2020-02-10 23:02:34 +07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
|
|
|
#include <linux/efi.h>
|
|
|
|
#include <asm/efi.h>
|
|
|
|
|
|
|
|
#include "efistub.h"
|
|
|
|
|
|
|
|
#define EFI_MMAP_NR_SLACK_SLOTS 8
|
|
|
|
|
|
|
|
static inline bool mmap_has_headroom(unsigned long buff_size,
|
|
|
|
unsigned long map_size,
|
|
|
|
unsigned long desc_size)
|
|
|
|
{
|
|
|
|
unsigned long slack = buff_size - map_size;
|
|
|
|
|
|
|
|
return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
|
|
|
|
}
|
|
|
|
|
2020-02-18 13:30:38 +07:00
|
|
|
/**
|
|
|
|
* efi_get_memory_map() - get memory map
|
|
|
|
* @map: on return pointer to memory map
|
|
|
|
*
|
|
|
|
* Retrieve the UEFI memory map. The allocated memory leaves room for
|
|
|
|
* up to EFI_MMAP_NR_SLACK_SLOTS additional memory map entries.
|
|
|
|
*
|
|
|
|
* Return: status code
|
|
|
|
*/
|
2020-02-10 23:02:34 +07:00
|
|
|
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
|
|
|
|
{
|
|
|
|
efi_memory_desc_t *m = NULL;
|
|
|
|
efi_status_t status;
|
|
|
|
unsigned long key;
|
|
|
|
u32 desc_version;
|
|
|
|
|
|
|
|
*map->desc_size = sizeof(*m);
|
|
|
|
*map->map_size = *map->desc_size * 32;
|
|
|
|
*map->buff_size = *map->map_size;
|
|
|
|
again:
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
|
|
|
|
*map->map_size, (void **)&m);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
*map->desc_size = 0;
|
|
|
|
key = 0;
|
|
|
|
status = efi_bs_call(get_memory_map, map->map_size, m,
|
|
|
|
&key, map->desc_size, &desc_version);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL ||
|
|
|
|
!mmap_has_headroom(*map->buff_size, *map->map_size,
|
|
|
|
*map->desc_size)) {
|
|
|
|
efi_bs_call(free_pool, m);
|
|
|
|
/*
|
|
|
|
* Make sure there is some entries of headroom so that the
|
|
|
|
* buffer can be reused for a new map after allocations are
|
|
|
|
* no longer permitted. Its unlikely that the map will grow to
|
|
|
|
* exceed this headroom once we are ready to trigger
|
|
|
|
* ExitBootServices()
|
|
|
|
*/
|
|
|
|
*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
|
|
|
|
*map->buff_size = *map->map_size;
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
2020-02-17 01:40:50 +07:00
|
|
|
if (status == EFI_SUCCESS) {
|
|
|
|
if (map->key_ptr)
|
|
|
|
*map->key_ptr = key;
|
|
|
|
if (map->desc_ver)
|
|
|
|
*map->desc_ver = desc_version;
|
|
|
|
} else {
|
2020-02-10 23:02:34 +07:00
|
|
|
efi_bs_call(free_pool, m);
|
2020-02-17 01:40:50 +07:00
|
|
|
}
|
2020-02-10 23:02:34 +07:00
|
|
|
|
|
|
|
fail:
|
|
|
|
*map->map = m;
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2020-02-17 00:13:40 +07:00
|
|
|
/**
|
|
|
|
* efi_allocate_pages() - Allocate memory pages
|
|
|
|
* @size: minimum number of bytes to allocate
|
|
|
|
* @addr: On return the address of the first allocated page. The first
|
|
|
|
* allocated page has alignment EFI_ALLOC_ALIGN which is an
|
|
|
|
* architecture dependent multiple of the page size.
|
|
|
|
* @max: the address that the last allocated memory page shall not
|
|
|
|
* exceed
|
|
|
|
*
|
|
|
|
* Allocate pages as EFI_LOADER_DATA. The allocated pages are aligned according
|
|
|
|
* to EFI_ALLOC_ALIGN. The last allocated page will not exceed the address
|
|
|
|
* given by @max.
|
|
|
|
*
|
|
|
|
* Return: status code
|
2020-02-10 23:02:34 +07:00
|
|
|
*/
|
2020-02-10 23:02:35 +07:00
|
|
|
efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr,
|
|
|
|
unsigned long max)
|
2020-02-10 23:02:34 +07:00
|
|
|
{
|
2020-02-10 23:02:35 +07:00
|
|
|
efi_physical_addr_t alloc_addr = ALIGN_DOWN(max + 1, EFI_ALLOC_ALIGN) - 1;
|
|
|
|
int slack = EFI_ALLOC_ALIGN / EFI_PAGE_SIZE - 1;
|
2020-02-10 23:02:34 +07:00
|
|
|
efi_status_t status;
|
|
|
|
|
|
|
|
size = round_up(size, EFI_ALLOC_ALIGN);
|
2020-02-10 23:02:35 +07:00
|
|
|
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
|
|
|
|
EFI_LOADER_DATA, size / EFI_PAGE_SIZE + slack,
|
|
|
|
&alloc_addr);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
return status;
|
2020-02-10 23:02:34 +07:00
|
|
|
|
2020-02-10 23:02:35 +07:00
|
|
|
*addr = ALIGN((unsigned long)alloc_addr, EFI_ALLOC_ALIGN);
|
2020-02-10 23:02:34 +07:00
|
|
|
|
2020-02-10 23:02:35 +07:00
|
|
|
if (slack > 0) {
|
|
|
|
int l = (alloc_addr % EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
|
2020-02-10 23:02:34 +07:00
|
|
|
|
2020-02-10 23:02:35 +07:00
|
|
|
if (l) {
|
|
|
|
efi_bs_call(free_pages, alloc_addr, slack - l + 1);
|
|
|
|
slack = l - 1;
|
2020-02-10 23:02:34 +07:00
|
|
|
}
|
2020-02-10 23:02:35 +07:00
|
|
|
if (slack)
|
|
|
|
efi_bs_call(free_pages, *addr + size, slack);
|
2020-02-10 23:02:34 +07:00
|
|
|
}
|
2020-02-10 23:02:35 +07:00
|
|
|
return EFI_SUCCESS;
|
2020-02-10 23:02:34 +07:00
|
|
|
}
|
2020-02-18 13:30:38 +07:00
|
|
|
/**
|
|
|
|
* efi_low_alloc_above() - allocate pages at or above given address
|
|
|
|
* @size: size of the memory area to allocate
|
|
|
|
* @align: minimum alignment of the allocated memory area. It should
|
|
|
|
* a power of two.
|
|
|
|
* @addr: on exit the address of the allocated memory
|
|
|
|
* @min: minimum address to used for the memory allocation
|
|
|
|
*
|
|
|
|
* Allocate at the lowest possible address that is not below @min as
|
|
|
|
* EFI_LOADER_DATA. The allocated pages are aligned according to @align but at
|
|
|
|
* least EFI_ALLOC_ALIGN. The first allocated page will not below the address
|
|
|
|
* given by @min.
|
|
|
|
*
|
|
|
|
* Return: status code
|
2020-02-10 23:02:34 +07:00
|
|
|
*/
|
|
|
|
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
|
|
|
|
unsigned long *addr, unsigned long min)
|
|
|
|
{
|
|
|
|
unsigned long map_size, desc_size, buff_size;
|
|
|
|
efi_memory_desc_t *map;
|
|
|
|
efi_status_t status;
|
|
|
|
unsigned long nr_pages;
|
|
|
|
int i;
|
|
|
|
struct efi_boot_memmap boot_map;
|
|
|
|
|
|
|
|
boot_map.map = ↦
|
|
|
|
boot_map.map_size = &map_size;
|
|
|
|
boot_map.desc_size = &desc_size;
|
|
|
|
boot_map.desc_ver = NULL;
|
|
|
|
boot_map.key_ptr = NULL;
|
|
|
|
boot_map.buff_size = &buff_size;
|
|
|
|
|
|
|
|
status = efi_get_memory_map(&boot_map);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enforce minimum alignment that EFI or Linux requires when
|
|
|
|
* requesting a specific address. We are doing page-based (or
|
|
|
|
* larger) allocations, and both the address and size must meet
|
|
|
|
* alignment constraints.
|
|
|
|
*/
|
|
|
|
if (align < EFI_ALLOC_ALIGN)
|
|
|
|
align = EFI_ALLOC_ALIGN;
|
|
|
|
|
|
|
|
size = round_up(size, EFI_ALLOC_ALIGN);
|
|
|
|
nr_pages = size / EFI_PAGE_SIZE;
|
|
|
|
for (i = 0; i < map_size / desc_size; i++) {
|
|
|
|
efi_memory_desc_t *desc;
|
|
|
|
unsigned long m = (unsigned long)map;
|
|
|
|
u64 start, end;
|
|
|
|
|
|
|
|
desc = efi_early_memdesc_ptr(m, desc_size, i);
|
|
|
|
|
|
|
|
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (efi_soft_reserve_enabled() &&
|
|
|
|
(desc->attribute & EFI_MEMORY_SP))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (desc->num_pages < nr_pages)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
start = desc->phys_addr;
|
|
|
|
end = start + desc->num_pages * EFI_PAGE_SIZE;
|
|
|
|
|
|
|
|
if (start < min)
|
|
|
|
start = min;
|
|
|
|
|
|
|
|
start = round_up(start, align);
|
|
|
|
if ((start + size) > end)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
|
|
EFI_LOADER_DATA, nr_pages, &start);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
|
|
*addr = start;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == map_size / desc_size)
|
|
|
|
status = EFI_NOT_FOUND;
|
|
|
|
|
|
|
|
efi_bs_call(free_pool, map);
|
|
|
|
fail:
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2020-02-18 13:30:38 +07:00
|
|
|
/**
|
|
|
|
* efi_free() - free memory pages
|
|
|
|
* @size: size of the memory area to free in bytes
|
|
|
|
* @addr: start of the memory area to free (must be EFI_PAGE_SIZE
|
|
|
|
* aligned)
|
|
|
|
*
|
|
|
|
* @size is rounded up to a multiple of EFI_ALLOC_ALIGN which is an
|
|
|
|
* architecture specific multiple of EFI_PAGE_SIZE. So this function should
|
|
|
|
* only be used to return pages allocated with efi_allocate_pages() or
|
|
|
|
* efi_low_alloc_above().
|
|
|
|
*/
|
2020-02-10 23:02:34 +07:00
|
|
|
void efi_free(unsigned long size, unsigned long addr)
|
|
|
|
{
|
|
|
|
unsigned long nr_pages;
|
|
|
|
|
|
|
|
if (!size)
|
|
|
|
return;
|
|
|
|
|
|
|
|
nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
|
|
|
|
efi_bs_call(free_pages, addr, nr_pages);
|
|
|
|
}
|
|
|
|
|
2020-02-20 13:53:17 +07:00
|
|
|
/**
|
|
|
|
* efi_relocate_kernel() - copy memory area
|
|
|
|
* @image_addr: pointer to address of memory area to copy
|
|
|
|
* @image_size: size of memory area to copy
|
|
|
|
* @alloc_size: minimum size of memory to allocate, must be greater or
|
|
|
|
* equal to image_size
|
|
|
|
* @preferred_addr: preferred target address
|
|
|
|
* @alignment: minimum alignment of the allocated memory area. It
|
|
|
|
* should be a power of two.
|
|
|
|
* @min_addr: minimum target address
|
|
|
|
*
|
|
|
|
* Copy a memory area to a newly allocated memory area aligned according
|
|
|
|
* to @alignment but at least EFI_ALLOC_ALIGN. If the preferred address
|
|
|
|
* is not available, the allocated address will not be below @min_addr.
|
|
|
|
* On exit, @image_addr is updated to the target copy address that was used.
|
|
|
|
*
|
|
|
|
* This function is used to copy the Linux kernel verbatim. It does not apply
|
|
|
|
* any relocation changes.
|
|
|
|
*
|
|
|
|
* Return: status code
|
2020-02-10 23:02:34 +07:00
|
|
|
*/
|
|
|
|
efi_status_t efi_relocate_kernel(unsigned long *image_addr,
|
|
|
|
unsigned long image_size,
|
|
|
|
unsigned long alloc_size,
|
|
|
|
unsigned long preferred_addr,
|
|
|
|
unsigned long alignment,
|
|
|
|
unsigned long min_addr)
|
|
|
|
{
|
|
|
|
unsigned long cur_image_addr;
|
|
|
|
unsigned long new_addr = 0;
|
|
|
|
efi_status_t status;
|
|
|
|
unsigned long nr_pages;
|
|
|
|
efi_physical_addr_t efi_addr = preferred_addr;
|
|
|
|
|
|
|
|
if (!image_addr || !image_size || !alloc_size)
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
if (alloc_size < image_size)
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
|
|
|
|
cur_image_addr = *image_addr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The EFI firmware loader could have placed the kernel image
|
|
|
|
* anywhere in memory, but the kernel has restrictions on the
|
|
|
|
* max physical address it can run at. Some architectures
|
|
|
|
* also have a prefered address, so first try to relocate
|
|
|
|
* to the preferred address. If that fails, allocate as low
|
|
|
|
* as possible while respecting the required alignment.
|
|
|
|
*/
|
|
|
|
nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
|
|
|
|
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
|
|
EFI_LOADER_DATA, nr_pages, &efi_addr);
|
|
|
|
new_addr = efi_addr;
|
|
|
|
/*
|
|
|
|
* If preferred address allocation failed allocate as low as
|
|
|
|
* possible.
|
|
|
|
*/
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
|
|
status = efi_low_alloc_above(alloc_size, alignment, &new_addr,
|
|
|
|
min_addr);
|
|
|
|
}
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
|
|
pr_efi_err("Failed to allocate usable memory for kernel.\n");
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We know source/dest won't overlap since both memory ranges
|
|
|
|
* have been allocated by UEFI, so we can safely use memcpy.
|
|
|
|
*/
|
|
|
|
memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
|
|
|
|
|
|
|
|
/* Return the new address of the relocated image. */
|
|
|
|
*image_addr = new_addr;
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|