2u
b+SlvKeylHv+OtCtvthkAJS3hfS35J/1TNb/RNYIvh60IfEguEuFsGuQ9JiSSAZS
pv1cJ+I5d4v8Y/md1rZpdjTJL9gCrq/UUC67+UkejCOn0C+7XM2eR4Bu/jWvdMSn
ZQDHcPhFSIfmP7FaKomPogaBbw1sI1FvM5930pPJzHnyO9+cefBXe7rWaaB+y0At
GAxOtmk1dKh01BT7YO/C0oVuX87csWd74NHypVsbs0TgQo5jBFdZRheyDrq5YB+s
tVK+5H0nqQrCcfo/TvhcsZlgITTGtgTPenaW99/i7qNa9mRUtxC/VkE+aob6HNRF
1iBxxopOTxGN8akyKOVumtkuTQH3EJfouZee//pWbXLzyDmScg/k67vuao8kxbyq
NA1piFAGJAHFsHATxrbvNOq6jZ5bfUT8pwSTs83JppuR++8Hxk7zaShS3/LvsvHt
6ist/epOwTZ7oiNQ04nj
=72Uy
-----END PGP SIGNATURE-----
Merge tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull modules updates from Jessica Yu:
"The main bulk of this pull request introduces a new exported symbol
namespaces feature. The number of exported symbols is increasingly
growing with each release (we're at about 31k exports as of 5.3-rc7)
and we currently have no way of visualizing how these symbols are
"clustered" or making sense of this huge export surface.
Namespacing exported symbols allows kernel developers to more
explicitly partition and categorize exported symbols, as well as more
easily limiting the availability of namespaced symbols to other parts
of the kernel. For starters, we have introduced the USB_STORAGE
namespace to demonstrate the API's usage. I have briefly summarized
the feature and its main motivations in the tag below.
Summary:
- Introduce exported symbol namespaces.
This new feature allows subsystem maintainers to partition and
categorize their exported symbols into explicit namespaces. Module
authors are now required to import the namespaces they need.
Some of the main motivations of this feature include: allowing
kernel developers to better manage the export surface, allow
subsystem maintainers to explicitly state that usage of some
exported symbols should only be limited to certain users (think:
inter-module or inter-driver symbols, debugging symbols, etc), as
well as more easily limiting the availability of namespaced symbols
to other parts of the kernel.
With the module import requirement, it is also easier to spot the
misuse of exported symbols during patch review.
Two new macros are introduced: EXPORT_SYMBOL_NS() and
EXPORT_SYMBOL_NS_GPL(). The API is thoroughly documented in
Documentation/kbuild/namespaces.rst.
- Some small code and kbuild cleanups here and there"
* tag 'modules-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: Remove leftover '#undef' from export header
module: remove unneeded casts in cmp_name()
module: move CONFIG_UNUSED_SYMBOLS to the sub-menu of MODULES
module: remove redundant 'depends on MODULES'
module: Fix link failure due to invalid relocation on namespace offset
usb-storage: export symbols in USB_STORAGE namespace
usb-storage: remove single-use define for debugging
docs: Add documentation for Symbol Namespaces
scripts: Coccinelle script for namespace dependencies.
modpost: add support for generating namespace dependencies
export: allow definition default namespaces in Makefiles or sources
module: add config option MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
modpost: add support for symbol namespaces
module: add support for symbol namespaces.
export: explicitly align struct kernel_symbol
module: support reading multiple values per modinfo tag
2019-09-23 00:34:46 +07:00
|
|
|
#define EXPORT_SYMBOL_NS(sym, ns) __EXPORT_SYMBOL_NS(sym, "", ns)
|
|
|
|
#define EXPORT_SYMBOL_NS_GPL(sym, ns) __EXPORT_SYMBOL_NS(sym, "_gpl", ns)
|
2011-05-24 01:11:39 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_UNUSED_SYMBOLS
|
export.h, genksyms: do not make genksyms calculate CRC of trimmed symbols
Arnd Bergmann reported false-positive modpost warnings detected by his
randconfig testing of linux-next.
Actually, this happens under the combination of CONFIG_MODVERSIONS
and CONFIG_TRIM_UNUSED_KSYMS since commit 15bfc2348d54 ("modpost:
check for static EXPORT_SYMBOL* functions").
For example, arch/arm/config/multi_v7_defconfig + CONFIG_MODVERSIONS
+ CONFIG_TRIM_UNUSED_KSYMS produces the following false-positives:
WARNING: "__lshrdi3" [vmlinux] is a static (unknown)
WARNING: "__ashrdi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lasr" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsr" [vmlinux] is a static (unknown)
WARNING: "ftrace_set_clr_event" [vmlinux] is a static (unknown)
WARNING: "__muldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_ulcmp" [vmlinux] is a static (unknown)
WARNING: "__ucmpdi2" [vmlinux] is a static (unknown)
WARNING: "__aeabi_lmul" [vmlinux] is a static (unknown)
WARNING: "__bswapsi2" [vmlinux] is a static (unknown)
WARNING: "__bswapdi2" [vmlinux] is a static (unknown)
WARNING: "__ashldi3" [vmlinux] is a static (unknown)
WARNING: "__aeabi_llsl" [vmlinux] is a static (unknown)
The root cause of the problem is not in the modpost, but in the
implementation of CONFIG_TRIM_UNUSED_KSYMS.
If there is at least one untrimmed symbol in the file, genksyms is
invoked to calculate CRC of *all* the exported symbols in that file
even if some of them have been trimmed due to no caller existing.
As a result, .tmp_*.ver files contain CRC of trimmed symbols, thus
unneeded, orphan __crc* symbols are added to objects. It had been
harmless until recently.
With commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL*
functions"), it is now harmful because the bogus __crc* symbols make
modpost call sym_update_crc() to add the symbols to the hash table,
but there is no one that clears the ->is_static member.
I gave Fixes to the first commit that uncovered the issue, but the
potential problem has long existed since commit f235541699bc
("export.h: allow for per-symbol configurable EXPORT_SYMBOL()").
Fixes: 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Tested-by: Arnd Bergmann <arnd@arndb.de>
2019-09-09 17:53:17 +07:00
|
|
|
#define EXPORT_UNUSED_SYMBOL(sym) __EXPORT_SYMBOL(sym, "_unused")
|
|
|
|
#define EXPORT_UNUSED_SYMBOL_GPL(sym) __EXPORT_SYMBOL(sym, "_unused_gpl")
|
2011-05-24 01:11:39 +07:00
|
|
|
#else
|
|
|
|
#define EXPORT_UNUSED_SYMBOL(sym)
|
|
|
|
#define EXPORT_UNUSED_SYMBOL_GPL(sym)
|
|
|
|
#endif
|
|
|
|
|
2013-03-15 11:34:17 +07:00
|
|
|
#endif /* !__ASSEMBLY__ */
|
2011-05-24 01:11:39 +07:00
|
|
|
|
|
|
|
#endif /* _LINUX_EXPORT_H */
|