linux_dsm_epyc7002/drivers/net/ethernet/cavium/thunder/nicvf_queues.c

1948 lines
51 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/ip.h>
#include <linux/etherdevice.h>
#include <linux/iommu.h>
#include <net/ip.h>
#include <net/tso.h>
#include "nic_reg.h"
#include "nic.h"
#include "q_struct.h"
#include "nicvf_queues.h"
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
int size, u64 data);
static void nicvf_get_page(struct nicvf *nic)
{
if (!nic->rb_pageref || !nic->rb_page)
return;
page_ref_add(nic->rb_page, nic->rb_pageref);
nic->rb_pageref = 0;
}
/* Poll a register for a specific value */
static int nicvf_poll_reg(struct nicvf *nic, int qidx,
u64 reg, int bit_pos, int bits, int val)
{
u64 bit_mask;
u64 reg_val;
int timeout = 10;
bit_mask = (1ULL << bits) - 1;
bit_mask = (bit_mask << bit_pos);
while (timeout) {
reg_val = nicvf_queue_reg_read(nic, reg, qidx);
if (((reg_val & bit_mask) >> bit_pos) == val)
return 0;
usleep_range(1000, 2000);
timeout--;
}
netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
return 1;
}
/* Allocate memory for a queue's descriptors */
static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
int q_len, int desc_size, int align_bytes)
{
dmem->q_len = q_len;
dmem->size = (desc_size * q_len) + align_bytes;
/* Save address, need it while freeing */
dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
&dmem->dma, GFP_KERNEL);
if (!dmem->unalign_base)
return -ENOMEM;
/* Align memory address for 'align_bytes' */
dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
return 0;
}
/* Free queue's descriptor memory */
static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
{
if (!dmem)
return;
dma_free_coherent(&nic->pdev->dev, dmem->size,
dmem->unalign_base, dmem->dma);
dmem->unalign_base = NULL;
dmem->base = NULL;
}
#define XDP_PAGE_REFCNT_REFILL 256
/* Allocate a new page or recycle one if possible
*
* We cannot optimize dma mapping here, since
* 1. It's only one RBDR ring for 8 Rx queues.
* 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
* and not idx into RBDR ring, so can't refer to saved info.
* 3. There are multiple receive buffers per page
*/
static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
struct rbdr *rbdr, gfp_t gfp)
{
int ref_count;
struct page *page = NULL;
struct pgcache *pgcache, *next;
/* Check if page is already allocated */
pgcache = &rbdr->pgcache[rbdr->pgidx];
page = pgcache->page;
/* Check if page can be recycled */
if (page) {
ref_count = page_ref_count(page);
/* Check if this page has been used once i.e 'put_page'
* called after packet transmission i.e internal ref_count
* and page's ref_count are equal i.e page can be recycled.
*/
if (rbdr->is_xdp && (ref_count == pgcache->ref_count))
pgcache->ref_count--;
else
page = NULL;
/* In non-XDP mode, page's ref_count needs to be '1' for it
* to be recycled.
*/
if (!rbdr->is_xdp && (ref_count != 1))
page = NULL;
}
if (!page) {
page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
if (!page)
return NULL;
this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
/* Check for space */
if (rbdr->pgalloc >= rbdr->pgcnt) {
/* Page can still be used */
nic->rb_page = page;
return NULL;
}
/* Save the page in page cache */
pgcache->page = page;
pgcache->dma_addr = 0;
pgcache->ref_count = 0;
rbdr->pgalloc++;
}
/* Take additional page references for recycling */
if (rbdr->is_xdp) {
/* Since there is single RBDR (i.e single core doing
* page recycling) per 8 Rx queues, in XDP mode adjusting
* page references atomically is the biggest bottleneck, so
* take bunch of references at a time.
*
* So here, below reference counts defer by '1'.
*/
if (!pgcache->ref_count) {
pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
}
} else {
/* In non-XDP case, single 64K page is divided across multiple
* receive buffers, so cost of recycling is less anyway.
* So we can do with just one extra reference.
*/
page_ref_add(page, 1);
}
rbdr->pgidx++;
rbdr->pgidx &= (rbdr->pgcnt - 1);
/* Prefetch refcount of next page in page cache */
next = &rbdr->pgcache[rbdr->pgidx];
page = next->page;
if (page)
prefetch(&page->_refcount);
return pgcache;
}
/* Allocate buffer for packet reception */
static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
gfp_t gfp, u32 buf_len, u64 *rbuf)
{
struct pgcache *pgcache = NULL;
/* Check if request can be accomodated in previous allocated page.
* But in XDP mode only one buffer per page is permitted.
*/
if (!rbdr->is_xdp && nic->rb_page &&
((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
nic->rb_pageref++;
goto ret;
}
nicvf_get_page(nic);
nic->rb_page = NULL;
/* Get new page, either recycled or new one */
pgcache = nicvf_alloc_page(nic, rbdr, gfp);
if (!pgcache && !nic->rb_page) {
this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
return -ENOMEM;
}
nic->rb_page_offset = 0;
/* Reserve space for header modifications by BPF program */
if (rbdr->is_xdp)
buf_len += XDP_PACKET_HEADROOM;
/* Check if it's recycled */
if (pgcache)
nic->rb_page = pgcache->page;
ret:
if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
*rbuf = pgcache->dma_addr;
} else {
/* HW will ensure data coherency, CPU sync not required */
*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
nic->rb_page_offset, buf_len,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
if (!nic->rb_page_offset)
__free_pages(nic->rb_page, 0);
nic->rb_page = NULL;
return -ENOMEM;
}
if (pgcache)
pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
nic->rb_page_offset += buf_len;
}
return 0;
}
/* Build skb around receive buffer */
static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
u64 rb_ptr, int len)
{
void *data;
struct sk_buff *skb;
data = phys_to_virt(rb_ptr);
/* Now build an skb to give to stack */
skb = build_skb(data, RCV_FRAG_LEN);
if (!skb) {
put_page(virt_to_page(data));
return NULL;
}
prefetch(skb->data);
return skb;
}
/* Allocate RBDR ring and populate receive buffers */
static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
int ring_len, int buf_size)
{
int idx;
u64 rbuf;
struct rbdr_entry_t *desc;
int err;
err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
sizeof(struct rbdr_entry_t),
NICVF_RCV_BUF_ALIGN_BYTES);
if (err)
return err;
rbdr->desc = rbdr->dmem.base;
/* Buffer size has to be in multiples of 128 bytes */
rbdr->dma_size = buf_size;
rbdr->enable = true;
rbdr->thresh = RBDR_THRESH;
rbdr->head = 0;
rbdr->tail = 0;
/* Initialize page recycling stuff.
*
* Can't use single buffer per page especially with 64K pages.
* On embedded platforms i.e 81xx/83xx available memory itself
* is low and minimum ring size of RBDR is 8K, that takes away
* lots of memory.
*
* But for XDP it has to be a single buffer per page.
*/
if (!nic->pnicvf->xdp_prog) {
rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
rbdr->is_xdp = false;
} else {
rbdr->pgcnt = ring_len;
rbdr->is_xdp = true;
}
rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
rbdr->pgcache = kzalloc(sizeof(*rbdr->pgcache) *
rbdr->pgcnt, GFP_KERNEL);
if (!rbdr->pgcache)
return -ENOMEM;
rbdr->pgidx = 0;
rbdr->pgalloc = 0;
nic->rb_page = NULL;
for (idx = 0; idx < ring_len; idx++) {
err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
RCV_FRAG_LEN, &rbuf);
if (err) {
/* To free already allocated and mapped ones */
rbdr->tail = idx - 1;
return err;
}
desc = GET_RBDR_DESC(rbdr, idx);
desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
}
nicvf_get_page(nic);
return 0;
}
/* Free RBDR ring and its receive buffers */
static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
{
int head, tail;
u64 buf_addr, phys_addr;
struct pgcache *pgcache;
struct rbdr_entry_t *desc;
if (!rbdr)
return;
rbdr->enable = false;
if (!rbdr->dmem.base)
return;
head = rbdr->head;
tail = rbdr->tail;
/* Release page references */
while (head != tail) {
desc = GET_RBDR_DESC(rbdr, head);
buf_addr = desc->buf_addr;
phys_addr = nicvf_iova_to_phys(nic, buf_addr);
dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
if (phys_addr)
put_page(virt_to_page(phys_to_virt(phys_addr)));
head++;
head &= (rbdr->dmem.q_len - 1);
}
/* Release buffer of tail desc */
desc = GET_RBDR_DESC(rbdr, tail);
buf_addr = desc->buf_addr;
phys_addr = nicvf_iova_to_phys(nic, buf_addr);
dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
if (phys_addr)
put_page(virt_to_page(phys_to_virt(phys_addr)));
/* Sync page cache info */
smp_rmb();
/* Release additional page references held for recycling */
head = 0;
while (head < rbdr->pgcnt) {
pgcache = &rbdr->pgcache[head];
if (pgcache->page && page_ref_count(pgcache->page) != 0) {
if (!rbdr->is_xdp) {
put_page(pgcache->page);
continue;
}
page_ref_sub(pgcache->page, pgcache->ref_count - 1);
put_page(pgcache->page);
}
head++;
}
/* Free RBDR ring */
nicvf_free_q_desc_mem(nic, &rbdr->dmem);
}
/* Refill receive buffer descriptors with new buffers.
*/
static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
{
struct queue_set *qs = nic->qs;
int rbdr_idx = qs->rbdr_cnt;
int tail, qcount;
int refill_rb_cnt;
struct rbdr *rbdr;
struct rbdr_entry_t *desc;
u64 rbuf;
int new_rb = 0;
refill:
if (!rbdr_idx)
return;
rbdr_idx--;
rbdr = &qs->rbdr[rbdr_idx];
/* Check if it's enabled */
if (!rbdr->enable)
goto next_rbdr;
/* Get no of desc's to be refilled */
qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
qcount &= 0x7FFFF;
/* Doorbell can be ringed with a max of ring size minus 1 */
if (qcount >= (qs->rbdr_len - 1))
goto next_rbdr;
else
refill_rb_cnt = qs->rbdr_len - qcount - 1;
/* Sync page cache info */
smp_rmb();
/* Start filling descs from tail */
tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
while (refill_rb_cnt) {
tail++;
tail &= (rbdr->dmem.q_len - 1);
if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
break;
desc = GET_RBDR_DESC(rbdr, tail);
desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
refill_rb_cnt--;
new_rb++;
}
nicvf_get_page(nic);
/* make sure all memory stores are done before ringing doorbell */
smp_wmb();
/* Check if buffer allocation failed */
if (refill_rb_cnt)
nic->rb_alloc_fail = true;
else
nic->rb_alloc_fail = false;
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
rbdr_idx, new_rb);
next_rbdr:
/* Re-enable RBDR interrupts only if buffer allocation is success */
if (!nic->rb_alloc_fail && rbdr->enable &&
netif_running(nic->pnicvf->netdev))
nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
if (rbdr_idx)
goto refill;
}
/* Alloc rcv buffers in non-atomic mode for better success */
void nicvf_rbdr_work(struct work_struct *work)
{
struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
nicvf_refill_rbdr(nic, GFP_KERNEL);
if (nic->rb_alloc_fail)
schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
else
nic->rb_work_scheduled = false;
}
/* In Softirq context, alloc rcv buffers in atomic mode */
void nicvf_rbdr_task(unsigned long data)
{
struct nicvf *nic = (struct nicvf *)data;
nicvf_refill_rbdr(nic, GFP_ATOMIC);
if (nic->rb_alloc_fail) {
nic->rb_work_scheduled = true;
schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
}
}
/* Initialize completion queue */
static int nicvf_init_cmp_queue(struct nicvf *nic,
struct cmp_queue *cq, int q_len)
{
int err;
err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
NICVF_CQ_BASE_ALIGN_BYTES);
if (err)
return err;
cq->desc = cq->dmem.base;
cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
return 0;
}
static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
{
if (!cq)
return;
if (!cq->dmem.base)
return;
nicvf_free_q_desc_mem(nic, &cq->dmem);
}
/* Initialize transmit queue */
static int nicvf_init_snd_queue(struct nicvf *nic,
struct snd_queue *sq, int q_len, int qidx)
{
int err;
err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
NICVF_SQ_BASE_ALIGN_BYTES);
if (err)
return err;
sq->desc = sq->dmem.base;
sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
if (!sq->skbuff)
return -ENOMEM;
sq->head = 0;
sq->tail = 0;
sq->thresh = SND_QUEUE_THRESH;
/* Check if this SQ is a XDP TX queue */
if (nic->sqs_mode)
qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
if (qidx < nic->pnicvf->xdp_tx_queues) {
/* Alloc memory to save page pointers for XDP_TX */
sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
if (!sq->xdp_page)
return -ENOMEM;
sq->xdp_desc_cnt = 0;
sq->xdp_free_cnt = q_len - 1;
sq->is_xdp = true;
} else {
sq->xdp_page = NULL;
sq->xdp_desc_cnt = 0;
sq->xdp_free_cnt = 0;
sq->is_xdp = false;
atomic_set(&sq->free_cnt, q_len - 1);
/* Preallocate memory for TSO segment's header */
sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
q_len * TSO_HEADER_SIZE,
&sq->tso_hdrs_phys,
GFP_KERNEL);
if (!sq->tso_hdrs)
return -ENOMEM;
}
return 0;
}
void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
int hdr_sqe, u8 subdesc_cnt)
{
u8 idx;
struct sq_gather_subdesc *gather;
/* Unmap DMA mapped skb data buffers */
for (idx = 0; idx < subdesc_cnt; idx++) {
hdr_sqe++;
hdr_sqe &= (sq->dmem.q_len - 1);
gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
/* HW will ensure data coherency, CPU sync not required */
dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
gather->size, DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
}
static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
{
struct sk_buff *skb;
struct page *page;
struct sq_hdr_subdesc *hdr;
struct sq_hdr_subdesc *tso_sqe;
if (!sq)
return;
if (!sq->dmem.base)
return;
if (sq->tso_hdrs)
dma_free_coherent(&nic->pdev->dev,
sq->dmem.q_len * TSO_HEADER_SIZE,
sq->tso_hdrs, sq->tso_hdrs_phys);
/* Free pending skbs in the queue */
smp_rmb();
while (sq->head != sq->tail) {
skb = (struct sk_buff *)sq->skbuff[sq->head];
if (!skb || !sq->xdp_page)
goto next;
page = (struct page *)sq->xdp_page[sq->head];
if (!page)
goto next;
else
put_page(page);
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
/* Check for dummy descriptor used for HW TSO offload on 88xx */
if (hdr->dont_send) {
/* Get actual TSO descriptors and unmap them */
tso_sqe =
(struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
tso_sqe->subdesc_cnt);
} else {
nicvf_unmap_sndq_buffers(nic, sq, sq->head,
hdr->subdesc_cnt);
}
if (skb)
dev_kfree_skb_any(skb);
next:
sq->head++;
sq->head &= (sq->dmem.q_len - 1);
}
kfree(sq->skbuff);
kfree(sq->xdp_page);
nicvf_free_q_desc_mem(nic, &sq->dmem);
}
static void nicvf_reclaim_snd_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
/* Disable send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
/* Check if SQ is stopped */
if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
return;
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
}
static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
union nic_mbx mbx = {};
/* Make sure all packets in the pipeline are written back into mem */
mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
/* Disable timer threshold (doesn't get reset upon CQ reset */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
/* Disable completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
}
static void nicvf_reclaim_rbdr(struct nicvf *nic,
struct rbdr *rbdr, int qidx)
{
u64 tmp, fifo_state;
int timeout = 10;
/* Save head and tail pointers for feeing up buffers */
rbdr->head = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_HEAD,
qidx) >> 3;
rbdr->tail = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_TAIL,
qidx) >> 3;
/* If RBDR FIFO is in 'FAIL' state then do a reset first
* before relaiming.
*/
fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
if (((fifo_state >> 62) & 0x03) == 0x3)
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, NICVF_RBDR_RESET);
/* Disable RBDR */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
while (1) {
tmp = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
qidx);
if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
break;
usleep_range(1000, 2000);
timeout--;
if (!timeout) {
netdev_err(nic->netdev,
"Failed polling on prefetch status\n");
return;
}
}
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, NICVF_RBDR_RESET);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
return;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
}
void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
{
u64 rq_cfg;
int sqs;
rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
/* Enable first VLAN stripping */
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rq_cfg |= (1ULL << 25);
else
rq_cfg &= ~(1ULL << 25);
nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
/* Configure Secondary Qsets, if any */
for (sqs = 0; sqs < nic->sqs_count; sqs++)
if (nic->snicvf[sqs])
nicvf_queue_reg_write(nic->snicvf[sqs],
NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
}
static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
{
union nic_mbx mbx = {};
/* Reset all RQ/SQ and VF stats */
mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
mbx.reset_stat.rx_stat_mask = 0x3FFF;
mbx.reset_stat.tx_stat_mask = 0x1F;
mbx.reset_stat.rq_stat_mask = 0xFFFF;
mbx.reset_stat.sq_stat_mask = 0xFFFF;
nicvf_send_msg_to_pf(nic, &mbx);
}
/* Configures receive queue */
static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
union nic_mbx mbx = {};
struct rcv_queue *rq;
struct rq_cfg rq_cfg;
rq = &qs->rq[qidx];
rq->enable = enable;
/* Disable receive queue */
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
if (!rq->enable) {
nicvf_reclaim_rcv_queue(nic, qs, qidx);
return;
}
rq->cq_qs = qs->vnic_id;
rq->cq_idx = qidx;
rq->start_rbdr_qs = qs->vnic_id;
rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
rq->cont_rbdr_qs = qs->vnic_id;
rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
/* all writes of RBDR data to be loaded into L2 Cache as well*/
rq->caching = 1;
/* Send a mailbox msg to PF to config RQ */
mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
mbx.rq.qs_num = qs->vnic_id;
mbx.rq.rq_num = qidx;
mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
(rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
(rq->cont_qs_rbdr_idx << 8) |
(rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
nicvf_send_msg_to_pf(nic, &mbx);
mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
(RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
(qs->vnic_id << 0);
nicvf_send_msg_to_pf(nic, &mbx);
/* RQ drop config
* Enable CQ drop to reserve sufficient CQEs for all tx packets
*/
mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
(RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
(RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
nicvf_send_msg_to_pf(nic, &mbx);
if (!nic->sqs_mode && (qidx == 0)) {
/* Enable checking L3/L4 length and TCP/UDP checksums
* Also allow IPv6 pkts with zero UDP checksum.
*/
nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
(BIT(24) | BIT(23) | BIT(21) | BIT(20)));
nicvf_config_vlan_stripping(nic, nic->netdev->features);
}
/* Enable Receive queue */
memset(&rq_cfg, 0, sizeof(struct rq_cfg));
rq_cfg.ena = 1;
rq_cfg.tcp_ena = 0;
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
}
/* Configures completion queue */
void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
struct cmp_queue *cq;
struct cq_cfg cq_cfg;
cq = &qs->cq[qidx];
cq->enable = enable;
if (!cq->enable) {
nicvf_reclaim_cmp_queue(nic, qs, qidx);
return;
}
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
if (!cq->enable)
return;
spin_lock_init(&cq->lock);
/* Set completion queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
qidx, (u64)(cq->dmem.phys_base));
/* Enable Completion queue */
memset(&cq_cfg, 0, sizeof(struct cq_cfg));
cq_cfg.ena = 1;
cq_cfg.reset = 0;
cq_cfg.caching = 0;
cq_cfg.qsize = ilog2(qs->cq_len >> 10);
cq_cfg.avg_con = 0;
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
qidx, CMP_QUEUE_TIMER_THRESH);
}
/* Configures transmit queue */
static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
union nic_mbx mbx = {};
struct snd_queue *sq;
struct sq_cfg sq_cfg;
sq = &qs->sq[qidx];
sq->enable = enable;
if (!sq->enable) {
nicvf_reclaim_snd_queue(nic, qs, qidx);
return;
}
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
sq->cq_qs = qs->vnic_id;
sq->cq_idx = qidx;
/* Send a mailbox msg to PF to config SQ */
mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
mbx.sq.qs_num = qs->vnic_id;
mbx.sq.sq_num = qidx;
mbx.sq.sqs_mode = nic->sqs_mode;
mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
nicvf_send_msg_to_pf(nic, &mbx);
/* Set queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
qidx, (u64)(sq->dmem.phys_base));
/* Enable send queue & set queue size */
memset(&sq_cfg, 0, sizeof(struct sq_cfg));
sq_cfg.ena = 1;
sq_cfg.reset = 0;
sq_cfg.ldwb = 0;
sq_cfg.qsize = ilog2(qs->sq_len >> 10);
sq_cfg.tstmp_bgx_intf = 0;
/* CQ's level at which HW will stop processing SQEs to avoid
* transmitting a pkt with no space in CQ to post CQE_TX.
*/
sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
/* Set queue:cpu affinity for better load distribution */
if (cpu_online(qidx)) {
cpumask_set_cpu(qidx, &sq->affinity_mask);
netif_set_xps_queue(nic->netdev,
&sq->affinity_mask, qidx);
}
}
/* Configures receive buffer descriptor ring */
static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
struct rbdr *rbdr;
struct rbdr_cfg rbdr_cfg;
rbdr = &qs->rbdr[qidx];
nicvf_reclaim_rbdr(nic, rbdr, qidx);
if (!enable)
return;
/* Set descriptor base address */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
qidx, (u64)(rbdr->dmem.phys_base));
/* Enable RBDR & set queue size */
/* Buffer size should be in multiples of 128 bytes */
memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
rbdr_cfg.ena = 1;
rbdr_cfg.reset = 0;
rbdr_cfg.ldwb = 0;
rbdr_cfg.qsize = RBDR_SIZE;
rbdr_cfg.avg_con = 0;
rbdr_cfg.lines = rbdr->dma_size / 128;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, *(u64 *)&rbdr_cfg);
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
qidx, qs->rbdr_len - 1);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
qidx, rbdr->thresh - 1);
}
/* Requests PF to assign and enable Qset */
void nicvf_qset_config(struct nicvf *nic, bool enable)
{
union nic_mbx mbx = {};
struct queue_set *qs = nic->qs;
struct qs_cfg *qs_cfg;
if (!qs) {
netdev_warn(nic->netdev,
"Qset is still not allocated, don't init queues\n");
return;
}
qs->enable = enable;
qs->vnic_id = nic->vf_id;
/* Send a mailbox msg to PF to config Qset */
mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
mbx.qs.num = qs->vnic_id;
mbx.qs.sqs_count = nic->sqs_count;
mbx.qs.cfg = 0;
qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
if (qs->enable) {
qs_cfg->ena = 1;
#ifdef __BIG_ENDIAN
qs_cfg->be = 1;
#endif
qs_cfg->vnic = qs->vnic_id;
}
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_free_resources(struct nicvf *nic)
{
int qidx;
struct queue_set *qs = nic->qs;
/* Free receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
/* Free completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
/* Free send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_free_snd_queue(nic, &qs->sq[qidx]);
}
static int nicvf_alloc_resources(struct nicvf *nic)
{
int qidx;
struct queue_set *qs = nic->qs;
/* Alloc receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
DMA_BUFFER_LEN))
goto alloc_fail;
}
/* Alloc send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
goto alloc_fail;
}
/* Alloc completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
goto alloc_fail;
}
return 0;
alloc_fail:
nicvf_free_resources(nic);
return -ENOMEM;
}
int nicvf_set_qset_resources(struct nicvf *nic)
{
struct queue_set *qs;
qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
if (!qs)
return -ENOMEM;
nic->qs = qs;
/* Set count of each queue */
qs->rbdr_cnt = DEFAULT_RBDR_CNT;
qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
/* Set queue lengths */
qs->rbdr_len = RCV_BUF_COUNT;
qs->sq_len = SND_QUEUE_LEN;
qs->cq_len = CMP_QUEUE_LEN;
nic->rx_queues = qs->rq_cnt;
nic->tx_queues = qs->sq_cnt;
nic->xdp_tx_queues = 0;
return 0;
}
int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
{
bool disable = false;
struct queue_set *qs = nic->qs;
struct queue_set *pqs = nic->pnicvf->qs;
int qidx;
if (!qs)
return 0;
/* Take primary VF's queue lengths.
* This is needed to take queue lengths set from ethtool
* into consideration.
*/
if (nic->sqs_mode && pqs) {
qs->cq_len = pqs->cq_len;
qs->sq_len = pqs->sq_len;
}
if (enable) {
if (nicvf_alloc_resources(nic))
return -ENOMEM;
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, enable);
} else {
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, disable);
nicvf_free_resources(nic);
}
/* Reset RXQ's stats.
* SQ's stats will get reset automatically once SQ is reset.
*/
nicvf_reset_rcv_queue_stats(nic);
return 0;
}
/* Get a free desc from SQ
* returns descriptor ponter & descriptor number
*/
static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
{
int qentry;
qentry = sq->tail;
if (!sq->is_xdp)
atomic_sub(desc_cnt, &sq->free_cnt);
else
sq->xdp_free_cnt -= desc_cnt;
sq->tail += desc_cnt;
sq->tail &= (sq->dmem.q_len - 1);
return qentry;
}
/* Rollback to previous tail pointer when descriptors not used */
static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
int qentry, int desc_cnt)
{
sq->tail = qentry;
atomic_add(desc_cnt, &sq->free_cnt);
}
/* Free descriptor back to SQ for future use */
void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
{
if (!sq->is_xdp)
atomic_add(desc_cnt, &sq->free_cnt);
else
sq->xdp_free_cnt += desc_cnt;
sq->head += desc_cnt;
sq->head &= (sq->dmem.q_len - 1);
}
static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
{
qentry++;
qentry &= (sq->dmem.q_len - 1);
return qentry;
}
void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
u64 sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg |= NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
/* Ring doorbell so that H/W restarts processing SQEs */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
}
void nicvf_sq_disable(struct nicvf *nic, int qidx)
{
u64 sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg &= ~NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
}
void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
int qidx)
{
u64 head, tail;
struct sk_buff *skb;
struct nicvf *nic = netdev_priv(netdev);
struct sq_hdr_subdesc *hdr;
head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
while (sq->head != head) {
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
nicvf_put_sq_desc(sq, 1);
continue;
}
skb = (struct sk_buff *)sq->skbuff[sq->head];
if (skb)
dev_kfree_skb_any(skb);
atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
atomic64_add(hdr->tot_len,
(atomic64_t *)&netdev->stats.tx_bytes);
nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
}
}
/* XDP Transmit APIs */
void nicvf_xdp_sq_doorbell(struct nicvf *nic,
struct snd_queue *sq, int sq_num)
{
if (!sq->xdp_desc_cnt)
return;
/* make sure all memory stores are done before ringing doorbell */
wmb();
/* Inform HW to xmit all TSO segments */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
sq_num, sq->xdp_desc_cnt);
sq->xdp_desc_cnt = 0;
}
static inline void
nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
int subdesc_cnt, u64 data, int len)
{
struct sq_hdr_subdesc *hdr;
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
memset(hdr, 0, SND_QUEUE_DESC_SIZE);
hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
hdr->subdesc_cnt = subdesc_cnt;
hdr->tot_len = len;
hdr->post_cqe = 1;
sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
}
int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
u64 bufaddr, u64 dma_addr, u16 len)
{
int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
int qentry;
if (subdesc_cnt > sq->xdp_free_cnt)
return 0;
qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
qentry = nicvf_get_nxt_sqentry(sq, qentry);
nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
sq->xdp_desc_cnt += subdesc_cnt;
return 1;
}
/* Calculate no of SQ subdescriptors needed to transmit all
* segments of this TSO packet.
* Taken from 'Tilera network driver' with a minor modification.
*/
static int nicvf_tso_count_subdescs(struct sk_buff *skb)
{
struct skb_shared_info *sh = skb_shinfo(skb);
unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
unsigned int data_len = skb->len - sh_len;
unsigned int p_len = sh->gso_size;
long f_id = -1; /* id of the current fragment */
long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
long f_used = 0; /* bytes used from the current fragment */
long n; /* size of the current piece of payload */
int num_edescs = 0;
int segment;
for (segment = 0; segment < sh->gso_segs; segment++) {
unsigned int p_used = 0;
/* One edesc for header and for each piece of the payload. */
for (num_edescs++; p_used < p_len; num_edescs++) {
/* Advance as needed. */
while (f_used >= f_size) {
f_id++;
f_size = skb_frag_size(&sh->frags[f_id]);
f_used = 0;
}
/* Use bytes from the current fragment. */
n = p_len - p_used;
if (n > f_size - f_used)
n = f_size - f_used;
f_used += n;
p_used += n;
}
/* The last segment may be less than gso_size. */
data_len -= p_len;
if (data_len < p_len)
p_len = data_len;
}
/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
return num_edescs + sh->gso_segs;
}
#define POST_CQE_DESC_COUNT 2
/* Get the number of SQ descriptors needed to xmit this skb */
static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
{
int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
subdesc_cnt = nicvf_tso_count_subdescs(skb);
return subdesc_cnt;
}
/* Dummy descriptors to get TSO pkt completion notification */
if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
subdesc_cnt += POST_CQE_DESC_COUNT;
if (skb_shinfo(skb)->nr_frags)
subdesc_cnt += skb_shinfo(skb)->nr_frags;
return subdesc_cnt;
}
/* Add SQ HEADER subdescriptor.
* First subdescriptor for every send descriptor.
*/
static inline void
nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
int subdesc_cnt, struct sk_buff *skb, int len)
{
int proto;
struct sq_hdr_subdesc *hdr;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
ip.hdr = skb_network_header(skb);
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
memset(hdr, 0, SND_QUEUE_DESC_SIZE);
hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
/* post_cqe = 0, to avoid HW posting a CQE for every TSO
* segment transmitted on 88xx.
*/
hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
} else {
sq->skbuff[qentry] = (u64)skb;
/* Enable notification via CQE after processing SQE */
hdr->post_cqe = 1;
/* No of subdescriptors following this */
hdr->subdesc_cnt = subdesc_cnt;
}
hdr->tot_len = len;
/* Offload checksum calculation to HW */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
hdr->csum_l3 = 1; /* Enable IP csum calculation */
hdr->l3_offset = skb_network_offset(skb);
hdr->l4_offset = skb_transport_offset(skb);
proto = (ip.v4->version == 4) ? ip.v4->protocol :
ip.v6->nexthdr;
switch (proto) {
case IPPROTO_TCP:
hdr->csum_l4 = SEND_L4_CSUM_TCP;
break;
case IPPROTO_UDP:
hdr->csum_l4 = SEND_L4_CSUM_UDP;
break;
case IPPROTO_SCTP:
hdr->csum_l4 = SEND_L4_CSUM_SCTP;
break;
}
}
if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
hdr->tso = 1;
hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
/* For non-tunneled pkts, point this to L2 ethertype */
hdr->inner_l3_offset = skb_network_offset(skb) - 2;
this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
}
}
/* SQ GATHER subdescriptor
* Must follow HDR descriptor
*/
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
int size, u64 data)
{
struct sq_gather_subdesc *gather;
qentry &= (sq->dmem.q_len - 1);
gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
memset(gather, 0, SND_QUEUE_DESC_SIZE);
gather->subdesc_type = SQ_DESC_TYPE_GATHER;
gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
gather->size = size;
gather->addr = data;
}
/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
* packet so that a CQE is posted as a notifation for transmission of
* TSO packet.
*/
static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
int tso_sqe, struct sk_buff *skb)
{
struct sq_imm_subdesc *imm;
struct sq_hdr_subdesc *hdr;
sq->skbuff[qentry] = (u64)skb;
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
memset(hdr, 0, SND_QUEUE_DESC_SIZE);
hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
/* Enable notification via CQE after processing SQE */
hdr->post_cqe = 1;
/* There is no packet to transmit here */
hdr->dont_send = 1;
hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
hdr->tot_len = 1;
/* Actual TSO header SQE index, needed for cleanup */
hdr->rsvd2 = tso_sqe;
qentry = nicvf_get_nxt_sqentry(sq, qentry);
imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
memset(imm, 0, SND_QUEUE_DESC_SIZE);
imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
imm->len = 1;
}
static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
int sq_num, int desc_cnt)
{
struct netdev_queue *txq;
txq = netdev_get_tx_queue(nic->pnicvf->netdev,
skb_get_queue_mapping(skb));
netdev_tx_sent_queue(txq, skb->len);
/* make sure all memory stores are done before ringing doorbell */
smp_wmb();
/* Inform HW to xmit all TSO segments */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
sq_num, desc_cnt);
}
/* Segment a TSO packet into 'gso_size' segments and append
* them to SQ for transfer
*/
static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
int sq_num, int qentry, struct sk_buff *skb)
{
struct tso_t tso;
int seg_subdescs = 0, desc_cnt = 0;
int seg_len, total_len, data_left;
int hdr_qentry = qentry;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
char *hdr;
/* Save Qentry for adding HDR_SUBDESC at the end */
hdr_qentry = qentry;
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
/* Add segment's header */
qentry = nicvf_get_nxt_sqentry(sq, qentry);
hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
sq->tso_hdrs_phys +
qentry * TSO_HEADER_SIZE);
/* HDR_SUDESC + GATHER */
seg_subdescs = 2;
seg_len = hdr_len;
/* Add segment's payload fragments */
while (data_left > 0) {
int size;
size = min_t(int, tso.size, data_left);
qentry = nicvf_get_nxt_sqentry(sq, qentry);
nicvf_sq_add_gather_subdesc(sq, qentry, size,
virt_to_phys(tso.data));
seg_subdescs++;
seg_len += size;
data_left -= size;
tso_build_data(skb, &tso, size);
}
nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
seg_subdescs - 1, skb, seg_len);
sq->skbuff[hdr_qentry] = (u64)NULL;
qentry = nicvf_get_nxt_sqentry(sq, qentry);
desc_cnt += seg_subdescs;
}
/* Save SKB in the last segment for freeing */
sq->skbuff[hdr_qentry] = (u64)skb;
nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
return 1;
}
/* Append an skb to a SQ for packet transfer. */
int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
struct sk_buff *skb, u8 sq_num)
{
int i, size;
int subdesc_cnt, hdr_sqe = 0;
int qentry;
u64 dma_addr;
subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
if (subdesc_cnt > atomic_read(&sq->free_cnt))
goto append_fail;
qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
/* Check if its a TSO packet */
if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
/* Add SQ header subdesc */
nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
skb, skb->len);
hdr_sqe = qentry;
/* Add SQ gather subdescs */
qentry = nicvf_get_nxt_sqentry(sq, qentry);
size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
/* HW will ensure data coherency, CPU sync not required */
dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
offset_in_page(skb->data), size,
DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
return 0;
}
nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
/* Check for scattered buffer */
if (!skb_is_nonlinear(skb))
goto doorbell;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[i];
qentry = nicvf_get_nxt_sqentry(sq, qentry);
size = skb_frag_size(frag);
dma_addr = dma_map_page_attrs(&nic->pdev->dev,
skb_frag_page(frag),
frag->page_offset, size,
DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
/* Free entire chain of mapped buffers
* here 'i' = frags mapped + above mapped skb->data
*/
nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
return 0;
}
nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
}
doorbell:
if (nic->t88 && skb_shinfo(skb)->gso_size) {
qentry = nicvf_get_nxt_sqentry(sq, qentry);
nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
}
nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
return 1;
append_fail:
/* Use original PCI dev for debug log */
nic = nic->pnicvf;
netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
return 0;
}
static inline unsigned frag_num(unsigned i)
{
#ifdef __BIG_ENDIAN
return (i & ~3) + 3 - (i & 3);
#else
return i;
#endif
}
static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
u64 buf_addr, bool xdp)
{
struct page *page = NULL;
int len = RCV_FRAG_LEN;
if (xdp) {
page = virt_to_page(phys_to_virt(buf_addr));
/* Check if it's a recycled page, if not
* unmap the DMA mapping.
*
* Recycled page holds an extra reference.
*/
if (page_ref_count(page) != 1)
return;
len += XDP_PACKET_HEADROOM;
/* Receive buffers in XDP mode are mapped from page start */
dma_addr &= PAGE_MASK;
}
dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
}
/* Returns SKB for a received packet */
struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
struct cqe_rx_t *cqe_rx, bool xdp)
{
int frag;
int payload_len = 0;
struct sk_buff *skb = NULL;
struct page *page;
int offset;
u16 *rb_lens = NULL;
u64 *rb_ptrs = NULL;
u64 phys_addr;
rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
* CQE_RX at word6, hence buffer pointers move by word
*
* Use existing 'hw_tso' flag which will be set for all chips
* except 88xx pass1 instead of a additional cache line
* access (or miss) by using pci dev's revision.
*/
if (!nic->hw_tso)
rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
else
rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
payload_len = rb_lens[frag_num(frag)];
phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
if (!phys_addr) {
if (skb)
dev_kfree_skb_any(skb);
return NULL;
}
if (!frag) {
/* First fragment */
nicvf_unmap_rcv_buffer(nic,
*rb_ptrs - cqe_rx->align_pad,
phys_addr, xdp);
skb = nicvf_rb_ptr_to_skb(nic,
phys_addr - cqe_rx->align_pad,
payload_len);
if (!skb)
return NULL;
skb_reserve(skb, cqe_rx->align_pad);
skb_put(skb, payload_len);
} else {
/* Add fragments */
nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
page = virt_to_page(phys_to_virt(phys_addr));
offset = phys_to_virt(phys_addr) - page_address(page);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
offset, payload_len, RCV_FRAG_LEN);
}
/* Next buffer pointer */
rb_ptrs++;
}
return skb;
}
static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
{
u64 reg_val;
switch (int_type) {
case NICVF_INTR_CQ:
reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
break;
case NICVF_INTR_TCP_TIMER:
reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
break;
case NICVF_INTR_MBOX:
reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
break;
case NICVF_INTR_QS_ERR:
reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
break;
default:
reg_val = 0;
}
return reg_val;
}
/* Enable interrupt */
void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
{
u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
if (!mask) {
netdev_dbg(nic->netdev,
"Failed to enable interrupt: unknown type\n");
return;
}
nicvf_reg_write(nic, NIC_VF_ENA_W1S,
nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
}
/* Disable interrupt */
void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
{
u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
if (!mask) {
netdev_dbg(nic->netdev,
"Failed to disable interrupt: unknown type\n");
return;
}
nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
}
/* Clear interrupt */
void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
{
u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
if (!mask) {
netdev_dbg(nic->netdev,
"Failed to clear interrupt: unknown type\n");
return;
}
nicvf_reg_write(nic, NIC_VF_INT, mask);
}
/* Check if interrupt is enabled */
int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
{
u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
/* If interrupt type is unknown, we treat it disabled. */
if (!mask) {
netdev_dbg(nic->netdev,
"Failed to check interrupt enable: unknown type\n");
return 0;
}
return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
}
void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
{
struct rcv_queue *rq;
#define GET_RQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
(rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
rq = &nic->qs->rq[rq_idx];
rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
}
void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
{
struct snd_queue *sq;
#define GET_SQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
(sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
sq = &nic->qs->sq[sq_idx];
sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
}
/* Check for errors in the receive cmp.queue entry */
int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
{
if (netif_msg_rx_err(nic))
netdev_err(nic->netdev,
"%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
nic->netdev->name,
cqe_rx->err_level, cqe_rx->err_opcode);
switch (cqe_rx->err_opcode) {
case CQ_RX_ERROP_RE_PARTIAL:
this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
break;
case CQ_RX_ERROP_RE_JABBER:
this_cpu_inc(nic->drv_stats->rx_jabber_errs);
break;
case CQ_RX_ERROP_RE_FCS:
this_cpu_inc(nic->drv_stats->rx_fcs_errs);
break;
case CQ_RX_ERROP_RE_RX_CTL:
this_cpu_inc(nic->drv_stats->rx_bgx_errs);
break;
case CQ_RX_ERROP_PREL2_ERR:
this_cpu_inc(nic->drv_stats->rx_prel2_errs);
break;
case CQ_RX_ERROP_L2_MAL:
this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
break;
case CQ_RX_ERROP_L2_OVERSIZE:
this_cpu_inc(nic->drv_stats->rx_oversize);
break;
case CQ_RX_ERROP_L2_UNDERSIZE:
this_cpu_inc(nic->drv_stats->rx_undersize);
break;
case CQ_RX_ERROP_L2_LENMISM:
this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
break;
case CQ_RX_ERROP_L2_PCLP:
this_cpu_inc(nic->drv_stats->rx_l2_pclp);
break;
case CQ_RX_ERROP_IP_NOT:
this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
break;
case CQ_RX_ERROP_IP_CSUM_ERR:
this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
break;
case CQ_RX_ERROP_IP_MAL:
this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
break;
case CQ_RX_ERROP_IP_MALD:
this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
break;
case CQ_RX_ERROP_IP_HOP:
this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
break;
case CQ_RX_ERROP_L3_PCLP:
this_cpu_inc(nic->drv_stats->rx_l3_pclp);
break;
case CQ_RX_ERROP_L4_MAL:
this_cpu_inc(nic->drv_stats->rx_l4_malformed);
break;
case CQ_RX_ERROP_L4_CHK:
this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
break;
case CQ_RX_ERROP_UDP_LEN:
this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
break;
case CQ_RX_ERROP_L4_PORT:
this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
break;
case CQ_RX_ERROP_TCP_FLAG:
this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
break;
case CQ_RX_ERROP_TCP_OFFSET:
this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
break;
case CQ_RX_ERROP_L4_PCLP:
this_cpu_inc(nic->drv_stats->rx_l4_pclp);
break;
case CQ_RX_ERROP_RBDR_TRUNC:
this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
break;
}
return 1;
}
/* Check for errors in the send cmp.queue entry */
int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
{
switch (cqe_tx->send_status) {
case CQ_TX_ERROP_DESC_FAULT:
this_cpu_inc(nic->drv_stats->tx_desc_fault);
break;
case CQ_TX_ERROP_HDR_CONS_ERR:
this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
break;
case CQ_TX_ERROP_SUBDC_ERR:
this_cpu_inc(nic->drv_stats->tx_subdesc_err);
break;
case CQ_TX_ERROP_MAX_SIZE_VIOL:
this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
break;
case CQ_TX_ERROP_IMM_SIZE_OFLOW:
this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
break;
case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
this_cpu_inc(nic->drv_stats->tx_data_seq_err);
break;
case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
break;
case CQ_TX_ERROP_LOCK_VIOL:
this_cpu_inc(nic->drv_stats->tx_lock_viol);
break;
case CQ_TX_ERROP_DATA_FAULT:
this_cpu_inc(nic->drv_stats->tx_data_fault);
break;
case CQ_TX_ERROP_TSTMP_CONFLICT:
this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
break;
case CQ_TX_ERROP_TSTMP_TIMEOUT:
this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
break;
case CQ_TX_ERROP_MEM_FAULT:
this_cpu_inc(nic->drv_stats->tx_mem_fault);
break;
case CQ_TX_ERROP_CK_OVERLAP:
this_cpu_inc(nic->drv_stats->tx_csum_overlap);
break;
case CQ_TX_ERROP_CK_OFLOW:
this_cpu_inc(nic->drv_stats->tx_csum_overflow);
break;
}
return 1;
}