linux_dsm_epyc7002/arch/arm64/kernel/ptrace.c

1958 lines
47 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/ptrace.c
*
* By Ross Biro 1/23/92
* edited by Linus Torvalds
* ARM modifications Copyright (C) 2000 Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/audit.h>
#include <linux/compat.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/nospec.h>
#include <linux/smp.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/seccomp.h>
#include <linux/security.h>
#include <linux/init.h>
#include <linux/signal.h>
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
#include <linux/regset.h>
#include <linux/tracehook.h>
#include <linux/elf.h>
#include <asm/compat.h>
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
#include <asm/cpufeature.h>
#include <asm/debug-monitors.h>
#include <asm/fpsimd.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>
#include <asm/syscall.h>
#include <asm/traps.h>
#include <asm/system_misc.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
struct pt_regs_offset {
const char *name;
int offset;
};
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
#define REG_OFFSET_END {.name = NULL, .offset = 0}
#define GPR_OFFSET_NAME(r) \
{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
static const struct pt_regs_offset regoffset_table[] = {
GPR_OFFSET_NAME(0),
GPR_OFFSET_NAME(1),
GPR_OFFSET_NAME(2),
GPR_OFFSET_NAME(3),
GPR_OFFSET_NAME(4),
GPR_OFFSET_NAME(5),
GPR_OFFSET_NAME(6),
GPR_OFFSET_NAME(7),
GPR_OFFSET_NAME(8),
GPR_OFFSET_NAME(9),
GPR_OFFSET_NAME(10),
GPR_OFFSET_NAME(11),
GPR_OFFSET_NAME(12),
GPR_OFFSET_NAME(13),
GPR_OFFSET_NAME(14),
GPR_OFFSET_NAME(15),
GPR_OFFSET_NAME(16),
GPR_OFFSET_NAME(17),
GPR_OFFSET_NAME(18),
GPR_OFFSET_NAME(19),
GPR_OFFSET_NAME(20),
GPR_OFFSET_NAME(21),
GPR_OFFSET_NAME(22),
GPR_OFFSET_NAME(23),
GPR_OFFSET_NAME(24),
GPR_OFFSET_NAME(25),
GPR_OFFSET_NAME(26),
GPR_OFFSET_NAME(27),
GPR_OFFSET_NAME(28),
GPR_OFFSET_NAME(29),
GPR_OFFSET_NAME(30),
{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
REG_OFFSET_NAME(sp),
REG_OFFSET_NAME(pc),
REG_OFFSET_NAME(pstate),
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
/**
* regs_within_kernel_stack() - check the address in the stack
* @regs: pt_regs which contains kernel stack pointer.
* @addr: address which is checked.
*
* regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
* If @addr is within the kernel stack, it returns true. If not, returns false.
*/
static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
{
return ((addr & ~(THREAD_SIZE - 1)) ==
(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
on_irq_stack(addr, NULL);
}
/**
* regs_get_kernel_stack_nth() - get Nth entry of the stack
* @regs: pt_regs which contains kernel stack pointer.
* @n: stack entry number.
*
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
* is specified by @regs. If the @n th entry is NOT in the kernel stack,
* this returns 0.
*/
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
{
unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
addr += n;
if (regs_within_kernel_stack(regs, (unsigned long)addr))
return *addr;
else
return 0;
}
/*
* TODO: does not yet catch signals sent when the child dies.
* in exit.c or in signal.c.
*/
/*
* Called by kernel/ptrace.c when detaching..
*/
void ptrace_disable(struct task_struct *child)
{
/*
* This would be better off in core code, but PTRACE_DETACH has
* grown its fair share of arch-specific worts and changing it
* is likely to cause regressions on obscure architectures.
*/
user_disable_single_step(child);
}
#ifdef CONFIG_HAVE_HW_BREAKPOINT
/*
* Handle hitting a HW-breakpoint.
*/
static void ptrace_hbptriggered(struct perf_event *bp,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
const char *desc = "Hardware breakpoint trap (ptrace)";
#ifdef CONFIG_COMPAT
if (is_compat_task()) {
int si_errno = 0;
int i;
for (i = 0; i < ARM_MAX_BRP; ++i) {
if (current->thread.debug.hbp_break[i] == bp) {
si_errno = (i << 1) + 1;
break;
}
}
for (i = 0; i < ARM_MAX_WRP; ++i) {
if (current->thread.debug.hbp_watch[i] == bp) {
si_errno = -((i << 1) + 1);
break;
}
}
arm64_force_sig_ptrace_errno_trap(si_errno,
(void __user *)bkpt->trigger,
desc);
}
#endif
arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
(void __user *)(bkpt->trigger),
desc);
}
/*
* Unregister breakpoints from this task and reset the pointers in
* the thread_struct.
*/
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
{
int i;
struct thread_struct *t = &tsk->thread;
for (i = 0; i < ARM_MAX_BRP; i++) {
if (t->debug.hbp_break[i]) {
unregister_hw_breakpoint(t->debug.hbp_break[i]);
t->debug.hbp_break[i] = NULL;
}
}
for (i = 0; i < ARM_MAX_WRP; i++) {
if (t->debug.hbp_watch[i]) {
unregister_hw_breakpoint(t->debug.hbp_watch[i]);
t->debug.hbp_watch[i] = NULL;
}
}
}
void ptrace_hw_copy_thread(struct task_struct *tsk)
{
memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
}
static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
struct perf_event *bp = ERR_PTR(-EINVAL);
switch (note_type) {
case NT_ARM_HW_BREAK:
if (idx >= ARM_MAX_BRP)
goto out;
idx = array_index_nospec(idx, ARM_MAX_BRP);
bp = tsk->thread.debug.hbp_break[idx];
break;
case NT_ARM_HW_WATCH:
if (idx >= ARM_MAX_WRP)
goto out;
idx = array_index_nospec(idx, ARM_MAX_WRP);
bp = tsk->thread.debug.hbp_watch[idx];
break;
}
out:
return bp;
}
static int ptrace_hbp_set_event(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
struct perf_event *bp)
{
int err = -EINVAL;
switch (note_type) {
case NT_ARM_HW_BREAK:
if (idx >= ARM_MAX_BRP)
goto out;
idx = array_index_nospec(idx, ARM_MAX_BRP);
tsk->thread.debug.hbp_break[idx] = bp;
err = 0;
break;
case NT_ARM_HW_WATCH:
if (idx >= ARM_MAX_WRP)
goto out;
idx = array_index_nospec(idx, ARM_MAX_WRP);
tsk->thread.debug.hbp_watch[idx] = bp;
err = 0;
break;
}
out:
return err;
}
static struct perf_event *ptrace_hbp_create(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
struct perf_event *bp;
struct perf_event_attr attr;
int err, type;
switch (note_type) {
case NT_ARM_HW_BREAK:
type = HW_BREAKPOINT_X;
break;
case NT_ARM_HW_WATCH:
type = HW_BREAKPOINT_RW;
break;
default:
return ERR_PTR(-EINVAL);
}
ptrace_breakpoint_init(&attr);
/*
* Initialise fields to sane defaults
* (i.e. values that will pass validation).
*/
attr.bp_addr = 0;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = type;
attr.disabled = 1;
bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
if (IS_ERR(bp))
return bp;
err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
if (err)
return ERR_PTR(err);
return bp;
}
static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
struct arch_hw_breakpoint_ctrl ctrl,
struct perf_event_attr *attr)
{
int err, len, type, offset, disabled = !ctrl.enabled;
attr->disabled = disabled;
if (disabled)
return 0;
err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
if (err)
return err;
switch (note_type) {
case NT_ARM_HW_BREAK:
if ((type & HW_BREAKPOINT_X) != type)
return -EINVAL;
break;
case NT_ARM_HW_WATCH:
if ((type & HW_BREAKPOINT_RW) != type)
return -EINVAL;
break;
default:
return -EINVAL;
}
attr->bp_len = len;
attr->bp_type = type;
attr->bp_addr += offset;
return 0;
}
static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
{
u8 num;
u32 reg = 0;
switch (note_type) {
case NT_ARM_HW_BREAK:
num = hw_breakpoint_slots(TYPE_INST);
break;
case NT_ARM_HW_WATCH:
num = hw_breakpoint_slots(TYPE_DATA);
break;
default:
return -EINVAL;
}
reg |= debug_monitors_arch();
reg <<= 8;
reg |= num;
*info = reg;
return 0;
}
static int ptrace_hbp_get_ctrl(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
u32 *ctrl)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
return 0;
}
static int ptrace_hbp_get_addr(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
u64 *addr)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
*addr = bp ? counter_arch_bp(bp)->address : 0;
return 0;
}
static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (!bp)
bp = ptrace_hbp_create(note_type, tsk, idx);
return bp;
}
static int ptrace_hbp_set_ctrl(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
u32 uctrl)
{
int err;
struct perf_event *bp;
struct perf_event_attr attr;
struct arch_hw_breakpoint_ctrl ctrl;
bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
if (IS_ERR(bp)) {
err = PTR_ERR(bp);
return err;
}
attr = bp->attr;
decode_ctrl_reg(uctrl, &ctrl);
err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
if (err)
return err;
return modify_user_hw_breakpoint(bp, &attr);
}
static int ptrace_hbp_set_addr(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
u64 addr)
{
int err;
struct perf_event *bp;
struct perf_event_attr attr;
bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
if (IS_ERR(bp)) {
err = PTR_ERR(bp);
return err;
}
attr = bp->attr;
attr.bp_addr = addr;
err = modify_user_hw_breakpoint(bp, &attr);
return err;
}
#define PTRACE_HBP_ADDR_SZ sizeof(u64)
#define PTRACE_HBP_CTRL_SZ sizeof(u32)
#define PTRACE_HBP_PAD_SZ sizeof(u32)
static int hw_break_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
unsigned int note_type = regset->core_note_type;
int ret, idx = 0, offset, limit;
u32 info, ctrl;
u64 addr;
/* Resource info */
ret = ptrace_hbp_get_resource_info(note_type, &info);
if (ret)
return ret;
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
sizeof(info));
if (ret)
return ret;
/* Pad */
offset = offsetof(struct user_hwdebug_state, pad);
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
offset + PTRACE_HBP_PAD_SZ);
if (ret)
return ret;
/* (address, ctrl) registers */
offset = offsetof(struct user_hwdebug_state, dbg_regs);
limit = regset->n * regset->size;
while (count && offset < limit) {
ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
if (ret)
return ret;
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
offset, offset + PTRACE_HBP_ADDR_SZ);
if (ret)
return ret;
offset += PTRACE_HBP_ADDR_SZ;
ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
if (ret)
return ret;
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
offset, offset + PTRACE_HBP_CTRL_SZ);
if (ret)
return ret;
offset += PTRACE_HBP_CTRL_SZ;
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
offset,
offset + PTRACE_HBP_PAD_SZ);
if (ret)
return ret;
offset += PTRACE_HBP_PAD_SZ;
idx++;
}
return 0;
}
static int hw_break_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned int note_type = regset->core_note_type;
int ret, idx = 0, offset, limit;
u32 ctrl;
u64 addr;
/* Resource info and pad */
offset = offsetof(struct user_hwdebug_state, dbg_regs);
ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
if (ret)
return ret;
/* (address, ctrl) registers */
limit = regset->n * regset->size;
while (count && offset < limit) {
if (count < PTRACE_HBP_ADDR_SZ)
return -EINVAL;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
offset, offset + PTRACE_HBP_ADDR_SZ);
if (ret)
return ret;
ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
if (ret)
return ret;
offset += PTRACE_HBP_ADDR_SZ;
if (!count)
break;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
offset, offset + PTRACE_HBP_CTRL_SZ);
if (ret)
return ret;
ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
if (ret)
return ret;
offset += PTRACE_HBP_CTRL_SZ;
ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
offset,
offset + PTRACE_HBP_PAD_SZ);
if (ret)
return ret;
offset += PTRACE_HBP_PAD_SZ;
idx++;
}
return 0;
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
static int gpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
}
static int gpr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
if (ret)
return ret;
if (!valid_user_regs(&newregs, target))
return -EINVAL;
task_pt_regs(target)->user_regs = newregs;
return 0;
}
static int fpr_active(struct task_struct *target, const struct user_regset *regset)
{
if (!system_supports_fpsimd())
return -ENODEV;
return regset->n;
}
/*
* TODO: update fp accessors for lazy context switching (sync/flush hwstate)
*/
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
static int __fpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf, unsigned int start_pos)
{
struct user_fpsimd_state *uregs;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
sve_sync_to_fpsimd(target);
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
uregs = &target->thread.uw.fpsimd_state;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
start_pos, start_pos + sizeof(*uregs));
}
static int fpr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
if (!system_supports_fpsimd())
return -EINVAL;
if (target == current)
fpsimd_preserve_current_state();
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
}
static int __fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf,
unsigned int start_pos)
{
int ret;
struct user_fpsimd_state newstate;
/*
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
* Ensure target->thread.uw.fpsimd_state is up to date, so that a
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
* short copyin can't resurrect stale data.
*/
sve_sync_to_fpsimd(target);
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
newstate = target->thread.uw.fpsimd_state;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
start_pos, start_pos + sizeof(newstate));
if (ret)
return ret;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
target->thread.uw.fpsimd_state = newstate;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
return ret;
}
static int fpr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
if (!system_supports_fpsimd())
return -EINVAL;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
if (ret)
return ret;
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
sve_sync_from_fpsimd_zeropad(target);
fpsimd_flush_task_state(target);
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
return ret;
}
static int tls_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
unsigned long *tls = &target->thread.uw.tp_value;
if (target == current)
tls_preserve_current_state();
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
}
static int tls_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
unsigned long tls = target->thread.uw.tp_value;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
if (ret)
return ret;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
target->thread.uw.tp_value = tls;
return ret;
}
static int system_call_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int syscallno = task_pt_regs(target)->syscallno;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&syscallno, 0, -1);
}
static int system_call_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int syscallno = task_pt_regs(target)->syscallno;
int ret;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
if (ret)
return ret;
task_pt_regs(target)->syscallno = syscallno;
return ret;
}
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
#ifdef CONFIG_ARM64_SVE
static void sve_init_header_from_task(struct user_sve_header *header,
struct task_struct *target)
{
unsigned int vq;
memset(header, 0, sizeof(*header));
header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
header->flags |= SVE_PT_VL_INHERIT;
header->vl = target->thread.sve_vl;
vq = sve_vq_from_vl(header->vl);
header->max_vl = sve_max_vl;
header->size = SVE_PT_SIZE(vq, header->flags);
header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
SVE_PT_REGS_SVE);
}
static unsigned int sve_size_from_header(struct user_sve_header const *header)
{
return ALIGN(header->size, SVE_VQ_BYTES);
}
static unsigned int sve_get_size(struct task_struct *target,
const struct user_regset *regset)
{
struct user_sve_header header;
if (!system_supports_sve())
return 0;
sve_init_header_from_task(&header, target);
return sve_size_from_header(&header);
}
static int sve_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
struct user_sve_header header;
unsigned int vq;
unsigned long start, end;
if (!system_supports_sve())
return -EINVAL;
/* Header */
sve_init_header_from_task(&header, target);
vq = sve_vq_from_vl(header.vl);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
0, sizeof(header));
if (ret)
return ret;
if (target == current)
fpsimd_preserve_current_state();
/* Registers: FPSIMD-only case */
BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
return __fpr_get(target, regset, pos, count, kbuf, ubuf,
SVE_PT_FPSIMD_OFFSET);
/* Otherwise: full SVE case */
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
start = SVE_PT_SVE_OFFSET;
end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
target->thread.sve_state,
start, end);
if (ret)
return ret;
start = end;
end = SVE_PT_SVE_FPSR_OFFSET(vq);
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
start, end);
if (ret)
return ret;
/*
* Copy fpsr, and fpcr which must follow contiguously in
* struct fpsimd_state:
*/
start = end;
end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
&target->thread.uw.fpsimd_state.fpsr,
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
start, end);
if (ret)
return ret;
start = end;
end = sve_size_from_header(&header);
return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
start, end);
}
static int sve_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
struct user_sve_header header;
unsigned int vq;
unsigned long start, end;
if (!system_supports_sve())
return -EINVAL;
/* Header */
if (count < sizeof(header))
return -EINVAL;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
0, sizeof(header));
if (ret)
goto out;
/*
* Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
* sve_set_vector_length(), which will also validate them for us:
*/
ret = sve_set_vector_length(target, header.vl,
((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
if (ret)
goto out;
/* Actual VL set may be less than the user asked for: */
vq = sve_vq_from_vl(target->thread.sve_vl);
/* Registers: FPSIMD-only case */
BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
SVE_PT_FPSIMD_OFFSET);
clear_tsk_thread_flag(target, TIF_SVE);
goto out;
}
/* Otherwise: full SVE case */
/*
* If setting a different VL from the requested VL and there is
* register data, the data layout will be wrong: don't even
* try to set the registers in this case.
*/
if (count && vq != sve_vq_from_vl(header.vl)) {
ret = -EIO;
goto out;
}
sve_alloc(target);
/*
* Ensure target->thread.sve_state is up to date with target's
* FPSIMD regs, so that a short copyin leaves trailing registers
* unmodified.
*/
fpsimd_sync_to_sve(target);
set_tsk_thread_flag(target, TIF_SVE);
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
start = SVE_PT_SVE_OFFSET;
end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
target->thread.sve_state,
start, end);
if (ret)
goto out;
start = end;
end = SVE_PT_SVE_FPSR_OFFSET(vq);
ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
start, end);
if (ret)
goto out;
/*
* Copy fpsr, and fpcr which must follow contiguously in
* struct fpsimd_state:
*/
start = end;
end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
&target->thread.uw.fpsimd_state.fpsr,
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
start, end);
out:
fpsimd_flush_task_state(target);
return ret;
}
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_PTR_AUTH
static int pac_mask_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
/*
* The PAC bits can differ across data and instruction pointers
* depending on TCR_EL1.TBID*, which we may make use of in future, so
* we expose separate masks.
*/
unsigned long mask = ptrauth_user_pac_mask();
struct user_pac_mask uregs = {
.data_mask = mask,
.insn_mask = mask,
};
if (!system_supports_address_auth())
return -EINVAL;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &uregs, 0, -1);
}
#ifdef CONFIG_CHECKPOINT_RESTORE
static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
{
return (__uint128_t)key->hi << 64 | key->lo;
}
static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
{
struct ptrauth_key key = {
.lo = (unsigned long)ukey,
.hi = (unsigned long)(ukey >> 64),
};
return key;
}
static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
const struct ptrauth_keys_user *keys)
{
ukeys->apiakey = pac_key_to_user(&keys->apia);
ukeys->apibkey = pac_key_to_user(&keys->apib);
ukeys->apdakey = pac_key_to_user(&keys->apda);
ukeys->apdbkey = pac_key_to_user(&keys->apdb);
}
static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
const struct user_pac_address_keys *ukeys)
{
keys->apia = pac_key_from_user(ukeys->apiakey);
keys->apib = pac_key_from_user(ukeys->apibkey);
keys->apda = pac_key_from_user(ukeys->apdakey);
keys->apdb = pac_key_from_user(ukeys->apdbkey);
}
static int pac_address_keys_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct ptrauth_keys_user *keys = &target->thread.keys_user;
struct user_pac_address_keys user_keys;
if (!system_supports_address_auth())
return -EINVAL;
pac_address_keys_to_user(&user_keys, keys);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&user_keys, 0, -1);
}
static int pac_address_keys_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct ptrauth_keys_user *keys = &target->thread.keys_user;
struct user_pac_address_keys user_keys;
int ret;
if (!system_supports_address_auth())
return -EINVAL;
pac_address_keys_to_user(&user_keys, keys);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&user_keys, 0, -1);
if (ret)
return ret;
pac_address_keys_from_user(keys, &user_keys);
return 0;
}
static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
const struct ptrauth_keys_user *keys)
{
ukeys->apgakey = pac_key_to_user(&keys->apga);
}
static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
const struct user_pac_generic_keys *ukeys)
{
keys->apga = pac_key_from_user(ukeys->apgakey);
}
static int pac_generic_keys_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct ptrauth_keys_user *keys = &target->thread.keys_user;
struct user_pac_generic_keys user_keys;
if (!system_supports_generic_auth())
return -EINVAL;
pac_generic_keys_to_user(&user_keys, keys);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&user_keys, 0, -1);
}
static int pac_generic_keys_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct ptrauth_keys_user *keys = &target->thread.keys_user;
struct user_pac_generic_keys user_keys;
int ret;
if (!system_supports_generic_auth())
return -EINVAL;
pac_generic_keys_to_user(&user_keys, keys);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&user_keys, 0, -1);
if (ret)
return ret;
pac_generic_keys_from_user(keys, &user_keys);
return 0;
}
#endif /* CONFIG_CHECKPOINT_RESTORE */
#endif /* CONFIG_ARM64_PTR_AUTH */
enum aarch64_regset {
REGSET_GPR,
REGSET_FPR,
REGSET_TLS,
#ifdef CONFIG_HAVE_HW_BREAKPOINT
REGSET_HW_BREAK,
REGSET_HW_WATCH,
#endif
REGSET_SYSTEM_CALL,
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
#ifdef CONFIG_ARM64_SVE
REGSET_SVE,
#endif
#ifdef CONFIG_ARM64_PTR_AUTH
REGSET_PAC_MASK,
#ifdef CONFIG_CHECKPOINT_RESTORE
REGSET_PACA_KEYS,
REGSET_PACG_KEYS,
#endif
#endif
};
static const struct user_regset aarch64_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = sizeof(struct user_pt_regs) / sizeof(u64),
.size = sizeof(u64),
.align = sizeof(u64),
.get = gpr_get,
.set = gpr_set
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
/*
* We pretend we have 32-bit registers because the fpsr and
* fpcr are 32-bits wide.
*/
.size = sizeof(u32),
.align = sizeof(u32),
.active = fpr_active,
.get = fpr_get,
.set = fpr_set
},
[REGSET_TLS] = {
.core_note_type = NT_ARM_TLS,
.n = 1,
.size = sizeof(void *),
.align = sizeof(void *),
.get = tls_get,
.set = tls_set,
},
#ifdef CONFIG_HAVE_HW_BREAKPOINT
[REGSET_HW_BREAK] = {
.core_note_type = NT_ARM_HW_BREAK,
.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.get = hw_break_get,
.set = hw_break_set,
},
[REGSET_HW_WATCH] = {
.core_note_type = NT_ARM_HW_WATCH,
.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.get = hw_break_get,
.set = hw_break_set,
},
#endif
[REGSET_SYSTEM_CALL] = {
.core_note_type = NT_ARM_SYSTEM_CALL,
.n = 1,
.size = sizeof(int),
.align = sizeof(int),
.get = system_call_get,
.set = system_call_set,
},
arm64/sve: ptrace and ELF coredump support This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 22:51:13 +07:00
#ifdef CONFIG_ARM64_SVE
[REGSET_SVE] = { /* Scalable Vector Extension */
.core_note_type = NT_ARM_SVE,
.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
SVE_VQ_BYTES),
.size = SVE_VQ_BYTES,
.align = SVE_VQ_BYTES,
.get = sve_get,
.set = sve_set,
.get_size = sve_get_size,
},
#endif
#ifdef CONFIG_ARM64_PTR_AUTH
[REGSET_PAC_MASK] = {
.core_note_type = NT_ARM_PAC_MASK,
.n = sizeof(struct user_pac_mask) / sizeof(u64),
.size = sizeof(u64),
.align = sizeof(u64),
.get = pac_mask_get,
/* this cannot be set dynamically */
},
#ifdef CONFIG_CHECKPOINT_RESTORE
[REGSET_PACA_KEYS] = {
.core_note_type = NT_ARM_PACA_KEYS,
.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
.size = sizeof(__uint128_t),
.align = sizeof(__uint128_t),
.get = pac_address_keys_get,
.set = pac_address_keys_set,
},
[REGSET_PACG_KEYS] = {
.core_note_type = NT_ARM_PACG_KEYS,
.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
.size = sizeof(__uint128_t),
.align = sizeof(__uint128_t),
.get = pac_generic_keys_get,
.set = pac_generic_keys_set,
},
#endif
#endif
};
static const struct user_regset_view user_aarch64_view = {
.name = "aarch64", .e_machine = EM_AARCH64,
.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
};
#ifdef CONFIG_COMPAT
enum compat_regset {
REGSET_COMPAT_GPR,
REGSET_COMPAT_VFP,
};
static int compat_gpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret = 0;
unsigned int i, start, num_regs;
/* Calculate the number of AArch32 registers contained in count */
num_regs = count / regset->size;
/* Convert pos into an register number */
start = pos / regset->size;
if (start + num_regs > regset->n)
return -EIO;
for (i = 0; i < num_regs; ++i) {
unsigned int idx = start + i;
compat_ulong_t reg;
switch (idx) {
case 15:
reg = task_pt_regs(target)->pc;
break;
case 16:
reg = task_pt_regs(target)->pstate;
reg = pstate_to_compat_psr(reg);
break;
case 17:
reg = task_pt_regs(target)->orig_x0;
break;
default:
reg = task_pt_regs(target)->regs[idx];
}
if (kbuf) {
memcpy(kbuf, &reg, sizeof(reg));
kbuf += sizeof(reg);
} else {
ret = copy_to_user(ubuf, &reg, sizeof(reg));
if (ret) {
ret = -EFAULT;
break;
}
ubuf += sizeof(reg);
}
}
return ret;
}
static int compat_gpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct pt_regs newregs;
int ret = 0;
unsigned int i, start, num_regs;
/* Calculate the number of AArch32 registers contained in count */
num_regs = count / regset->size;
/* Convert pos into an register number */
start = pos / regset->size;
if (start + num_regs > regset->n)
return -EIO;
newregs = *task_pt_regs(target);
for (i = 0; i < num_regs; ++i) {
unsigned int idx = start + i;
compat_ulong_t reg;
if (kbuf) {
memcpy(&reg, kbuf, sizeof(reg));
kbuf += sizeof(reg);
} else {
ret = copy_from_user(&reg, ubuf, sizeof(reg));
if (ret) {
ret = -EFAULT;
break;
}
ubuf += sizeof(reg);
}
switch (idx) {
case 15:
newregs.pc = reg;
break;
case 16:
reg = compat_psr_to_pstate(reg);
newregs.pstate = reg;
break;
case 17:
newregs.orig_x0 = reg;
break;
default:
newregs.regs[idx] = reg;
}
}
if (valid_user_regs(&newregs.user_regs, target))
*task_pt_regs(target) = newregs;
else
ret = -EINVAL;
return ret;
}
static int compat_vfp_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct user_fpsimd_state *uregs;
compat_ulong_t fpscr;
int ret, vregs_end_pos;
if (!system_supports_fpsimd())
return -EINVAL;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
uregs = &target->thread.uw.fpsimd_state;
if (target == current)
fpsimd_preserve_current_state();
/*
* The VFP registers are packed into the fpsimd_state, so they all sit
* nicely together for us. We just need to create the fpscr separately.
*/
vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
0, vregs_end_pos);
if (count && !ret) {
fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
vregs_end_pos, VFP_STATE_SIZE);
}
return ret;
}
static int compat_vfp_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct user_fpsimd_state *uregs;
compat_ulong_t fpscr;
int ret, vregs_end_pos;
if (!system_supports_fpsimd())
return -EINVAL;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
uregs = &target->thread.uw.fpsimd_state;
vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
vregs_end_pos);
if (count && !ret) {
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
vregs_end_pos, VFP_STATE_SIZE);
if (!ret) {
uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
}
}
fpsimd_flush_task_state(target);
return ret;
}
static int compat_tls_get(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, void *kbuf, void __user *ubuf)
{
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
}
static int compat_tls_set(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, const void *kbuf,
const void __user *ubuf)
{
int ret;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
compat_ulong_t tls = target->thread.uw.tp_value;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
if (ret)
return ret;
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
target->thread.uw.tp_value = tls;
return ret;
}
static const struct user_regset aarch32_regsets[] = {
[REGSET_COMPAT_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = COMPAT_ELF_NGREG,
.size = sizeof(compat_elf_greg_t),
.align = sizeof(compat_elf_greg_t),
.get = compat_gpr_get,
.set = compat_gpr_set
},
[REGSET_COMPAT_VFP] = {
.core_note_type = NT_ARM_VFP,
.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
.size = sizeof(compat_ulong_t),
.align = sizeof(compat_ulong_t),
.active = fpr_active,
.get = compat_vfp_get,
.set = compat_vfp_set
},
};
static const struct user_regset_view user_aarch32_view = {
.name = "aarch32", .e_machine = EM_ARM,
.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
};
static const struct user_regset aarch32_ptrace_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = COMPAT_ELF_NGREG,
.size = sizeof(compat_elf_greg_t),
.align = sizeof(compat_elf_greg_t),
.get = compat_gpr_get,
.set = compat_gpr_set
},
[REGSET_FPR] = {
.core_note_type = NT_ARM_VFP,
.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
.size = sizeof(compat_ulong_t),
.align = sizeof(compat_ulong_t),
.get = compat_vfp_get,
.set = compat_vfp_set
},
[REGSET_TLS] = {
.core_note_type = NT_ARM_TLS,
.n = 1,
.size = sizeof(compat_ulong_t),
.align = sizeof(compat_ulong_t),
.get = compat_tls_get,
.set = compat_tls_set,
},
#ifdef CONFIG_HAVE_HW_BREAKPOINT
[REGSET_HW_BREAK] = {
.core_note_type = NT_ARM_HW_BREAK,
.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.get = hw_break_get,
.set = hw_break_set,
},
[REGSET_HW_WATCH] = {
.core_note_type = NT_ARM_HW_WATCH,
.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.get = hw_break_get,
.set = hw_break_set,
},
#endif
[REGSET_SYSTEM_CALL] = {
.core_note_type = NT_ARM_SYSTEM_CALL,
.n = 1,
.size = sizeof(int),
.align = sizeof(int),
.get = system_call_get,
.set = system_call_set,
},
};
static const struct user_regset_view user_aarch32_ptrace_view = {
.name = "aarch32", .e_machine = EM_ARM,
.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
};
static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
compat_ulong_t __user *ret)
{
compat_ulong_t tmp;
if (off & 3)
return -EIO;
if (off == COMPAT_PT_TEXT_ADDR)
tmp = tsk->mm->start_code;
else if (off == COMPAT_PT_DATA_ADDR)
tmp = tsk->mm->start_data;
else if (off == COMPAT_PT_TEXT_END_ADDR)
tmp = tsk->mm->end_code;
else if (off < sizeof(compat_elf_gregset_t))
return copy_regset_to_user(tsk, &user_aarch32_view,
REGSET_COMPAT_GPR, off,
sizeof(compat_ulong_t), ret);
else if (off >= COMPAT_USER_SZ)
return -EIO;
else
tmp = 0;
return put_user(tmp, ret);
}
static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
compat_ulong_t val)
{
int ret;
mm_segment_t old_fs = get_fs();
if (off & 3 || off >= COMPAT_USER_SZ)
return -EIO;
if (off >= sizeof(compat_elf_gregset_t))
return 0;
set_fs(KERNEL_DS);
ret = copy_regset_from_user(tsk, &user_aarch32_view,
REGSET_COMPAT_GPR, off,
sizeof(compat_ulong_t),
&val);
set_fs(old_fs);
return ret;
}
#ifdef CONFIG_HAVE_HW_BREAKPOINT
/*
* Convert a virtual register number into an index for a thread_info
* breakpoint array. Breakpoints are identified using positive numbers
* whilst watchpoints are negative. The registers are laid out as pairs
* of (address, control), each pair mapping to a unique hw_breakpoint struct.
* Register 0 is reserved for describing resource information.
*/
static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
{
return (abs(num) - 1) >> 1;
}
static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
{
u8 num_brps, num_wrps, debug_arch, wp_len;
u32 reg = 0;
num_brps = hw_breakpoint_slots(TYPE_INST);
num_wrps = hw_breakpoint_slots(TYPE_DATA);
debug_arch = debug_monitors_arch();
wp_len = 8;
reg |= debug_arch;
reg <<= 8;
reg |= wp_len;
reg <<= 8;
reg |= num_wrps;
reg <<= 8;
reg |= num_brps;
*kdata = reg;
return 0;
}
static int compat_ptrace_hbp_get(unsigned int note_type,
struct task_struct *tsk,
compat_long_t num,
u32 *kdata)
{
u64 addr = 0;
u32 ctrl = 0;
int err, idx = compat_ptrace_hbp_num_to_idx(num);
if (num & 1) {
err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
*kdata = (u32)addr;
} else {
err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
*kdata = ctrl;
}
return err;
}
static int compat_ptrace_hbp_set(unsigned int note_type,
struct task_struct *tsk,
compat_long_t num,
u32 *kdata)
{
u64 addr;
u32 ctrl;
int err, idx = compat_ptrace_hbp_num_to_idx(num);
if (num & 1) {
addr = *kdata;
err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
} else {
ctrl = *kdata;
err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
}
return err;
}
static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
compat_ulong_t __user *data)
{
int ret;
u32 kdata;
/* Watchpoint */
if (num < 0) {
ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
/* Resource info */
} else if (num == 0) {
ret = compat_ptrace_hbp_get_resource_info(&kdata);
/* Breakpoint */
} else {
ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
}
if (!ret)
ret = put_user(kdata, data);
return ret;
}
static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
compat_ulong_t __user *data)
{
int ret;
u32 kdata = 0;
if (num == 0)
return 0;
ret = get_user(kdata, data);
if (ret)
return ret;
if (num < 0)
ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
else
ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
return ret;
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
compat_ulong_t caddr, compat_ulong_t cdata)
{
unsigned long addr = caddr;
unsigned long data = cdata;
void __user *datap = compat_ptr(data);
int ret;
switch (request) {
case PTRACE_PEEKUSR:
ret = compat_ptrace_read_user(child, addr, datap);
break;
case PTRACE_POKEUSR:
ret = compat_ptrace_write_user(child, addr, data);
break;
case COMPAT_PTRACE_GETREGS:
ret = copy_regset_to_user(child,
&user_aarch32_view,
REGSET_COMPAT_GPR,
0, sizeof(compat_elf_gregset_t),
datap);
break;
case COMPAT_PTRACE_SETREGS:
ret = copy_regset_from_user(child,
&user_aarch32_view,
REGSET_COMPAT_GPR,
0, sizeof(compat_elf_gregset_t),
datap);
break;
case COMPAT_PTRACE_GET_THREAD_AREA:
arm64: uaccess: Fix omissions from usercopy whitelist When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Mark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3f761 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-28 16:50:49 +07:00
ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
(compat_ulong_t __user *)datap);
break;
case COMPAT_PTRACE_SET_SYSCALL:
task_pt_regs(child)->syscallno = data;
ret = 0;
break;
case COMPAT_PTRACE_GETVFPREGS:
ret = copy_regset_to_user(child,
&user_aarch32_view,
REGSET_COMPAT_VFP,
0, VFP_STATE_SIZE,
datap);
break;
case COMPAT_PTRACE_SETVFPREGS:
ret = copy_regset_from_user(child,
&user_aarch32_view,
REGSET_COMPAT_VFP,
0, VFP_STATE_SIZE,
datap);
break;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
case COMPAT_PTRACE_GETHBPREGS:
ret = compat_ptrace_gethbpregs(child, addr, datap);
break;
case COMPAT_PTRACE_SETHBPREGS:
ret = compat_ptrace_sethbpregs(child, addr, datap);
break;
#endif
default:
ret = compat_ptrace_request(child, request, addr,
data);
break;
}
return ret;
}
#endif /* CONFIG_COMPAT */
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
#ifdef CONFIG_COMPAT
/*
* Core dumping of 32-bit tasks or compat ptrace requests must use the
* user_aarch32_view compatible with arm32. Native ptrace requests on
* 32-bit children use an extended user_aarch32_ptrace_view to allow
* access to the TLS register.
*/
if (is_compat_task())
return &user_aarch32_view;
else if (is_compat_thread(task_thread_info(task)))
return &user_aarch32_ptrace_view;
#endif
return &user_aarch64_view;
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
return ptrace_request(child, request, addr, data);
}
enum ptrace_syscall_dir {
PTRACE_SYSCALL_ENTER = 0,
PTRACE_SYSCALL_EXIT,
};
static void tracehook_report_syscall(struct pt_regs *regs,
enum ptrace_syscall_dir dir)
{
int regno;
unsigned long saved_reg;
/*
* A scratch register (ip(r12) on AArch32, x7 on AArch64) is
* used to denote syscall entry/exit:
*/
regno = (is_compat_task() ? 12 : 7);
saved_reg = regs->regs[regno];
regs->regs[regno] = dir;
if (dir == PTRACE_SYSCALL_ENTER) {
if (tracehook_report_syscall_entry(regs))
forget_syscall(regs);
regs->regs[regno] = saved_reg;
} else if (!test_thread_flag(TIF_SINGLESTEP)) {
tracehook_report_syscall_exit(regs, 0);
regs->regs[regno] = saved_reg;
} else {
regs->regs[regno] = saved_reg;
/*
* Signal a pseudo-step exception since we are stepping but
* tracer modifications to the registers may have rewound the
* state machine.
*/
tracehook_report_syscall_exit(regs, 1);
}
}
int syscall_trace_enter(struct pt_regs *regs)
{
unsigned long flags = READ_ONCE(current_thread_info()->flags);
if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
if (!in_syscall(regs) || (flags & _TIF_SYSCALL_EMU))
return -1;
}
/* Do the secure computing after ptrace; failures should be fast. */
if (secure_computing() == -1)
return -1;
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
trace_sys_enter(regs, regs->syscallno);
audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
regs->regs[2], regs->regs[3]);
return regs->syscallno;
}
void syscall_trace_exit(struct pt_regs *regs)
{
unsigned long flags = READ_ONCE(current_thread_info()->flags);
audit_syscall_exit(regs);
if (flags & _TIF_SYSCALL_TRACEPOINT)
trace_sys_exit(regs, regs_return_value(regs));
if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
rseq_syscall(regs);
}
/*
* SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
* We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
* not described in ARM DDI 0487D.a.
* We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
* be allocated an EL0 meaning in future.
* Userspace cannot use these until they have an architectural meaning.
* Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
* We also reserve IL for the kernel; SS is handled dynamically.
*/
#define SPSR_EL1_AARCH64_RES0_BITS \
(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
#define SPSR_EL1_AARCH32_RES0_BITS \
(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
static int valid_compat_regs(struct user_pt_regs *regs)
{
regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
if (!system_supports_mixed_endian_el0()) {
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
regs->pstate |= PSR_AA32_E_BIT;
else
regs->pstate &= ~PSR_AA32_E_BIT;
}
if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
(regs->pstate & PSR_AA32_A_BIT) == 0 &&
(regs->pstate & PSR_AA32_I_BIT) == 0 &&
(regs->pstate & PSR_AA32_F_BIT) == 0) {
return 1;
}
/*
* Force PSR to a valid 32-bit EL0t, preserving the same bits as
* arch/arm.
*/
regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
PSR_AA32_C_BIT | PSR_AA32_V_BIT |
PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
PSR_AA32_T_BIT;
regs->pstate |= PSR_MODE32_BIT;
return 0;
}
static int valid_native_regs(struct user_pt_regs *regs)
{
regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
(regs->pstate & PSR_D_BIT) == 0 &&
(regs->pstate & PSR_A_BIT) == 0 &&
(regs->pstate & PSR_I_BIT) == 0 &&
(regs->pstate & PSR_F_BIT) == 0) {
return 1;
}
/* Force PSR to a valid 64-bit EL0t */
regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
return 0;
}
/*
* Are the current registers suitable for user mode? (used to maintain
* security in signal handlers)
*/
int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
{
/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
user_regs_reset_single_step(regs, task);
if (is_compat_thread(task_thread_info(task)))
return valid_compat_regs(regs);
else
return valid_native_regs(regs);
}