linux_dsm_epyc7002/drivers/misc/mic/host/mic_boot.c

600 lines
15 KiB
C
Raw Normal View History

/*
* Intel MIC Platform Software Stack (MPSS)
*
* Copyright(c) 2013 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Intel MIC Host driver.
*
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/kmod.h>
#include <linux/mic_common.h>
#include <linux/mic_bus.h>
#include "../bus/scif_bus.h"
#include "../bus/vop_bus.h"
#include "../common/mic_dev.h"
#include "mic_device.h"
#include "mic_smpt.h"
static inline struct mic_device *vpdev_to_mdev(struct device *dev)
{
return dev_get_drvdata(dev->parent);
}
static dma_addr_t
_mic_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
void *va = phys_to_virt(page_to_phys(page)) + offset;
struct mic_device *mdev = vpdev_to_mdev(dev);
return mic_map_single(mdev, va, size);
}
static void _mic_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct mic_device *mdev = vpdev_to_mdev(dev);
mic_unmap_single(mdev, dma_addr, size);
}
static const struct dma_map_ops _mic_dma_ops = {
.map_page = _mic_dma_map_page,
.unmap_page = _mic_dma_unmap_page,
};
static struct mic_irq *
__mic_request_irq(struct vop_device *vpdev,
irqreturn_t (*func)(int irq, void *data),
const char *name, void *data, int intr_src)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
return mic_request_threaded_irq(mdev, func, NULL, name, data,
intr_src, MIC_INTR_DB);
}
static void __mic_free_irq(struct vop_device *vpdev,
struct mic_irq *cookie, void *data)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
mic_free_irq(mdev, cookie, data);
}
static void __mic_ack_interrupt(struct vop_device *vpdev, int num)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
mdev->ops->intr_workarounds(mdev);
}
static int __mic_next_db(struct vop_device *vpdev)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
return mic_next_db(mdev);
}
static void *__mic_get_dp(struct vop_device *vpdev)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
return mdev->dp;
}
static void __iomem *__mic_get_remote_dp(struct vop_device *vpdev)
{
return NULL;
}
static void __mic_send_intr(struct vop_device *vpdev, int db)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
mdev->ops->send_intr(mdev, db);
}
static void __iomem *__mic_ioremap(struct vop_device *vpdev,
dma_addr_t pa, size_t len)
{
struct mic_device *mdev = vpdev_to_mdev(&vpdev->dev);
return mdev->aper.va + pa;
}
static void __mic_iounmap(struct vop_device *vpdev, void __iomem *va)
{
/* nothing to do */
}
static struct vop_hw_ops vop_hw_ops = {
.request_irq = __mic_request_irq,
.free_irq = __mic_free_irq,
.ack_interrupt = __mic_ack_interrupt,
.next_db = __mic_next_db,
.get_dp = __mic_get_dp,
.get_remote_dp = __mic_get_remote_dp,
.send_intr = __mic_send_intr,
.ioremap = __mic_ioremap,
.iounmap = __mic_iounmap,
};
static inline struct mic_device *scdev_to_mdev(struct scif_hw_dev *scdev)
{
return dev_get_drvdata(scdev->dev.parent);
}
static void *__mic_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
dma_addr_t tmp;
void *va = kmalloc(size, gfp);
if (va) {
tmp = mic_map_single(mdev, va, size);
if (dma_mapping_error(dev, tmp)) {
kfree(va);
va = NULL;
} else {
*dma_handle = tmp;
}
}
return va;
}
static void __mic_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, struct dma_attrs *attrs)
{
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
mic_unmap_single(mdev, dma_handle, size);
kfree(vaddr);
}
static dma_addr_t
__mic_dma_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
void *va = phys_to_virt(page_to_phys(page)) + offset;
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
return mic_map_single(mdev, va, size);
}
static void
__mic_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
mic_unmap_single(mdev, dma_addr, size);
}
static int __mic_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
struct scatterlist *s;
int i, j, ret;
dma_addr_t da;
ret = dma_map_sg(&mdev->pdev->dev, sg, nents, dir);
if (ret <= 0)
return 0;
for_each_sg(sg, s, nents, i) {
da = mic_map(mdev, sg_dma_address(s) + s->offset, s->length);
if (!da)
goto err;
sg_dma_address(s) = da;
}
return nents;
err:
for_each_sg(sg, s, i, j) {
mic_unmap(mdev, sg_dma_address(s), s->length);
sg_dma_address(s) = mic_to_dma_addr(mdev, sg_dma_address(s));
}
dma_unmap_sg(&mdev->pdev->dev, sg, nents, dir);
return 0;
}
static void __mic_dma_unmap_sg(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scif_hw_dev *scdev = dev_get_drvdata(dev);
struct mic_device *mdev = scdev_to_mdev(scdev);
struct scatterlist *s;
dma_addr_t da;
int i;
for_each_sg(sg, s, nents, i) {
da = mic_to_dma_addr(mdev, sg_dma_address(s));
mic_unmap(mdev, sg_dma_address(s), s->length);
sg_dma_address(s) = da;
}
dma_unmap_sg(&mdev->pdev->dev, sg, nents, dir);
}
static struct dma_map_ops __mic_dma_ops = {
.alloc = __mic_dma_alloc,
.free = __mic_dma_free,
.map_page = __mic_dma_map_page,
.unmap_page = __mic_dma_unmap_page,
.map_sg = __mic_dma_map_sg,
.unmap_sg = __mic_dma_unmap_sg,
};
static struct mic_irq *
___mic_request_irq(struct scif_hw_dev *scdev,
irqreturn_t (*func)(int irq, void *data),
const char *name,
void *data, int db)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
return mic_request_threaded_irq(mdev, func, NULL, name, data,
db, MIC_INTR_DB);
}
static void
___mic_free_irq(struct scif_hw_dev *scdev,
struct mic_irq *cookie, void *data)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
mic_free_irq(mdev, cookie, data);
}
static void ___mic_ack_interrupt(struct scif_hw_dev *scdev, int num)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
mdev->ops->intr_workarounds(mdev);
}
static int ___mic_next_db(struct scif_hw_dev *scdev)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
return mic_next_db(mdev);
}
static void ___mic_send_intr(struct scif_hw_dev *scdev, int db)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
mdev->ops->send_intr(mdev, db);
}
static void __iomem *___mic_ioremap(struct scif_hw_dev *scdev,
phys_addr_t pa, size_t len)
{
struct mic_device *mdev = scdev_to_mdev(scdev);
return mdev->aper.va + pa;
}
static void ___mic_iounmap(struct scif_hw_dev *scdev, void __iomem *va)
{
/* nothing to do */
}
static struct scif_hw_ops scif_hw_ops = {
.request_irq = ___mic_request_irq,
.free_irq = ___mic_free_irq,
.ack_interrupt = ___mic_ack_interrupt,
.next_db = ___mic_next_db,
.send_intr = ___mic_send_intr,
.ioremap = ___mic_ioremap,
.iounmap = ___mic_iounmap,
};
static inline struct mic_device *mbdev_to_mdev(struct mbus_device *mbdev)
{
return dev_get_drvdata(mbdev->dev.parent);
}
static dma_addr_t
mic_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
void *va = phys_to_virt(page_to_phys(page)) + offset;
struct mic_device *mdev = dev_get_drvdata(dev->parent);
return mic_map_single(mdev, va, size);
}
static void
mic_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct mic_device *mdev = dev_get_drvdata(dev->parent);
mic_unmap_single(mdev, dma_addr, size);
}
static struct dma_map_ops mic_dma_ops = {
.map_page = mic_dma_map_page,
.unmap_page = mic_dma_unmap_page,
};
static struct mic_irq *
_mic_request_threaded_irq(struct mbus_device *mbdev,
irq_handler_t handler, irq_handler_t thread_fn,
const char *name, void *data, int intr_src)
{
return mic_request_threaded_irq(mbdev_to_mdev(mbdev), handler,
thread_fn, name, data,
intr_src, MIC_INTR_DMA);
}
static void _mic_free_irq(struct mbus_device *mbdev,
struct mic_irq *cookie, void *data)
{
mic_free_irq(mbdev_to_mdev(mbdev), cookie, data);
}
static void _mic_ack_interrupt(struct mbus_device *mbdev, int num)
{
struct mic_device *mdev = mbdev_to_mdev(mbdev);
mdev->ops->intr_workarounds(mdev);
}
static struct mbus_hw_ops mbus_hw_ops = {
.request_threaded_irq = _mic_request_threaded_irq,
.free_irq = _mic_free_irq,
.ack_interrupt = _mic_ack_interrupt,
};
/* Initialize the MIC bootparams */
void mic_bootparam_init(struct mic_device *mdev)
{
struct mic_bootparam *bootparam = mdev->dp;
bootparam->magic = cpu_to_le32(MIC_MAGIC);
bootparam->h2c_config_db = -1;
bootparam->node_id = mdev->id + 1;
bootparam->scif_host_dma_addr = 0x0;
bootparam->scif_card_dma_addr = 0x0;
bootparam->c2h_scif_db = -1;
bootparam->h2c_scif_db = -1;
}
static inline struct mic_device *cosmdev_to_mdev(struct cosm_device *cdev)
{
return dev_get_drvdata(cdev->dev.parent);
}
static void _mic_reset(struct cosm_device *cdev)
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
mdev->ops->reset_fw_ready(mdev);
mdev->ops->reset(mdev);
}
static bool _mic_ready(struct cosm_device *cdev)
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
return mdev->ops->is_fw_ready(mdev);
}
/**
* mic_request_dma_chans - Request DMA channels
* @mdev: pointer to mic_device instance
*
* returns number of DMA channels acquired
*/
static int mic_request_dma_chans(struct mic_device *mdev)
{
dma_cap_mask_t mask;
struct dma_chan *chan;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
do {
chan = dma_request_channel(mask, mdev->ops->dma_filter,
&mdev->pdev->dev);
if (chan) {
mdev->dma_ch[mdev->num_dma_ch++] = chan;
if (mdev->num_dma_ch >= MIC_MAX_DMA_CHAN)
break;
}
} while (chan);
dev_info(&mdev->pdev->dev, "DMA channels # %d\n", mdev->num_dma_ch);
return mdev->num_dma_ch;
}
/**
* mic_free_dma_chans - release DMA channels
* @mdev: pointer to mic_device instance
*
* returns none
*/
static void mic_free_dma_chans(struct mic_device *mdev)
{
int i = 0;
for (i = 0; i < mdev->num_dma_ch; i++) {
dma_release_channel(mdev->dma_ch[i]);
mdev->dma_ch[i] = NULL;
}
mdev->num_dma_ch = 0;
}
/**
* _mic_start - Start the MIC.
* @cdev: pointer to cosm_device instance
* @id: MIC device id/index provided by COSM used in other drivers like SCIF
*
* This function prepares an MIC for boot and initiates boot.
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*
* For all cosm_hw_ops the caller holds a mutex to ensure serialization.
*/
static int _mic_start(struct cosm_device *cdev, int id)
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
int rc;
mic_bootparam_init(mdev);
mdev->dma_mbdev = mbus_register_device(&mdev->pdev->dev,
MBUS_DEV_DMA_HOST, &mic_dma_ops,
&mbus_hw_ops, id, mdev->mmio.va);
if (IS_ERR(mdev->dma_mbdev)) {
rc = PTR_ERR(mdev->dma_mbdev);
goto unlock_ret;
}
if (!mic_request_dma_chans(mdev)) {
rc = -ENODEV;
goto dma_remove;
}
mdev->scdev = scif_register_device(&mdev->pdev->dev, MIC_SCIF_DEV,
&__mic_dma_ops, &scif_hw_ops,
id + 1, 0, &mdev->mmio,
&mdev->aper, mdev->dp, NULL,
mdev->dma_ch, mdev->num_dma_ch,
true);
if (IS_ERR(mdev->scdev)) {
rc = PTR_ERR(mdev->scdev);
goto dma_free;
}
mdev->vpdev = vop_register_device(&mdev->pdev->dev,
VOP_DEV_TRNSP, &_mic_dma_ops,
&vop_hw_ops, id + 1, &mdev->aper,
mdev->dma_ch[0]);
if (IS_ERR(mdev->vpdev)) {
rc = PTR_ERR(mdev->vpdev);
goto scif_remove;
}
rc = mdev->ops->load_mic_fw(mdev, NULL);
if (rc)
goto vop_remove;
mic_smpt_restore(mdev);
mic_intr_restore(mdev);
mdev->intr_ops->enable_interrupts(mdev);
mdev->ops->write_spad(mdev, MIC_DPLO_SPAD, mdev->dp_dma_addr);
mdev->ops->write_spad(mdev, MIC_DPHI_SPAD, mdev->dp_dma_addr >> 32);
mdev->ops->send_firmware_intr(mdev);
goto unlock_ret;
vop_remove:
vop_unregister_device(mdev->vpdev);
scif_remove:
scif_unregister_device(mdev->scdev);
dma_free:
mic_free_dma_chans(mdev);
dma_remove:
mbus_unregister_device(mdev->dma_mbdev);
unlock_ret:
return rc;
}
/**
* _mic_stop - Prepare the MIC for reset and trigger reset.
* @cdev: pointer to cosm_device instance
* @force: force a MIC to reset even if it is already offline.
*
* RETURNS: None.
*/
static void _mic_stop(struct cosm_device *cdev, bool force)
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
/*
* Since SCIF handles card shutdown and reset (using COSM), it will
* will be the first to be registered and the last to be
* unregistered.
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
*/
vop_unregister_device(mdev->vpdev);
scif_unregister_device(mdev->scdev);
mic_free_dma_chans(mdev);
mbus_unregister_device(mdev->dma_mbdev);
mic_bootparam_init(mdev);
}
static ssize_t _mic_family(struct cosm_device *cdev, char *buf)
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
static const char *family[MIC_FAMILY_LAST] = { "x100", "Unknown" };
return scnprintf(buf, PAGE_SIZE, "%s\n", family[mdev->family]);
}
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
static ssize_t _mic_stepping(struct cosm_device *cdev, char *buf)
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
const char *string = "??";
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
switch (mdev->stepping) {
case MIC_A0_STEP:
string = "A0";
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
break;
case MIC_B0_STEP:
string = "B0";
break;
case MIC_B1_STEP:
string = "B1";
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
break;
case MIC_C0_STEP:
string = "C0";
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
break;
default:
break;
}
return scnprintf(buf, PAGE_SIZE, "%s\n", string);
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
}
static struct mic_mw *_mic_aper(struct cosm_device *cdev)
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
{
struct mic_device *mdev = cosmdev_to_mdev(cdev);
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
return &mdev->aper;
misc: mic: Enable OSPM suspend and resume support. This patch enables support for OSPM suspend and resume in the MIC driver. During a host suspend event, the driver performs an orderly shutdown of the cards if they are online. Upon resume, any cards that were previously online before suspend are rebooted. The driver performs an orderly shutdown of the card primarily to ensure that applications in the card are terminated and mounted devices are safely un-mounted before the card is powered down in the event of an OSPM suspend. The driver makes use of the MIC daemon to accomplish OSPM suspend and resume. The driver registers a PM notifier per MIC device. The devices get notified synchronously during PM_SUSPEND_PREPARE and PM_POST_SUSPEND phases. During the PM_SUSPEND_PREPARE phase, the driver performs one of the following three tasks. 1) If the card is 'offline', the driver sets the card to a 'suspended' state and returns. 2) If the card is 'online', the driver initiates card shutdown by setting the card state to suspending. This notifies the MIC daemon which invokes shutdown and sets card state to 'suspended'. The driver returns after the shutdown is complete. 3) If the card is already being shutdown, possibly by a host user space application, the driver sets the card state to 'suspended' and returns after the shutdown is complete. During the PM_POST_SUSPEND phase, the driver simply notifies the daemon and returns. The daemon boots those cards that were previously online during the suspend phase. Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Nikhil Rao <nikhil.rao@intel.com> Signed-off-by: Harshavardhan R Kharche <harshavardhan.r.kharche@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Dasaratharaman Chandramouli <dasaratharaman.chandramouli@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-04 08:06:23 +07:00
}
struct cosm_hw_ops cosm_hw_ops = {
.reset = _mic_reset,
.force_reset = _mic_reset,
.post_reset = NULL,
.ready = _mic_ready,
.start = _mic_start,
.stop = _mic_stop,
.family = _mic_family,
.stepping = _mic_stepping,
.aper = _mic_aper,
};